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Abstract

Along with rapidly growing database sizes, also the requirements on modern database
systems grow. For analyzing large datasets, index structures are fundamentally im-
portant, whereas the focus moves clearly to main-memory index structures, since
the bottleneck from loading data from the hard-disk drive moves to loading data
from main memory into the CPU cache. As one state-of-the-art main-memory in-
dex structure, we focus on Bitweaving, a column-wise storage based primary index
structure that runs scans at "bare metal” speed and offers possibilities to reduce
the amount of processed data, one of them called Farly Pruning. This approach
comes with one limitation in the implementation used by Bitweaving: The perfor-
mance improvement using early pruning depends on the selectivity of each individual
predicate, which in many cases is comparatively high, whereas considering multiple
predicates together significantly reduces the selectivity.

In this work, we present ColumnWeaving, an adaption for Bitweaving/V that sup-
ports multi-column indexing and aims to benefit from the reduced selectivity of
considering multiple predicates together. We introduce two different memory lay-
outs for indexing multiple columns adapting the weaving techniques from Bitweav-
ing/V, which we call ColumnWeaving/S and ColumnWeaving/L and present scan
algorithms on both layouts. After presenting both layouts for ColumnWeaving,
we evaluate the early pruning behavior using a synthetic benchmark and compare
ColumnWeaving against Bitweaving/V using TPC-H queries. Our synthetic bench-
mark confirms, that the indexing of multiple columns together improves the early
pruning behavior, whereas in the TPC-H queries, ColumnWeaving results in higher
response times than expected. Consequently, we propose and evaluate a set of limi-
tations of ColumnWeaving as possible causes for the higher response time.
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1. Introduction

Along with the steady growth of data and the demands for databases, also the
technology evolved immensely in the last decades. Right after the original design
of online transactional processing (OLTP) for database queries, the need of online
analytical processing (OLAP) became more important [Pla09, KN11]. To this end,
warehouse databases with terrabytes of records have to be scanned to fulfill the
analytical requirements of modern companies.

Since the original bottleneck of loading data from a hard-drive disk (HDD) moved
to loading data from main memory into CPU cache, the research focusses more on
main-memory index structures [BKMO08, KKNT08]. Furthermore, the exploitation of
data parallelism with the approach of singe instruction multiple data (SIMD) highly
increases the performance of full table and index-based scans [ZHF14, SGL09]. Also
adapting index structures to underlying hardware restrictions like cache and register
size lead to improved read performance [KCS*10].

Although all of these adaptations increase the performance of database operations,
there is a need of more specific adaptations for OLAP queries to keep up with the
fast evolution of requirements to those. For OLAP queries, in most cases, full table
scans are performed by the database systems. However, dependent on the selectivity,
an index-based scan can reach a better performance. Das et al. propose to use an
index structure for very low selectivities of smaller than 2% [DYZ"15] .

Several authors show improved secondary and primary index structures for read-only
operations, like Column Imprints [SK13] and Bitweaving [LP13]. Both are improved
for column-based storage of tables and perform well on queries containing predicates
over multiple columns, but they treat columns independently in the query execution
process. As Broneske et al. [BKSS17] show, the selectivity of a query can highly
decrease if predicates of multiple columns are considered together. Consequently, we
want to examine if those index structures can also benefit from this observation. We
focus on Bitweaving, especially Bitweaving/v, since we assume that early pruning
can be improved by indexing multiple columns together.
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Goal of this Thesis

The goal of this thesis is to evaluate the hypothesis that considering multiple predi-
cates together improves the sequential scan approach of Bitweaving/V. Therefor, we
present ColumnWeaving, an extension of Bitweaving/V for multi-column indexing
and evaluate the performance compared to the original implementation of Bitweav-
ing/V. To this end, we provide the following contributions to reach a comprehensive
evaluation of our extension.

1. Based on the decreasing selectivity considering predicates of a query together,
we define two layouts of our extension of Bitweaving/V, called ColumnWeav-
ing/S and Column Weaving/L. Both layouts span over multiple columns, which
enables evaluating multi-column selection predicates together.

2. Along with the layouts for multi-column selection predicate evaluation, we
present algorithms to evaluate predicates on ColumnWeaving/S and Column-
Weaving/L.

3. Li and Patel introduced early pruning as an essential feature of Bitweaving
that increases the performance [LP13]. Consequently, we also implement early
pruning for both layouts and show how the pruning behaves over different
configurations.

4. We contribute an analysis of query execution performance with the TPC-H
dataset of ColumnWeaving/S and ColumnWeaving /L and the original Bitweav-
ing/V implementation.

Structure of the Thesis

This thesis is structured as follows. We start introducing necessary terms to under-
stand the design choices for ColumnWeaving and present Bitweaving in Chapter 2.
In Chapter 3 and Chapter 4 we define both variants of ColumnWeaving along with
the algorithms to evaluate multi-column selection predicates and adapted algorithms
for early pruning. After presenting ColumnWeaving, we explain our evaluation setup
and environment in Chapter 5 and present the results of our evaluation. We con-
tinue this thesis naming related work in Chapter 6, end with a conclusion and show
steps that have to be done in the future to continue our work in Chapter 7.



2. Background

In the following, we present background information and define important terms on
which we rely in upcoming chapters. Starting with an introduction of important
terms, we present different parallelization approaches and introduce what the state
of the art of full table scans is and which problems exist. Furthermore, we present
layouts, concepts and algorithms of the index structure Bitweaving, focussing on the
Vertical Bit-Parallel (VBP) method, early pruning and Bitweaving/V.

2.1 Important Terms

Before introducing state of the art concepts for query execution, we define a set of
important terms used in the rest of this work.

CPU Cache

To load data into processor registers, the data has to be loaded into cache before-
hand. Since loading data from main memory is an expensive operation for the CPU,
because the data has to pass the CPU bus, many cycles can be saved if the data
can be cached on the CPU itself. In modern processors, the cache is split into the
L1, L2 and L3 cache. In Figure 2.1 we present the cache hierarchy of all these three
layers. Data can be transferred only from one cache layer to the adjacent layers.
Consequently, loading data into processor registers requires loading them into all 3
cache layers, starting from L3 over Ly to L. In most modern CPUs, the L, and
L3 caches are shared across all CPU cores, which means all cores can access the
caches, whereas each CPU core has its own L; cache. To load data into a processor
register, the CPU checks if the data is available in the cache, starting from L; over
Ly to Ls. With each cache layer, the available memory grows along with the access
times. Hennessy and Patterson present a server architecture having 64KB L; cache,
256KB Ly cache and 2-4 MB L3 cache [HP11]. The response time for L; cache is
Ins, for L, cache 3-10ns and for L3 cache 10-20ns.

Reaching a good cache usage is an important target for modern software. Con-
sequently, also index structures for databases are adapted for better cache usage.
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CPU Core #1 CPU Core #2 CPU Core #n
Registers Registers Registers
L1 Cache L1 Cache L1 Cache

L2 Cache

L3 Cache

Main Memory

Figure 2.1: Cache hierarchy of modern processors

Kim et al. introduce FAST [KCS™10], a hardware-sensitive binary tree, adapting
its node sizes to the underlying cache and register sizes. Rao et al. make B+-trees
cache conscious in main memory to reach better cache usage [RR00]. Furthermore,
Cha et al. evaluate cache-conscious concurrency control of main-memory indexes on
shared-memory multiprocessor systems [CHKKO01].

Cache line size

To transfer data from the L; cache to the processor register, the data has to be
stored in a cache line. We define the term cache line size as the size of the L1 cache
line of CPUs. In most x86 and x64 systems, the cache line size is 64byte, including
our setup used for the evaluation.

Since the cache line size is mostly limited to 64byte, programmers aim to optimize
the cache line behavior. Read and write operations perform most efficiently if the
data address is a multiple of the data size, which we call naturally aligned. We
define the insertion of padding between structured elements to reach their natural
data alignment.

Cache Miss

As mentioned before, loading data from main memory into the CPU is an expensive
operation. Consequently, storing data in the CPU cache leads to reduced latencies
and the CPU looks always into the cache to find required data before loading it from
the main memory. Since the cache size on the CPU is highly limited compared to
the main memory, cache lookups often result in not finding the data in the cache.
We define this incident as cache miss.

Cache misses may have an important influence on the program execution perfor-
mance, because the data has to be loaded from the main memory over the CPU
bus and this forces the CPU to wait with the current operation until the data is
available. Consequently, aiming a good cache behavior and avoiding cache misses
is an important target for modern programs. Skadron et al. evaluate performance
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trade-offs for cache usage [SAMC99]. Veidenbaum et al. present a different approach
adapting cache line size to application behavior [VTG99]. Furthermore, Kaxiras
et al. present an analytical view on cache misses [GMM97].

Processor Word

A processor word is a block of data whose size matches the register size of the
processor. Consequently, a processor word can be processed by the processor as one
unit. We differentiate between Arithmetic Logical Unit (ALU) words reaching from
32 to 64bit and SIMD words, which may be from 64bit to 512bit long. In Table 2.1,
we present different processor word sizes depending on the system architecture and
usage of SIMD extensions.

Name Size in bits
x86 32
x64 64
SSE 1-2 (x86) 64
SSE 1-4 (x64) 128
AVX/AVX2 (x64) 256
AVX 512 (x64) 512

Table 2.1: Register sizes of different system architectures and SIMD extensions

Code Word

Since our implementation bases on Bitweaving, which processes data as encoded bit
strings, we introduce the term code, which represents an encoded column value. De-
pending on the method used for encoding, the number of bits used for a code differs
from the bits used to store the original column value. In most cases, compression is
used to transform a column value to a code and reduce the storage size.

2.2 Parallelism Types

To reach a high level of performance, the structures presented in this work use
different techniques of parallelization. In Table 2.2 we present flynns taxonomy
[Fly72], which classifies computer architectures depending on data and instruction
streams. The data stream as well as the instruction stream can contain a single
element or multiple elements, resulting in 4 different approaches. In this work, we
focus on Single Instruction Single Data and Single Instruction Multiple Data.

Single Instruction Single Data

Basically, a program is a set of instructions stored in the main memory, which are
processed one after another. We define the term Single Instruction Single Data as
executing one instruction with exactly one data item. This approach is widely used
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Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

Table 2.2: Flynns taxonomy describing a classification of computer architectures

in modern personal computers. Although they may contain multiple cores, each core
follows the SISD approach executing one instruction on a single data item per cycle.

Those instructions can depend on each other or can be independent. In one cycle, one
CPU core can process at maximum one instruction, but to increase the execution
speed of a program, the CPU can prepare the execution of the next instruction
while processing an instruction, which we call instruction parallelism. In contrast to
linear program flows, where instruction parallelism may highly increase the execution
performance of a program, each branch in the program flow may lead to the case,
that the CPU prepares the wrong instruction. This situation is called a branch
masprediction and has a high impact of computing performance, since the CPU has
to revert the preparation.

Branch mispredictions may reduce the execution performance of programs signifi-
cantly [ESE06]. Broneske et al. present processing capabilities and describe code
optimizations to exploit these capabilities [BS17a]. Furthermore, they evaluate
database operations in a hardware-sensitive context [BBHS14].

Multiple Instruction Single Data

In contrast to executing one operation on one data item at once, there is also the
approach of executing multiple instructions on a single data item at once, called
multiple instruction single data. This approach is not spread widely in multi-core
processors and mostly used for highly specific use cases, for example highly paral-
lelized integration or matrix operations [KL79].

Single Instruction Multiple Data

As third block of flynns taxonomy we present the execution of a single instruction
on multiple data items in one cycle, called Single Instruction Multiple Data (SIMD).
Examples of SIMD instructions are Intels SSE or AVX extensions. Those are in-
structions that work on processor words with a size of a multiple of those from
normal ALUs and provide an extra set of extended CPU instructions along with
additional registers. In Figure 2.2 we present the instruction execution of SISD and
SIMD. Whereas SISD executes an operation on one data item, SIMD executes one
operation on n data items in parallel giving results for all n items in one cycle.
Hence, an n-fold performance improvement has to be expected.

Considering the performance, an n-fold performance improvement can massively
speed up programs. Consequently, SIMD is an often used approach to increase per-
formance of processing huge amounts of data. Franchetti et al. present techniques
for efficient utilization of SIMD extensions [FKLUO05]. Although, using SIMD can
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Figure 2.2: Comparison of SISD and SIMD

increase the performance up to n times, it is not always the best solution for speeding
up programs. Broneske et al. evaluate use cases for SIMD usage and present situ-
ations, in which SIMD will not lead to the expected performance increase [BS17b].
Also in database systems, SIMD is often used as approach to execute performance
of database operations [ZR02, PRR15].

Multiple Instruction Multiple Data

Compared to SISD mostly used in personal computers, super computers containing
a huge number of cores execute multiple instructions on multiple data at once,
called Multiple Instruction Multiple Data. Using shared memory to access the data
processed by other cores, this approach allows highly parallelized work on the same
data.

2.3 Database Query Processing

Database queries often written in SQL are represented as execution plan, which is
basically a tree of operators connected with logical operators. Those execution plans
can be optimized by database systems to increase the execution speed. Mostly, there
are two different approaches for fetching rows from a table: Index-based scan vs full
table scan. Both can be better in specific situations, depending on the expected
number of rows that have to be checked. Index-based scans perform better for a
fine granular search, full table scans may be better if all rows have to be checked.
To define a value for deciding which approach may be better, we introduce the
selectivity of a query.

2.3.1 Selectivity

The selectivity of a query or predicate is defined as the number of tuples matching the
query or predicate divided by the number of tuples checked in total. Consequently,
a small selectivity means a small set of tuples matching the query. For small selec-
tivities, an index scan may outperform a scan over the whole table, whereas for high
selectivities, a full table scan may be better. Consequently, a database system can
use statistics to evaluate this value and decide which approach to use for executing
the given query. The selectivity of a query depends on the number of predicates
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that have to be evaluated. In Figure 2.3, we present a typical TPC-H query con-
taining multiple predicates as visualized WHERE-clause and for each part of the
WHERE-clause, we show the selectivity.

Q6.1: |_shipdate >= [DATE] AND I_shipdate > [DATE] + '1 year'
Q6.2:  AND I_discount BETWEEN [DISC] - 0.01 and [DISC] + 0.01
Q6.3:  AND |_quantity < [QUANTITY]

(a)

o0 [ ]

40 | :

30| 27 :

20 | :

Selectivity

10 .
4

1.72
N N

Q6 Qél QéQ Qé?)
()

Figure 2.3: a) WHERE clause of TPC-H query split into three parts, b) Selectivity
of all three parts and the whole WHERE clause

We decide to use TPC-H dataset because it represents real-world data used for
testing index structures and database systems and it is a good basis for comparing
against other state-of-the-art index structures. Since full table scans are often pre-
ferred over index structures for queries with high selectivities, we focus on queries
that have low selectivity in this work. For these queries, we know the selectivity
beforehand. However, in real-world applications, it is not a trivial task to evalu-
ate the selectivity of a query to decide if a full table or index-based scan lead to
better results. Consequently, several contributions were made to this research area.
Chen et al. present algorithms for adaptive selectivity estimation using query feed-
back [CR94]. Getoor et al. propose an estimation approach for selectivity using
probabilistic models [GTKO1].

Since a query may contain predicates over multiple columns, we want to formally
define the query as a set of predicates over multiple columns called multi-column
selection predicates.

2.3.2 Multi-Column Selection Predicates

We define a multi-column selection predicate MCSP over a subset of columns
C from table T as a set of predicates P that are evaluated together. Conse-
quently, MCSP = {Py, ..., P,} with |[MCSP| > 1. Each predicate P, = (C;, O;, V;)
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is a 3-tuple containing a column C; € C, an operation O; € {=,<,<, >, > #
,BETWEEN} and a list of constants V;, whereas each constant v; € V; is a code
word. As important limitation, a multi-column selection predicate must not con-
tain two predicates having the same column. So for each column there can be at
maximum one predicate in a single MCSP. Furthermore, all predicates contained in
one MCSP are connected via the logical AND operator. To support a logical OR
between predicates, they have to be split into multiple MCSP.

To handle all operations 0 € {=,<,<,>,>,# BETWEEN} the same way, we
adopt the columnar selection predicate translation proposed by Broneske et al.
[BKSS17]. In Table 2.3, we present a common representation of all required op-
erations using upper and lower bound windows. We adopt the definition min being
the domain minimum and max the domain maximum of each column.

Predicate Window
— 7 [z, x]
<z [min,z — 1]
<z [min, x|
> [z + 1, max]
> [z, maz]
<z and >y, withz <y [z, y]

Table 2.3: Columnar selection predicate translation proposed by Broneske et al.
[BKSS17]

2.4 Bitweaving

Bitweaving is a framework designed to overcome the bottleneck of accessing main
memory. Instead of relying only on data parallelism with SIMD, Bitweaving exploits
intra-cycle parallelism, which means to achieve data parallelism in a single CPU
word. Bitweaving focusses on increasing the speed of full table scans by compressing
data in order to overcome bandwidth limitations. Thus, data can be processed at
the speed of the processor core, which is called at bare-metal speed in the following.
Additionally, it can be extended using data parallelism with SIMD, but it is not a
mandatory part of the Bitweaving framework.

To achieve intra-cycle parallelism, Li and Patel [LP13] limit the data domain which
can be processed by encoding it to fixed-size codes from 1 bit to 32bit, whereas the
performance increases with smaller code sizes because of a higher grade of paral-
lelism. Since decoding is required to get the original data out of the code words, late
materialization is commonly used in the framework. Bitweaving relies on commonly
used column compression methods including null suppression [FHL10], prefix sup-
pression [ZHNBO6] and order-preserving dictionary encoding [BBC12, FML*12].

In the following, we present the two core layouts on which Bitweaving is build, the
horizontal and vertical bit parallel methods.
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2.4.1 Bit-parallel Methods

Fundamentally, Bitweaving provides two layouts. The horizontal bit-parallel method
(HBP) is based on a row-oriented bit storage and the vertical bit-parallel method
(VBP) is based on a column-oriented bit storage. In Figure 2.4, we show the layout
of both methods placing codes into processor words.

cl c2

Cotumn | | | | ) ¢l c2 c3 —
<000 .« [600 aEb oum

< HHEHE < CJHN ...
3 ... w2 ... . s om
| ] | ] n

I_I_I w [JFN .. .

c3

a) column data b) horizontal bit-parallel c) vertical bit-parallel

Figure 2.4: a) Sample Column containing 3 3bit codes, b) its encoding using hori-
zontal bit parallel method, ¢) and vertical bit parallel method

The HBP method places codes one after another in processor words padded by
separation bits until the processor word is full. In contrast, the VBP methods splits
up codes and put the iy, bit of multiple codes into one processor word, starting from
the most significant bit to the least significant bit. Since we focus on extending the
VBP method, we only present the HBP method shortly to differentiate it to the
vertical method. In the following, we only consider the VBP method.

2.4.2 Vertical Bit-parallel Method

VBP is inspired by the bit-sliced method [OQ97] with a different data organization
around word boundaries. The original codes ¢4, ..., ¢,, are transposed into an adapted
encoding and grouped into segments. FEach segment contains k codes, where k
represents the number of bits in each code. The k codes are transposed into a set
of codes vy, ..., vy, so that the jth bit in v; is equals to the original code ¢;. The
transposed words inside a segment are physically stored in continuous memory to
allow hardware prefetching using a sequential access pattern.

In Figure 2.5, we give an example of the VBP storage layout for one column con-
taining 11 3bit codes cy, ..., c;; and a processor word size of 8bit. Those 11 codes are
divided into 2 segments containing 3 processor words per segment. Those segments
do not exist in the original column, but we indicate them to clarify which codes are
put into which segments in VBP. The first 8 codes fully fill the first segment in VBP
and the remaining 3 codes filling up only a part of the second segment, whereas the
remaining bits in segment 2 are filled up with 0Os.

Compared to HBP, the VBP method does not need additional bits to separate codes.
Due to the required bit extraction to store the bits in a vertical fashion, the index
creation of VBP is more complex compared to HBP. Furthermore, the reconstruction
of codes out of the VBP is slower compared to HBP. Whereas the code size affects
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Figure 2.5: Vertical bit parallel method

the number of codes per processor word in HBP, the code size does not affect the
number of codes stored together in one processor word in VBP, because in each
word only the ith bit is used in the processor word. Consequently, the code size
does not affect the number of codes stored in each processor word, but the number
of processor words required to store a fixed size of codes. For example, considering
a 64bit processor word and 8bit code size, VBP stores the ith bit of 64 codes in each
processor word and requires 8 words to store 64 codes.

Since the VBP layout differs clearly from a traditional column-based storage, adapted
algorithms have to be used to run columnar scans on this layout.

2.4.3 VBP Column-Scalar Scan

The VBP column-scalar scan processes the transposed codes and results in a bitvec-
tor indicating whether the column code matches the comparison condition at the
specific index. To apply a columnar-scan, the transposed codes are read in their
located order and compared bitwise using a specific comparison condition. Conse-
quently, the original codes are checked against the comparison condition starting
from the most significant bit until the last significant bit. In each step, a vector of
w bits is processed and the ith bit of k& words is compared in parallel.

Algorithm 1 shows the pseudo code for a column-scalar scan evaluating the predicate
BETWEEN for two constants ¢; and co. As first step of the algorithm (Lines 1-12)
we create two lists of literals, one list for C'; and one for Cy. The literals C4y, ..., Cip
represent the input constant € in the VBP storage format. If the ith bit in C is
set to 1, we set C'; to 1%, otherwise to 0. We set the bits of Cyy, ..., Uy, checking
the 1th bit of (5, respectively. In the second step, we iterate over all segments and
evaluate all w codes of each segment in one iteration. We use the bitmask mg to
indicate the codes that are greater than the constant C; and my to indicate the
codes that are smaller than the constant Cy. The bitmasks m.,; and m.g represent
the codes that are equivalent to the constants C; and Cs, respectively. In the
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inner loop (Line 14-18), we iterate over all k bits of the codes starting from the
most significant to the least significant bit. At each step s = 1, ..., k, we compare
the literals at position s from C; and C5 to the sth processor word of the current
segment and update the masks my, Mg, Meqr and Mmeqe. mg is updated via the
assignment of mgy = mgy V (Mea A 2Chi A s.v;), where s.v; is the ith bit of the
current processor word at step s. Consequently, m,, is set to 1 at a specific position
i, if the corresponding bit of the constant C is 0 and s.v; is set to 1. my, is set to 1
at bit position i, if the corresponding bit of the constant C] is set to 1 and s.v; is 0.
Meq1 and meqo are updated for the codes that differ from the constants C; and Cs at
bit position 7. As last step, a conjunction of mg, and my is appended to the result
bit vector to fulfill the predicate C; < ¢ < Cy, whereas this line can be replaced for
supporting other predicates, like mg A my V Megi V Mego for Cp < ¢ < Cs.

Algorithm 1: VBP column-scalar scan for BETWEEN predicate
Input: Predicate C' < ¢ < (5 for column ¢
Result: Vo,

for i:= 1...k do
if i-th bit of C set to 1 then
| =1
else
‘ Cli = Ow
end
if i-th bit of Cy set to 1 then
| Oy =1v
else
‘ CQZ‘ == Ow
end
end

for each segement s in ¢ do

My = Mg =0

Meql 1= Mege 1= 1Y

for .= 1...k do
Mgt = Mg V (Megn A C1; A 5.0;)
My = My V (mqu N Cgi A ﬁS.’UZ‘)
Meqgr = Meg1 V (5.0, & Cy)
Meg2 = Meg2 Vv _'<S-U7L S C(21)

end

append mg A my 1o Vi

end

Processing multiple tuples in parallel starting from the most significant bit leads to
an important optimization regarding the number of codes that have to be processed:
If all currently processed bits do not match the comparison condition, the remaining
codes of the segment can be skipped. This idea is called early pruning.

2.4.4 Early Pruning

As mentioned before, CPU cycles and loading data into CPU cache are important
performance factors. Consequently, modern index structures aim to reduce them.
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With early pruning, a fine granular reduction of processing codes is possible with
skipping the rest of a segment if all most significant bits do not match the comparison
condition.

In Figure 2.6, we show the application of early pruning on comparing 3 VBP words
wi, wy, ws against the transposed Constants Cy1, Co and C3 out of the input con-
stant c¢. Starting from the first bit, we show the current word w; compared to the
transposed constant C}; compared for equality in the result masks m.,. After com-
paring the first bit, m,, contains two codes that match, but after comparing the w,
and Clg, all bits of m,, are 0. Consequently. none of the codes match the constant
after comparing the second bit and we can skip checking the last bit of all codes.
We call this skip of operations early pruning.

VBP Words Transposed Constants Megq

o wi [UL][ [0 [o][1][x]  on [o][o][o][o][o] [o][o][e]  [o][a][e]e]e][+][c][c]
zavt w2 [o][o][M][x][x][o][e][e]  cIIEIMGIGIGIGAIE]  [olfo]fe][o]fe] [o] fo] [o]
mavt v N ANEEEE --DEEDEDEDE

Figure 2.6: Early pruning on VBP

Li and Patel introduce the pruning probability [LP13] on a segment containing m
codes, whereas m = w * f is the fill factor f of the segment multiplied with the
processor word size w. They define the pruning probability P(b), depending on the
number of most significant bits b, in Equation 2.1.

Pb) = (1 - ()" = (- (3))* (2.)

Furthermore, Li and Patel evaluate the pruning probability with different fill factors
and most significant bits, concluding that the pruning probability reaches up to
100% for at maximum 12 most significant bits, for lower fill factors, the probability
of 100% is already reached with 4-8 bits.

Although the number of codes that have to be processed by the CPU in VBP can
be reduced with early pruning, the codes are loaded into the CPU cache, since
cache lines are loaded fully from memory. Consequently, regarding the number of
processed codes, a bad cache behaviour occurs. To overcome this, Bitweaving/V
was introduced.

2.4.5 Bitweaving/V

Bitweaving/V is an adaption of VBP locating the most significant bits of codes
together and cutting off the less significant bits. Cutting off means to locate the bits
in another memory location, which does not directly follow the location of the most
significant bits. It has three key features, which lead to better scan performance:
1) The storage layout extends the VBP introducing bit groups, in which the most
significant bits of the transposed codes are located in a sequential order for better
cache behaviour; 2) Because of the extended storage layout, early pruning can be
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applied; 3) SIMD instructions can be used to extend Bitweaving/V to improve scan
performance.

In Figure 2.7 we show the extended storage layout of Bitweaving/V compared to
original VBP. In this sample, we put the first 3 words of segment 1 into the first
bit group and perform a so called cut-off, which means that after these 3 words
containing the most significant bits of segment 1, the first 3 words of segment 2
are located directly after. The middle significant bits of segment 1 are stored at
the beginning of the second bit group. Depending on the pruning probability and
the number of most significant bits, words of the bit groups 2 and 3 may not be
processed at all, leading to a highly increased cache line usage.

Segment 1 Segment 2

| ! 5 |
I O g o
Lcht-oﬂ 'u '—J

cut-off

Processor Word
(a)
Processor Word

st [DOL[OOL{OO0
Bit Group 2 I:“:H:‘ : I:“:H:‘ ; I:“:H:‘

Bit Group 3 I:“:H:‘I I:“:H:" I:“:H:‘

Segment 1 Segment 2

(b)

Figure 2.7: Early pruning on a) VBP and b) BitWeaving/V

Bitweaving/V comes with a significant benefit compared to VBP: The cut-off used
to create bit groups leads to highly improved cache line usage if early pruning can be
applied. As mentioned before, with early pruning, not all words have to be processed,
if the most significant bits do not match the predicate. In VBP, although we can skip
words applying early pruning, they are located next to the words containing the most
significant bits. Consequently, they are loaded into the CPU cache without being
processed and lead to bad cache behavior. The grouping of bits in Bitweaving/V,
depending on the significance of the bits, leads to store the less significant bits in
another memory location and avoid them to be loaded into the cache if they could
be pruned. In the best case, only the words of the first group have to be checked
and the words located in the remaining groups are not loaded into the cache.

After presenting the storage layout of Bitweaving/V, we focus on the adapted
column-scalar scan implementation. In Algorithm 2, we show the pseudo code for
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columnar-scan on Bitweaving/V using the BETWEEN operation including early
pruning.

Algorithm 2: Bitweaving/V column-scalar scan for BETWEEN predicate

Input: Predicate C', < ¢ < (5 for column ¢

Result: Vo,

Initialize C; and Cy (analogue to Lines 1-10 in Algorithm 1)

for each segement s in ¢ do

my = mg =0

Megl -= Meg2 = 1w

for g:=1...|%] do

if meg1 == 0 A mege == 0 then

‘ break:;

else

for i:= gB + 1 ... min(¢9B + B,k) do
Mgt = Mg V (Meg1 A —C1; A 5.0;)
my =My V (Mega A Coi A 18.0;)
Meqt = Megr V (5.0 & Cyy)
Meq2 = Meg2 \ _‘(S-Ui S CZ@)

end

end

end
append mg A My to Vs
end

At first, the initialization of the literal bits for the constants C; and (5 is the same
as shown in Algorithm 1. Furthermore, we keep the iteration over all segments, as it
can be seen in line 2. In line 5, we start iterating over all used bit groups. Defining
k as the number of words in each segment and B as the size of each bit group, we
have to iterate over L%J groups. The fist step before processing the words of one bit
group is to check if early pruning can be applied. This is done with the condition
Meqi == 0 A Mego == 0 in line 6. If both equal masks have all bits off, we have no
code matching the constants and we can continue with the next segment. In line
9, we iterate over the number of words contained in the current group. Full groups
contain always k words, but the last group may not be full and consequently we
need to perform edge checking to get the real number of words in the last group.

Li and Patel observe a performance increase by up to 40% using the advanced
column-scalar scan of Bitweaving/V compared to the VBP implementation [LP13].
Furthermore, applying early pruning to the Bitweaving/V scan implementation de-
creases the number of cycles per tuple.
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3. ColumnWeaving/S

In this section, we introduce ColumnWeaving/S, an adapted memory layout for
Bitweaving/V and a set of algorithms to evaluate multi-column selection predicates
on this layout, where the S stands for the slim memory footprint. In Chapter 4
we will present ColumnWeaving/L, which has a larger memory footprint because of
additional bits placed between the codes. The core goal of ColumnWeaving is to
keep benefits from Bitweaving/V and to make use of a reduced selectivity evaluating
predicates on multiple columns together.

We organize this section as follows: At first, we introduce the memory layout of
ColumnWeaving/S. Secondly, we define a set of algorithms to evaluate multi-column
selection predicates on the presented spanning techniques. As next step, we present
an extended version of early pruning and present how the number of processed codes
can be reduced applying it on the memory layout.

3.1 Storage Layout

To index multiple columns with the benefits of Bitweaving/V, we adopt storing
codes from the most significant bits to the least significant bits using an alternating
order of bits of all indexed columns. In Figure 3.1, we present the storage layout
of ColumnWeaving/S on an example with 2 columns C' and D for the first 8 codes.
Each column contains a segment of 8 codes, which are transposed into one segment
of 6 processor words. The word w; holds the most significant bit of the codes ¢;
to ¢4 of column C and d; to ds of column D, whereas the codes are treated in an
alternating fashion, resulting in w; containing the first bit of the mentioned codes in
the following order ¢, dy, co, ds, c3,d3, ¢4, dy. wo holds the middle significant bits of
the same codes of w; in the same order. With wq, ws, ws, the codes of both columns
of the first 4 tuples are stored in the layout of ColumnWeaving/S. Starting with the
next 4 codes, ws holds the first bit of ¢5 — ¢g and d5 — dg in the same order and
wg, wy the middle and last bit, respectively.

In our example, both columns have the same code size, which is 3. In most cases,
columns contained in a query must not have the same code size. ColumnWeaving/S
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Figure 3.1: ColumnWeaving/S Storage Layout

examines the largest code size out of all indexed columns and fills up remaining
bits of processor words with 0s. This will lead to many unused bits the higher the
difference of code sizes is in all indexed columns. A more efficient proposal is to make
a cut-off after the smallest code size and store the remaining bits of all columns at
the end of the index structure. We plan to evaluate this layout in future work. For
different number of codes per column, ColumnWeaving/S also fills up remaining
codes with 0s. Also adopted from Bitweaving/V, we group bits depending on their
significance bit groups, to reach better cache line performance.

3.2 Worst Case Storage Consumption

As first step to transpose the codes into the ColumnWeaving/S storage layout, we
examine how many codes of each column we can put into each processor word, which
we call Ny. Since Ny, depends on the number of columns and the processor word
size, we calculate it with the following formula Equation 3.1

Wi |
NUM_COLUMS

Ny = | (3.1)
In Table 3.1, we show the number of codes indexed per processor word depending
on the number of indexed columns and processor word size. Compared to Bitweav-
ing/V, which fills up each processor word completely, indexing multiple columns
lead to unused bits. Consequently, we add the number of unused bits N, for each
configuration. The code size of the columns has no effect on Ny, since Ny, covers
only the 7th bit of each code. Using N;, and N, we calculate the number of words
used by ColumnWeaving/S W, at index creation time with Equation 3.2.

CODE_COUNT
Ny,

CODE_COUNT
|W| - Nub

W, =T 1%« CODE_SIZE + [ ] (3.2)

Basically, the formula of W, consists of two essential parts. The first part calculates
the number of words used to store the transposed codes without considering the
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unused bits Ny,. Dividing CODE_COUNT by Ny, results in the factor, how many
words are required to store 1bit of all codes. To get the number of words used to
store all bits of the codes, we multiply this factor with the code size. The second
part of the formula calculates how many additional words are required to store the
unused bits. Calculating |[W| — Ny, we get the number of used bits per processor
word. Dividing CODE_COU NT by this number results in the number of additional
words required by ColumnWeaving/S due to unused bits.

Considering W, = 689 for 5 columns and 64 bit processor word width, ColumnWeav-
ing/S has 689 — 640 = 49 unused processor words, which results in 3136 unused bits
overall.

# Columns |W| Ny Ny, W, Bitweaving/V (W, )

2 64 32 0 256 256
3 64 21 1 400 384
4 64 16 0 504 504
D 64 12 4 689 640

Table 3.1: Number of codes indexed per processor word with different number of
columns, processor word size and the resulting word count W, using 1000 codes of
8bit for all columns compared to the number of words used by Bitweaving/V

3.3 Column-scalar Scans

In Chapter 2 we defined the multi-column selection predicate, which we use for our
column-scalar scan implementation for ColumnWeaving/S. We evaluate one multi-
column selection predicate per scan, which we transpose into a specific layout be-
fore executing the scan. Using this layout, we adopt the original Bitweaving/V
column-scalar scan algorithm for ColumnWeaving/S. Consequently, we focus on the
transposition of the multi-column selection predicate.

In Bitweaving/V, k literals are created for the constants C; and Cy for the BE-
TWEEN scan. In ColumnWeaving/S, for each column ¢; € C, we create [ literals
and perform disjunction operations on them to result again in two constants C}
and Cy that we use to apply the Bitweaving/V column-scalar scan operation. To
disjunct all [ literals for each indexed column, we introduce spanning. We define
spanning as a set of bitmasks S = {51, ...,.5;} indicating for each column ¢; which
bits this column uses in each processor word. The spanning itself does not depend
on the code size but only on the number of indexed columns.

In Figure 3.2, we present a sample spanning for ColumnWeaving/S indexing 3
columns. 57 indicates the bits to process for the predicate containing the first
column, Ss, S3 respectively. The spanning is evaluated at index creation time and
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Figure 3.2: ColumnWeaving/S Spanning

remains the same for all executed scan operations. In Algorithm 3, we present
ColumnWeaving/S column-scalar scan operation for the BETWEEN operation.

Algorithm 3: ColumnWeaving/S column-scalar scan for BETWEEN predicate
Input: MCSP = {P,..., P,} with P, = (C}, Oy, [Vi;, Vai]), Spanning
S - {Sl, ceny Sn}
Result: Vo,
for i:= 1...k do
Oh‘ =%
CQZ' == Ow
for I:=1...n do
if i-th bit of Vyy; set to 1 then
| Cu=CuVv(”AS)
else
‘ Cli - Cli V (Ow A Sl)
end
if i-th bit of Vo, set to 1 then
| Coi=Co V(1" AS)
else
‘ Cgi = Cgi V (Ow A Sl)
end

end
end
Bitweaving/V column-scalar scan (analogue to lines 2-20 in Algorithm 2)

In contrast to Bitweaving/V, the input to the column-scalar scan algorithm is not one
predicate containing up to 2 parts (depending on the operator), but a multi-column
selection predicate along with a spanning for all indexed columns. As defined in
Chapter 2, each column can occur in only one predicate in a multi-column selection
predicate. To support queries that have multiple predicates referring to one column,
we apply multiple scans instead of considering them together. In future work, we
plan an evaluation technique for getting the optimal set of MCSP out of a query to
process with ColumnWeaving/S.

The second input parameter is the spanning created for each ColumnWeaving/S
instance. To adopt the original Bitweaving/V scan algorithm, we transform the
input MCSP into two lists of constants C, Cy using the spanning. Again, for each
ith bit, a mask for C; and Cy; is created. To create C7, we iterate over all ¢ bits and



3.4. Early Pruning 21

for each bit, we iterate over all lower-bound values in V; and perform bitwise AND
with the spanning S, for the column depending on the current value. If the ¢th bit of
the [th predicate in V] is set to 1, which we call Vj;;, we perform Cy; = Cy; V(1Y AS))
to update C; with the literal bits for the ith bit of the [th literal matching the
spanning for the current predicate. To create C5, we perform the same operations
with V5, respectively. After creating the two lists of constants C, Cy, we can perform
the original Bitweaving/V scan on our input MCSP.

3.4 Early Pruning

In Bitweaving/V, the early pruning applies if the whole m., mask is set to 0. In
our default scan implementation for ColumnWeaving/S, we adopt this early pruning
logic, which comes with a huge drawback for indexing multiple columns: Checking
for m., = 0 will only apply early pruning if the ith bit of the contained codes in the
current processor word differs from the scan constants for all columns, which means
that all predicates of the MCSP do not match the current tuple, which we call the
predicate fails. If we consider predicates with highly different selectivities, we aim
to prune already when only one predicate of the MCSP fails, instead of waiting for
all predicates to fail.

To clarify this idea, we consider the 8bit processor word w = 11011110 as input
for the early pruning of ColumnWeaving/S indexing 4 columns. Consequently, the
first 4bit of w represent the result of executing 4 predicates on tuple t;, the last 4bit
represent the result for ¢5. For both tuples 1, t5, one predicate failed. For ¢; the third
predicate fails and for ¢5 the fourth. The early pruning idea of ColumnWeaving is,
to transform w into w’ = 00000000 and to apply Bitweavings early pruning, because
at least one predicate fails for all tuples in w. This transformation process consists
of two steps.

| | I I I I

I Il | | | I Il | | I
mask ........ ' mask ........
Mask1 HEEEEEEE ; e 151 (51 (5 (50 [ (1 S
res1 = mask & fMask1 Iz“z”z‘ Iz' Iz' E Iz' : res2 = mask & fMask2 Iz”z“z‘ Iz‘ Iz'
res1 =res1 >>1 EEEEEEE : pMask1 ........
PMaski 5] [5] SI [1 [0 (O] [ 8] ; rese-res2+pmasic  [o][o][][o][o][*][o][0]
res1 =res1 + pMask1 EEE@E ' res2 =res2 >> 1 EEEEE@EE
pask2 AEEEEEEE v 151 551 [ 57 ] ) el

res1 = res1 & pMask2 IZ”E‘ IEHE”ZHE‘ EE . res2 = res2 & pMask4 IE”E‘ EHE”EHEI IEI

a) Step 1 res =resi | res 2 b) Step 2

Figure 3.3: ColumnWeaving/S Early Pruning, consisting of the two steps a) step 1,
b) step 2, ¢) connected with bitwise OR

In Figure 3.3, we present the two steps of ColumnWeaving/S to apply of early
pruning. We split our early pruning implementation into two steps to consider the
bits of the odd and even tuples in each processor word independently. This allows
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us to perform add operations without having overflows that change the bits of the
neighbor tuples bits (e.g. tuple ¢y has the neighbors t; and t3). Consequently, we
can perform the early pruning with a fixed size of masks instead of depending on
the number of indexed columns. The aim of our early pruning implementation is to
transform the bits of all tuples ¢; to Os if they are not all set to 1, because one bit of
a tuple represents one predicate and all predicates have to match the scan constants.
The early pruning algorithm gets the mask processor word as input, indicating the
results of the current scan iteration. In our example, only in tuple ¢4 all predicates
match, because all bits of ¢, are set to 1. Consequently, the algorithm should set all
bits to 0 except for the first bit of t,. For further processing, we aim to have only
one bit representing the result for each tuple, consequently we only set the first bit
of t4 to 1. For each step of the early pruning algorithm, we need two filter masks
fMaskl, fMask2 and 2 pruning masks pMaskl,pMask2. Since these masks do
not depend on the current processor word or on the stored codes, we can define
them at index creation.

Step 1: Odd tuples

As first part of step 1, we filter the bits of all odd tuples ¢y, t3 performing mask &
fMaskl. As next part, we shift the result to left by 1bit, to avoid overflows for the
first tuple. In the third part, we add the pruning mask pMask1 to make use of the
overflow for the tuples where all bits are set to 1. As last part, we apply bitwise
AND with pMask2 to the result to filter out the tuples having the first bit set to
1. The last part is important to filter all 1s that are not located on correct slots.
For example, having 2 columns indexed and a tuple with 1100 as the result for a
scan iteration, performing the left shift results in 0110. Adding the pruning mask
pMask1 will result in 1000, indicating the correct result for this tuple.

Step 2: Even tuples

To handle all even tuples t,,t4, the second step applies nearly identical operations
except for switching the order of the shift and add operation. After executing both
steps, we perform a bitwise OR operation on both results to get the pruned mask
out of the input mask.

Compared to Bitweaving's early pruning, this approach comes with benefits and
drawbacks. Our early pruning implementation for ColumnWeaving/S consists of two
steps with a set of bitwise and arithmetic operations. Since early pruning is applied
very often in the scan execution process, this complex pruning algorithm will increase
the response time if the pruning probability is low. Compared to the nearly effortless
early pruning of Bitweaving/V, we assume that our early pruning gives better results
for higher code sizes due to the complexity of the pruning implementation.

Furthermore, to apply early pruning, all tuples of the input word must have at least
one predicate that failed. Considering 3 columns and 64bit processor words, this
would mean 21 tuples must have at least one predicate failed for early pruning. We
assume that similar data is stored next to each other in each column in real-world
data, consequently, the chance to have all tuples failing at least one predicate is
sufficiently high.
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3.5 Result Shrinking

As last step of the column-scalar scan iteration of ColumnWeaving/S, we have to
transform the result to achieve a representative form of it, for which we use the
bitvector of Bitweaving. This bitvector is an array of processor words containing
scan results for each tuple at a specific index. Considering 64bit as processor word
size, the first word of the bitvector contains the scan results of the first tuples 1-
64 (starting at index 0), the second word containing the scan results of the tuples
65-128, and the following words, respectively. Since ColumnWeaving needs more
words to store the data because codes of multiple columns are merged together, we
have to combine the results of scan iterations to match the result specification of
the bitvector.

At each iteration step, we use the pext_u64 operation [Int] to extract the results and
to group them before calculating the position in the bitvector word, at which we
have to write the result of the current iteration. We define the number of words per
code block W, as unit to represent how many processor words we have to shrink
into one result word. We calculate W, using the following equation Equation 3.3.

W

W = LNtb

] (3.3)

In Figure 3.4, we present how we combine those scan results into a result word. Our
result shrinking implementation consists of 3 steps. At first we apply the pext_u64
with a predefined bitmask on the intermediate scan result to extract the bits repre-
senting the result of each tuple and to shrink the result. As second step, we calculate
shi ftCount, which defines how many positions we have to shift the shrinked result
to match the correct position in the result word. As third step, we shift the extracted
and shrinked bits according to shi ftCount to the correct position.
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Figure 3.4: ColumnWeaving/S Result Shrink implementation

To clarify this approach, we consider the example of ColumnWeaving/S indexing
2 columns using 8bit code size and 8bit processor words shown in Figure 3.4. For
this setup, W, = 2, because we can store bits of 4 tuples in a processor word.
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Consequently, we have two iterations where we have to shrink the scan result into one
8bit result word. Furthermore, pextMask = 10101010 for this setup. The first result
shrinking iteration results in shiftCount = 4 to fill up the first half of the result
word with the extracted result, whereas for the second iteration, shiftCount = 0 to
fill up the second half of the result word. In the following, we present the 3 steps of
our result shrinking approach in detail.

Applying pext_u64

To extract and shrink the tuples matching the query, we define a bitmask indicating
which positions represent the scan results, which we call pextMask. For each bit set to
1 in the pextMask, we have to extract the bit of the scan result at the corresponding
position and store the bit from right to left in the dest bitmask. The pext_u64
instruction from Intel intrinsics implements exactly this procedure. In Algorithm 4,
we present the implementation of pext_u64.

Algorithm 4: pext_u64 algorithm

Input: pextMask p, scan result res
Result: dest
1:=0,7:=0
while i < |res| do
if p; == 1 then
dest; = res;
=741
=141
end

The pext_u64 algorithm gets a bitmask pextMask and a scan result res as input to
extract and to shrink the bits as described above. The result is stored in dest. In
line 2, an iteration over all bits of res starts and in each iteration ¢, the ith bit of
pextMask is checked. If this bit is set to 1, the ith bit of res is set to the position
j of dest. Then j is incremented.

The pext M ask required to execute this algorithm depends on the number of indexed
columns. Consequently, it can be defined at index-creation time and reused for each
scan iteration.

Calculate shiftCount

As second step, we have to calculate the position to which we have to shift the
extracted and shrinked results, so the extracted bits are stored to the correct position
representing the tuple ids. We calculate shiftCount using the following equation
Equation 3.4.

shiftCount = Ny, (Wa — 1 — (854 mod W) + Ny (3.4)

To calculate shiftCount, we start multiplying Ny, with a term representing the index
of the current word reaching from 0 to W, — 1. This term is used as position
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corresponding to W, to which we have to shift the extracted result, and multiplied
with Ny, we get the exact number of how many bits we have to shift if we do not
consider the unused bits. Since the unused bits are defined per processor word, we
only need to add them to the rest of the calculation to respect them for calculating
shiftCount.

Shift the extracted result

As last step, we need to shift the extracted result res with shiftCount bits to
left. With this operation, the result shrinking approach is complete. As seen in the
pext_u64 algorithm and the equation for shiftCount, the result shrinking process is
quite complex. Since this process is executed many times in the scan execution, we
plan to test an alternative implementation without the pext_u64 instruction and the
complex calculation of shiftCount to improve performance in Chapter 7.

3.6 Summary

In this section, we presented ColumnWeaving/S, an extension of Bitweaving/V to
index multiple columns using the memory layout of Bitweaving/V. The memory
layout of ColumnWeaving/S stores bits of codes from multiple columns together
in processor words, adapting vertical bit packing and bit grouping from Bitweav-
ing/V. Compared to Bitweaving/V, which can fully pack processor words with col-
umn codes, ColumnWeaving/S memory layout requires additional bits depending
on the number of indexed columns. Furthermore, we present a scan algorithm for
ColumnWeaving/S along with an adapted early pruning algorithm that is capable
of applying early pruning if at least one predicate for each tuple fails. As last part
of this chapter, we present our result shrinking approach to transform the results of
scan operations into a bitvector representation.
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4. ColumnWeaving /L

In this chapter, we introduce ColumnWeaving/L, a second variant of ColumnWeav-
ing, and present core differences to ColumnWeaving/S. The aim of ColumnWeav-
ing/L is to reduce the effort of the early pruning algorithm shown in Chapter 3
adding an extra bit to processor words for each tuple. According to ColumnWeav-
ing/S, we present the storage layout, column-scalar scan execution, early pruning
and result shrinking, but we focus only on differences to ColumnWeaving/S.

4.1 Layout

To reduce early pruning effort, we add for the ith bit of each tuple an additional bit
that allows us to apply early pruning in one step instead of two steps. In Figure 4.1,
we present the storage layout for ColumnWeaving/L indexing two columns. We tag
the additional bits with A and unused bits with X. For the ¢th bit of each tuple,
starting with the first bit of ¢; and d;, we add an additional bit as prefix, continuing
with the first bit of ¢, and dy with the additional bit prefix, until the processor word
is exhausted. The additional bits are located before the ith bit of all columns of a
tuple. This bit indicates the result of executing the multi-column selection predicate
on a set of tuples in ColumnWeaving /L.

This approach leads to a significantly higher memory consumption for ColumnWeav-
ing /L. depending on the number of indexed columns. As seen in Figure 4.1, in each
of the 8bit processor words, we have 2 unused bits. In addition to the two unused
bits, we have 2 additional bits to indicate the result for the tuples stored in each
processor word. Consequently, in this configuration, we have only a usage of 50%
of each processor word for the transposed codes and we need 12 processor words to
store the 8 codes of both columns, which is 2 times the amount of words required by
ColumnWeaving/S for storing the same amount of codes. To further evaluate this
approach regarding used memory, we evaluate the worst case memory consumption
for a varying number of columns.
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Figure 4.1: ColumnWeaving/L Storage Layout, A additional Bits, X unused bits

4.2 Worst Case Storage Consumption

Compared to ColumnWeaving/S, indexing 2 columns with 8bit processor words re-
sults in 12 processor words required to store 8 tuples instead of 6 words used by
ColumnWeaving/S. Consequently, we define Ny, for ColumnWeaving/L in Equa-
tion 4.1.

Wi |
NUM_COLUMS +1

Np=| (4.1)

The calculation of the number of used words W,, we use the same equation as for
ColumnWeaving/S, again shown in Equation 4.2.

CODE_COUNT
Ny,

CODE_COUNT

W, =
f W= Ny

1%« CODE_SIZE + [

| (4.2)

In Table 4.1, we show the number of codes indexed per processor word depending
on the number of indexed columns and processor word size. Due of the additional
bit, ColumnWeaving/L needs more words to store the same amount of codes than
ColumnWeaving/S. Depending on the number of columns indexed and the processor
word size, ColumnWeaving/L may fully use the processor word and reach the same
storage consumption as ColumnWeaving/S. Considering W, = 817 for 5 columns
and 64bit processor word width, ColumnWeaving/S has 817 — 640 = 177 unused
processor words, which results in 11328 unused bits overall.
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Compared to ColumnWeaving/S, the additional bits have a high impact on storage
layout and number of words required to index the same number of codes. This impact
becomes smaller, the more columns we index in ColumnWeaving/S. Consequently,
for more indexed columns, we achieve less space consumption through the additional
bits. Furthermore, the number of unused bits is in most cases also higher than for
ColumnWeaving/S, which also leads to higher space consumption.

# Columns |W| Ny Ny W. ColumnWeaving/S (W,) Bitweaving/V (W, )

2 64 21 1 400 256 256
3 64 16 0 504 400 384
4 64 12 4 689 504 204
5 64 10 4 817 689 640

Table 4.1: Number of codes indexed per processor word with different number of
columns, processor word size and the resulting word count W, using 1000 codes of
8 bit for all columns compared to the number of words used by Bitweaving/V

4.3 Column-scalar Scans

ColumnWeaving/L uses the same scan algorithm presented for ColumnWeaving/S,
but with different spanning. In Figure 4.2, we present a sample spanning for Colum-
nWeaving/L indexing 3 columns. Again, we tag the additional bits with an A. Com-
pared to ColumnWeaving/S, the spanning described in Figure 4.2 can fully use the
8bit processor word size, whereas this depends on the number of indexed columns,
too.

Column C Column D Column E
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Figure 4.2: ColumnWeaving/L Spanning

To execute the scan algorithm, we perform the same transformation of the input
codes shown in Algorithmn 3. Using the transformed codes, we can execute the orig-
inal Bitweaving/V scan implementation with our adapted early pruning approach
for ColumnWeaving/L. Since we have significantly more words to store the same
number of codes compared to ColumnWeaving/S, the column-scalar scan requires
more iterations to be executed. We assume that the reduced complexity of early
pruning for ColumnWeaving/L will compensate the higher number of words.
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4.4 Early Pruning

Using the additional bit in ColumnWeaving/L aims to reduce the complexity of early
pruning. In Figure 4.3, we present the early pruning implementation for Column-
Weaving/L. Due to the additional bit in front of each tuple, we can directly add
the pruning mask pMask1 saving the overflow of each tuple in the additional bit.
As next part, only performing an AND operation with the result and the second
pruning mask pMask2 results in a mask fulfilling our early pruning criteria that the
bits of all tuples have to be set to Os if at least one predicate fails.

Compared to 6 masks and 9 operations in the early pruning of ColumnWeaving/S,
we need only 2 bitmasks and 2 operations to get the pruning result for ColumnWeav-
ing/L. Furthermore, we assume that ColumnWeaving/L reaches a higher pruning
probability compared to ColumnWeaving/S, because less tuples are spanned to-
gether in each processor word. The core idea of ColumnWeaving/L is the tradeoff
of requiring more storage to store codes compared to reduced complexity of early
pruning.

1 t2

| | |
mask [ [ (5 [l 1 [ [
pMaski (101 [591 [5] [o [e [0 O
res = mask + pMask1 IE' EE IE'
pMasi2 157 (5] [ [ e [ (5] [

res = res & pMask2 IEHE‘ EE@

Figure 4.3: ColumnWeaving/L. Early Pruning implementation

4.5 Result Shrinking

To transform the result of each scan iteration from ColumnWeaving/L into the
Bitweaving bitvector representation, we use the same algorithm for result shrinking
as shown for ColumnWeaving/S, whereas only the used pextmasks and shift count
for each iteration changes. We calculate shiftCount using Equation 3.4 presented
for ColumnWeaving/S.

In Figure 4.4, we present the result shrinking implementation of ColumnWeaving/L.
indexing 2 columns using 8bit code size and 8bit processor words. For this setup,
W, = 2, because we can store bits of 2 tuples in a processor word having 2 additional
bits and 2 unused bits. Compared to ColumnWeaving/S, we have 1 additional bit
per tuple, resulting in 2 codes per processor word. Consequently, we have 4 iterations
where we have to shrink the scan result into one 8bit result word.

Again, pextMask = 10101010 for this setup. The first result shrinking iteration
results in shiftCount = 6 to fill up the first 2 bits of the result word with the
extracted result, whereas for the second iteration, shiftCount = 4 to fill up the
next two bits of the result word, continuing with the third and fourth iteration,
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Figure 4.4: ColumnWeaving/L Result Shrink implementation

respectively. In this setup, ColumnWeaving/L requires 4 iterations to fill a single 8bit
processor word with scan results, compared to ColumnWeaving/S with 2 iterations.
Although the additional bits of ColumnWeaving/L increase the required iterations,
we have 25% of unused bits in each processor word, which depends on the current
setup.

4.6 Summary

In this section we presented ColumnWeaving/L, a second variant of ColumnWeaving.
This approach uses an additional bit to store intermediate scan results for the tuples
to reduce the complexity of the early pruning implementation. These additional bits
affect the spanning used to create the index and lead to significantly higher memory
consumption compared to ColumnWeaving/S. We accept this tradeoff, because we
assume an improved pruning probability as well as reduced execution time for the
early pruning algorithm. We can apply the same scan and result shrinking algorithms
for ColumnWeaving/L as used for ColumnWeaving/S.
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5. Evaluation

In this chapter, we evaluate the early pruning and the performance of ColumnWeav-
ing/S and ColumnWeaving/L. At first, we describe our evaluation setup. Secondly,
we run a set of synthetic benchmarks to evaluate how the early pruning behaves on
different selectivities along with the performance of the scan operation. After the
synthetic benchmarks, we run ColumnWeaving against Bitweaving/V using TPC-
H queries over multiple columns. As last step, we summarize the results of our
experiments and evaluate our research question.

5.1 Evaluation Setup

To describe our evaluation setup, we start presenting the hardware configuration
used for all benchmarks including compiler options. As next step, we present the
benchmarks we use to evaluate the early pruning behavior of ColumnWeaving in
synthetic benchmarks. To not only rely on synthetic results, we present real world
benchmarks using TPC-H queries comparing ColumnWeaving/S and ColumnWeav-
ing/L against Bitweaving/V.

5.1.1 Hardware Configuration

We run our experiments on a machine with Intel(R) Core(TM) i7-6700HQ CPU
@ 2.60GHz with 128KB L1 cache, 1IMB L2 cache and 6MB L3 cache. Our testing
machine has 16GB of SODIMM DDR3 RAM. As operating system we use ArchLinux
on stable branch with Linux Kernel 5.0.9. We use GCC in version 8.3.0 as compiler
and compile all experiments with the O3 optimization flag. To get meaningful results
and to eliminate deviations, we run all of our benchmarks with 20 repetitions and
build average values out of the results for our evaluation.

5.1.2 Benchmarks

We divide the evaluation of ColumnWeaving/S and ColumnWeaving/V into two
steps: We start with synthetic benchmarks to evaluate the pruning behavior and
continue executing a benchmark on real-world data using TPC-H queries.
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Synthetic Benchmarks

As first steps of our evaluation, we examine the early pruning behavior of Colum-
nWeaving/S and ColumnWeaving/L with a dataset containing 2 columns with 10
million 16bit codes. We execute a scan on this dataset with two predicates with vary-
ing selectivities from 0.01 to 0.5 using ColumnWeaving/S and ColumnWeaving/L.
According to the fact, that considering predicates together reduces the overall selec-
tivity, we expect low response times for both ColumnWeaving implementations for
configurations, where at least one predicate has a low selectivity. Because only low
response times are not a clear indicator for early pruning working as expected, we
evaluate how many codes could be pruned for ColumnWeaving/S. According to the
equivalent behavior of response times, we assume that ColumnWeaving /L reaches
nearly identical pruning rates.

Real-world Benchmark

To see how the response time of ColumnWeaving is compared to Bitweaving/V and
if the early pruning works equally for real-world queries as for synthetic ones, we run
scan operations using different TPC-H queries. We perform the Q6 and Q19 queries
on the lineitem table (we name them LQ6 and LQ19 for the rest of this work) and
the Q17 and Q19 queries on the part table (names PQ17 and PQ19) and measure
the response time needed to execute the queries.

We use LQ6, which we introduced as sample for reduced selectivity combining pred-
icates, as first query having selectivity around 1.7%. As second query, we use LQ19,
which is composed of 3 multi-column selection predicates, each having 3 predicates.
Furthermore, we use PQ17 as candidate with very low selectivity (< 1%) and PQ19
as second query to evaluate the response time for 3 multi-column selection predi-
cates.

From this benchmark, we expect that ColumnWeaving/S and ColumnWeaving/L
perform at least as fast as Bitweaving/V, since all used queries index multiple
columns and have low selectivities and may match the requirements for our im-
proved early pruning implementation. Furthermore, we expect ColumnWeaving/S
to result in lower response times than ColumnWeaving/L. Although ColumnWeav-
ing/L needs less effort to apply early pruning, it needs significantly more storage
and consequently more iterations to execute the same query as ColumnWeaving/S.

Since the response time of ColumnWeaving/S, as well as ColumnWeaving/L, is sig-
nificantly higher in all queries, we execute additional experiments to evaluate causes
for the higher response time. As first cause, we assume bad pruning behavior for
both index structures. Consequently, we evaluate the pruning behavior of Colum-
nWeaving/S and ColumnWeaving/L using the same setup and queries. As second
cause, we assume that additional bits required for ColumnWeaving to index all
columns lead to higher response times. Consequently, we use Bitweaving/V with
the same code sizes as ColumnWeaving and evaluate the results.

5.2 Synthetic Benchmarks

Since the major benefit of ColumnWeaving compared to Bitweaving/V is the im-
proved early pruning combining multiple predicates together to reduce overall selec-



5.2. Synthetic Benchmarks 35

tivity, we start our evaluation with measuring the response time of ColumnWeav-
ing/S and ColumnWeaving/L using predicates with different selectivities. Since only
response time is not a valid result to prove how good early pruning works with dif-
ferent selectivities, we measure the number of codes that could be pruned while
executing the queries.

5.2.1 ColumnWeaving/S Response Time

In Figure 5.1, we present a scan execution using 2 predicates with selectivities reach-
ing from 0.01 to 0.5 and measure the response time of ColumnWeaving/S using 10
million data items and 16bit code size for each column. We expect significantly
reduced response time for all scans having at least one predicate with low selectivity
(< 0.1) according to our hypotheses for the improved early pruning. For selectiv-
ities > 0.1, ColumnWeaving/S results in nearly identical response times, whereas
for selectivities < 0.1, the response time falls along with the selectivity. Matching
our hypothesis, ColumnWeaving/S needs only one predicate with low selectivity to
apply improved early pruning and to reduce the response time. If we consider the
point P, = 0.01 and P, = 0.5, we have one predicate with high selectivity and one
with low selectivity and ColumnWeaving/S results in a comparatively less response
time compared to P, = 0.5 and P, = 0.5.

ColumnWeaving/S Response Time
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1.65

- 1 1.55

Time in s
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1.45

Figure 5.1: Response time of ColumnWeaving/S executing a scan using two predi-
cates under varying selectivities with a dataset of 10 million items and 16bit code
size for both columns

Although ColumnWeaving/S results in lower response time for queries with at least
one predicate with low selectivity, the difference in response time is comparatively
small. We measure a maximum difference in response time of around 2 milliseconds,
which is compared to 16ms response time only a small performance increase.
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5.2.2 ColumnWeaving/L Response Time

After getting results indicating to fulfill our hypothesis for ColumnWeaving/S, we
perform the same experiment on ColumnWeaving /L to evaluate if this approach also
fulfills our hypothesis. In Figure 5.2, we present the response time of ColumnWeav-
ing/L using the same setup with using two predicates with selectivities from 0.01 to
0.5.

Along with ColumnWeaving/S, also ColumnWeaving/L results in reduced response
time if at least one predicate has low selectivity, consequently we assume that both
implementations match our hypothesis for improved early pruning. Compared to
ColumnWeaving/S, ColumnWeaving/L needs in average around 2ms more response
time to execute the scan operation. Since this synthetic benchmark focusses on
applying early pruning, we inspect a potential performance difference of both im-
plementations in our TPC-H benchmarks.

ColumnWeaving /L Response Time
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Figure 5.2: Response time of ColumnWeaving/L executing a scan using two pred-
icates under varying selectivities with a dataset of 10 million items and 16bit code
size for both columns

5.2.3 ColumnWeaving/S Pruning Rate

Summarizing the measurements of ColumnWeaving/S and ColumnWeaving/L for
early pruning, for both implementations the response time indicates that early prun-
ing works well for at lest one predicate with low selectivity. Since we measure the
overall response time, this is not a valid indicator if our early pruning implemen-
tation really fulfills our hypothesis. Consequently, we introduce the Pruning Rate
P, = PRUNED.CODES 44 the number of codes on which we can apply early pruning

NUM_CODES . _
compared to the number of codes indexed by ColumnWeaving.
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In Figure 5.3, we present the pruning rates measured using 10 million data items with
16bit code size and two predicates with selectivities from 0.01 to 05. According to our
measurements for the response time of ColumnWeaving/S, the percentage of pruned
iterations behaves inversely proportional to the response time of the query execution.
For at least one predicate with low selectivity percent of pruned iterations, the
percentage of pruned iterations is comparatively high, whereas if both predicates
have more than 0.1 selectivity, the percentage of pruned iterations becomes nearly
0, which means no early pruning can be applied. Consequently we can acknowledge
the hypothesis that considering multiple predicates of a query together reduces the
number of words, which we use as basis of our ColumnWeaving implementation.

ColumnWeaving/S Pruning Rate

P.in%

Figure 5.3: Pruning Rate P, of executing a scan for two predicates under varying
selectivities with a dataset of 10 million items and 16bit code size for both columns

Although we measured results indicating that considering multiple predicates to-
gether leads to improved early pruning, we cannot conclude information about per-
formance compared to Bitweaving/V, since real world data often does not follow
strict limitations of selectivity. Consequently we test our implementation with TPC-
H benchmarks against Bitweaving/V.

5.3 TPC-H Benchmark

To get comparable results for query execution time, we benchmark our Column-
Weaving implemenation using TPC-H queries against Bitweaving/V. In Figure 5.4,
we present the results comparing ColumnWeaving/S and ColumnWeaving /L against
Bitweaving/V. Using the lineitem table, we evaluate the response time of the index
structures for the queries LQ6 and LQ19 and for the part table we evaluate the
response time for the queries PQ17 and PQ19.
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Figure 5.4: Performance on TPC-H queries compared to Bitweaving/V

In contrast to our expectation, ColumnWeaving/S as well as ColumnWeaving/L
result in significantly higher response time than Bitweaving/V for all queries ex-
cept for PQ17. For LQ6 and PQ19, ColumnWeaving/S results in around 1.7 times
higher response time and ColumnWeaving/L results in around 2 times higher re-
sponse time compared to Bitweaving/V. For LQ19, ColumnWeaving/S is around
1.2 times slower than Bitweaving/V. For PQ17, ColumnWeaving/S results in nearly
the same response time as Bitweaving/V, whereas ColumnWeaving/L is slightly
slower that Bitweaving/V. Furthermore, ColumnWeaving/S without early pruning
performs slightly better for PQ17 and PQ19 as ColumnWeaving/L. As possible
causes for the higher response times of ColumnWeaving, we consider multiple limi-
tations of ColumnWeaving against Bitweaving/V.

Limited Early Pruning

At first, our adapted early pruning implementation has a limitation regarding the
selectivity, which reduces the number of pruned iterations, which we call Limited
Farly Pruning for the rest of this work. To apply early pruning in an iteration,
the 7th bits of all tuples contained in the processor words have to differ from the
query predicate, otherwise early pruning is not possible. For example, indexing 3
columns with ColumnWeaving/S having 64bit processor words, we have the ith bits
of 21 tuples in each processor word. In worst case, in 20 of 21 tuples at least one
predicate fails and one tuple matches all predicates. Consequently, we have to iterate
over all bits of the 20 tuples although a match of these tuples is impossible.

Unused Bits

Secondly, in our current implementation, ColumnWeaving needs to index all columns
with the same code size to have a consistent memory layout. Consequently, we have
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to take the minimal maximum of code sizes of all columns and fill up columns with
less code size with 0s, which may result in more words to process compared to
Bitweaving/V. We call that limitation Unused Bits for the rest of this work. For
example in Q6, the first column has a code size of 12, whereas the second and third
column have code sizes of 4 and 6 bits.

Complexity of Early Pruning and Result Shrinking

Furthermore, we assume the overhead of our early pruning algorithm is too complex
in ColumnWeaving/S or we have too much storage consumption ColumnWeaving /L
to beat Bitweaving/V. As last cause, we assume that the result shrinking approach
costs too much time. In the following, we will evaluate the first two mentioned
aspects that we assume as possible causes for the high response time of Column-
Weaving compared to Bitweaving/V, to find reference points for improving our index
structure. We will propose possible improvements for the early pruning and result
shrinking complexity in Chapter 7.

5.3.1 Limited Early Pruning

As first step to evaluate why the response time of ColumnWeaving is significantly
higher than Bitweaving/V, we measure the pruning rate of the queries used in the
previous benchmark. In Figure 5.5, we present the pruning rates s of ColumnWeav-
ing/S and ColumnWeaving/L for the lineitem queries LQ6 and LQ19 and the part
queries PQ17 and PQ19.
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Figure 5.5: Percentage of early pruned iterations in TPC-H queries

For LQ6 and LQ19 both ColumnWeaving implementations reach high pruning rate
around 70%. In contrast to 70% pruning rate, both implementation result in sig-
nificantly higher response time compared to Bitweaving/V. For PQ19 and PQ17
ColumnWeaving reaches a very high pruning rate around 96%. For PQ17, Column-
Weaving/S reaches a lower response time than Bitweaving/V, whereas for PQ19 we
measure still a higher response time compared to Bitweaving/V.
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In summary, our first assumption for higher response times of ColumnWeaving does
not apply, since ColumnWeaving/S and ColumnWeaving/L reach pruning rates from
70% to 96%. This benchmark shows, that ColumnWeaving reaches good pruning
rate for real-world data. Because PQ17 is the only query that lead to the assump-
tion, that the pruning rate directly reflects in the the response time, we continue
evaluating possible causes for the higher response time of ColumnWeaving compared
to Bitweaving/V.

5.3.2 Unused Bits

As second step to evaluate why the response time of ColumnWeaving is significantly
higher than Bitweaving/V, we examine if the unused bits that result from using the
minimal maximum code size of all columns lead to higher response time. We adapt
the code sizes used by Bitweaving/V to the same number used by ColumnWeaving
to see if the unused bits in ColumnWeaving lead to higher response time.
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Figure 5.6: Performance of Bitweaving/V using the same code size for all columns
as ColumnWeaving

In Figure 5.6, we present the results evaluating the previous queries using the same
code sizes for Bitweaving/V that are used by ColumnWeaving to index the required
columns for the queries. For the query Q19, ColumnWeaving/S reaches nearly the
same response time than Bitweaving/V, whereas for PQ17, ColumnWeaving/S is
faster than Bitweaving/V. In summary, the response time of Bitweaving/V is slightly
higher for all queries than using the default code sizes giving ColumnWeaving the
potential to beat it in one query, but we do not see the number of unused bits as main
cause for higher response times of ColumnWeaving. Consequently, we assume the
complexity of early pruning and result shrinking as main cause for higher response
times and give proposals to reduce complexity in Chapter 7.
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5.4 Summary

After evaluating benchmarks on synthetic and real-world data, we summarize the
results of our ColumnWeaving implementation. Evaluating the response time and
the pruning rate with synthetic benchmarks lead to results that match our initial
hypothesis: ColumnWeavings adapted early pruning leads to lower response time for
multiple predicates if at least one predicate has low selectivity. As important result,
we determine that ColumnWeaving/S performs better than ColumnWeaving/L for
all selectivities used in the synthetic benchmark.

In the real-world benchmarks using TPC-H queries, both ColumnWeaving imple-
mentations result in significantly higher response time than Bitweaving/V for all
queries except for one, whereas we expected at least an equal response time. To
find possible causes for the higher response time, we evaluate the pruning behavior
of ColumnWeaving on the used TPC-H queries. Both ColumnWeaving implementa-
tions reach very high pruning rates from 70% to 96%. Consequently, a low pruning
rate for the TPC-H queries is not the main cause for the higher response time.

Furthermore we examine if the number of unused bits arising from indexing all
columns with the same code size lead to higher response time. We test Bitweaving/V
with the same code size used by ColumnWeaving to see if the number of unused
bits lead to the higher response time. As our results show, using the same code
sizes as for ColumnWeaving, Bitweaving/V only has slightly higher response times.
Consequently, the number of unused bits is also not the main cause for the higher
response time.

In addition to the possible causes that we evaluated and which are not the main
cause for the higher response time of ColumnWeaving compared to Bitweaving/V,
we assume the complexity of early pruning and result shrinking as possible causes
for the higher response time, for which we propose solutions that we will prove in
the future in Chapter 7.
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6. Related Work

To fulfill the requirements of modern systems, the focus of index structures is clearly
set to main-memory index structures. Zeuch et al. propose an index structure for
applying SIMD powered k-ary search on a Bf-tree [ZHF14]. Kim et al. present a
hardware sensitive index structure called FAST, that focusses on main memory but
also supports disk-based actions [KCST10]. Abadi et al. propose Sorted Projection
[ABH*"13], which sorts a set of frequently used columns and add an extra column
to speed up the search performance. This approach is also used in [LEV*12]. Fur-
thermore, Boncz et al. present MonetDB [BKMOS], another main-memory index
structure.

Considering Bitweaving [LP13] as basis for our implementations, there are some
more contributions on achieving bit parallelism. O’Neil et al. at first present algo-
rithms performing operations on multiple bits in parallel [OQ97] and serves as basis
for Bitweaving. Johnson et al. perform similar operations in IBM’s Blink System
[JRSS08]. Rinfret et al. also evaluate bit parallel methods [ROOO01].

Indexing multiple-columns together, Broneske et al. present the ELF index structure
[BKSS17], that uses redundancy elimination to create distinct dimensionlists out of
multiple columns. They present, that evaluating multi-column selection predicates
together may outperform multiple isolated scans. Bohm et al. propose a set of
multi-dimensional index structures in relational database [BBKMO00]. Bayer et al.
adapt the B-tree to support indexing multiple columns [Bay97].

Along with the search speed of modern index structures, the creation speed be-
comes more important, since the amount of data to store in a single index grows
fast. Van et al. propose a generic approach to bulk load multidimensional index
structures [VABSWO97]. Berchtold et al. present bulk load operations to improve
high-dimensional index structures [BBK98].
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7. Conclusion and Future Work

In this work, we adapt Bitweaving/V for multi-column indexing and evaluate the per-
formance compared to the original implementation. We start introducing Bitweav-
ing with focus on Bitweaving/V and present our adaptions ColumnWeaving/S and
ColumnWeaving/L. We show how Bitweaving/V implements early pruning and
present our advanced early pruning approach for ColumnWeaving.

After presenting our implementations, we evaluate the response time and the early
pruning behavior of ColumnWeaving/S and ColumnWeaving /L in a synthetic bench-
mark and in the TPC-H benchmark comparing against Bitweaving/V. In contrast
to our expectations, the current implementation of ColumnWeaving does not reach
better performance than Bitweaving/V on queries containing multiple predicates
with low selectivity. Since we could exclude limited early pruning and unused bits
as main cause for the higher response time of ColumnWeaving compared to Bitweav-
ing/V, we plan to evaluate the complexity of early pruning and result shrinking as
main cause for the response time.

Furthermore, we plan to implement a better handling of different code sizes in
combination with better storage layout and memory usage. We plan to index the
columns with the minimal code size of all columns, cut off the remaining of bits
and store them at the end of the used memory. We assume that having a high
probability that the most significant bits stored together are enough to apply early
pruning. Furthermore, ColumnWeaving can store more tuples in one processor word
and in best case, the remaining bits stored at the end of the memory layout can be
skipped completely.

As second proposal to improve ColumnWeaving in the future, we plan to replace the
static spanning approach of storing bits of all columns in each processor word with
a dynamic approach. The idea of dynamic spanning is to span columns together
and split the ith bit of columns into multiple processor words instead of one. This
provides more flexibility, because not all columns have to be indexed together, but
e.g. columns having small selectivity or the same code size can be indexed together.
We plan to group the processor words belonging to the same dynamic spanning in
the memory layout to achieve better memory usage.
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After implementing additional performance improvements, we plan to compare Colum-
nWeaving against other state-of-the-art index structures, like Column Imprints [SK13],
Sorted Projections [LEV*12] and the Elf index structure [BKSS17].
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