
University of Magdeburg

Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Level Order Linearization for the
Elf Approach

Author:

Huanqing Shang

November 20, 2020

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

Department of Technical and Business Information Systems

Dr.-Ing. David Broneske

Department of Technical and Business Information Systems

Shang, Huanqing:
Level Order Linearization for the Elf Approach
Master’s Thesis, University of Magdeburg, 2020.

Abstract

With the progress of the times, the amount of data is getting bigger, the development
of database systems is very rapid. Limited by the capacity of the main memory,
in the past people used hard disks as the main storage medium of the database
system. With the improvement of hardware technology, the main memory becomes
larger, and the CPU becomes faster, which provides an excellent opportunity for the
development of the database system - the Main Memory Database System. It uses
the main memory to store data instead of hard disk storage. This greatly improves
the speed of data access, but new challenges and bottlenecks have emerged.

In the era of big data and the Main Memory Database System, the processing
requirements for massive data are getting higher, especially for multi-dimensional
data query processing, as analytical queries become more and more complex, the
number of evaluated selection predicates for each query and table also increases. This
will result in a large number of multi-column selection predicates. Therefore, how to
accelerate multi-column selection predicates in main memory has become the latest
challenge. At this point, the advantages of tree-based index structures, such as B-
tree and B+-tree, in queries with multi-column selection predicates become limited.
To change this situation, Broneske et al. proposed the Elf, an index structure that is
able to exploit the relation between several selection predicates on multiple columns
in a main memory database management system. Elf features cache sensitivity, an
optimized storage layout, fixed search paths, and slight data compression. Their
evaluation results show that their approach has significant advantages for multi-
column selection predicate queries with low combined selectivity.

With the deepening of the research, especially after the introduction of the vertical
linearized Elf variants and the cutoffs pointer, the vertical linearization approach has
some defects instead. For example, the vertical linearization approach will reserve
space for the cutoffs pointer when constructing a Elf variant. In addition, when
the cutoffs pointer is added, a gap will be generated in the data structure. On the
one hand, we hope to eliminate these defects. On the other hand, we also want
to evaluate the impact of other linearization methods on the performance of Elf.
Therefore, we have implemented level order linearization for the Elf approach. This
is the main contribution of this thesis. In addition, we conducted a comprehensive
evaluation of the level order linearized Elf. The evaluation results show that the level
order linearization approach not only eliminates these defects for the Elf variants,
but it can further improve query performance.

Acknowledgements

I would like to thank my supervisor, Dr. -ing. David Broneske, for offering me
the opportunity to write this paper at a tough time. Thanks to his very patient
guidance. His every suggestion was invaluable.

I also want to thank my family, because of their support and encouragement, I can
continue to move forward in my study.

Contents

List of Figures xiii

List of Tables xvi

List of Algorithm xvii

List of Code Listings xix

List of Acronyms xxi

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Structure of the Thesis . 3

2 Background 5
2.1 Index Structure . 5

2.1.1 Ways to Access Data . 5
2.1.1.1 Full Table Scan . 6
2.1.1.2 Index Access . 8

2.1.2 Selection Predicate and Types of Query 9
2.1.2.1 Query with the Selection Predicate 9
2.1.2.2 Query Type . 12

2.1.3 One-Dimensional Index and Multi-Dimensional Index 12
2.1.3.1 One-Dimensional Index 13
2.1.3.2 Multi-Dimensional Index 14

2.2 Elf as Multi-Dimensional Index Structure 16
2.2.1 Conceptual Design of Elf . 16

2.2.1.1 Dwarf . 16
2.2.1.2 Elf . 19

2.2.2 Linearization of Elf . 22
2.2.2.1 Memory Layout based on Elf 22
2.2.2.2 Optimization Methods 23

2.2.3 Partial Match Algorithm of Elf 25
2.3 Elf Variants . 26

2.3.1 Elf64 . 26
2.3.2 Elf Separated . 27
2.3.3 Elf Separated Length . 28
2.3.4 Elf SIMD . 29

viii Contents

2.4 Summary . 30

3 Implementation 31
3.1 Conceptual Model . 31

3.1.1 Depth First Search and Breadth First Search 32
3.1.1.1 Depth First Search 32
3.1.1.2 Breadth First Search 35
3.1.1.3 Comparison and Summary 36

3.1.2 Concept Design . 36
3.1.3 Elf Variants . 39

3.1.3.1 Elf64 Level . 39
3.1.3.2 Elf Level Separated 40
3.1.3.3 Elf Level Separated Length 42

3.1.4 Theoretical Advantages and Disadvantages 42
3.2 Algorithm of Level Order Linearization 43

3.2.1 Implementation . 44
3.2.1.1 Algorithm Design . 44
3.2.1.2 Algorithms related to Cutoffs 49
3.2.1.3 Examples of extreme scenarios 50

3.2.2 Introduction of Pseudo-Code 51
3.2.2.1 Linearize the First Dimension 51
3.2.2.2 Linearize the Remaining Dimensions 53
3.2.2.3 Linearize the DimensionList 55
3.2.2.4 Construction Algorithm in Elf Variant 57

3.3 Partial Match Query Algorithm . 59
3.3.1 Partial Match Query Algorithm Design 59
3.3.2 MonoLists in Elf level separated 61

3.3.2.1 Completely Traverse 61
3.3.2.2 First visited MonoList 62
3.3.2.3 MonoList with Length 62
3.3.2.4 Compare and Summary 63

3.3.3 Introduction of Pseudo-Code 63
3.3.3.1 The First Dimension as Last Selected Predicate . . . 64
3.3.3.2 The First Dimension as First Selected Predicate . . . 65
3.3.3.3 MonoLists before the First Selected Dimension . . . 66
3.3.3.4 Algorithm for MonoLists only 67
3.3.3.5 Non-first Dimension as the First Selected Predicate 67

3.4 Summary . 69

4 Evaluation 71
4.1 Framework of the Experiment . 71

4.1.1 Experimental Environment . 71
4.1.2 Data for Evaluation . 71
4.1.3 Evaluation Objects . 72
4.1.4 Evaluation Type . 72

4.1.4.1 Construction Evaluation 72
4.1.4.2 Query Evaluation . 72

4.2 Experiment . 72

Contents ix

4.2.1 Construction Evaluation . 73
4.2.1.1 Storage Consumption 73
4.2.1.2 Construction Time 78
4.2.1.3 Evaluation Result and Summary 82

4.2.2 Query Evaluation . 82
4.2.2.1 Query Statement used for Evaluation 83
4.2.2.2 Without Cutoffs . 86
4.2.2.3 With Cutoffs . 87

4.3 Summary . 88

5 Related Work 91
5.1 Common index structure . 91

5.1.1 B-tree . 91
5.1.2 B+-tree . 92
5.1.3 T-tree . 93

5.2 Cache Sensitive Index Structure . 94
5.2.1 CSS-tree . 94
5.2.2 CSB+-tree . 95

6 Conclusion 97
6.1 Summary . 97
6.2 Future Work . 98

6.2.1 Adjust the data structure of the standard Elf 99
6.2.2 Queue as a New Implementation Method 99
6.2.3 Further Optimization . 99

6.2.3.1 First Visited MonoList 99
6.2.3.2 Optimization for Partial Match Queries 100

6.2.4 Other Query Algorithms . 100

Bibliography 101

List of Figures

2.1 Single Table Query with 5 Projected Columns (from [DYZ+15]) . . . 8

2.2 The Selectivity of TPC-H query Q6 and its predicates Q6.1 - Q6.3 on
Lineitem table scale factor 100 (from [BKSS17]) 11

2.3 Two-dimensional plane on Table 2.4 and attributes contained in List-
ing 2.7 . 15

2.4 Range Query in Two Dimensional plane on Listing 2.7 and Figure 2.3 15

2.5 Dwarf Operator base on Table 2.5 . 18

2.6 Elf Structure base on Table 2.7 . 21

2.7 Construction Process Diagram of Elf base on Table 2.9 21

2.8 Memory layout as an array of 64-bit integers (adapted from [BKSS17]) 22

2.9 Hash-map property of the first DimensionList (adapted from [Bro19]) 24

2.10 Percentage of 1-element lists per dimension for the TPC-H Lineitem
table with scale factor 100 (from [BKSS17]) 24

2.11 Elf with MonoLists (from [BKSS17]) 25

2.12 Final memory layout of the Elf approach (adapted from [BKSS17]) . 25

2.13 Memory layout of the Elf approach with Cutoffs 26

2.14 More complex Elf structure . 27

2.15 Elf Separated layout . 28

2.16 Elf Separated length layout based on Figure 2.15 29

3.1 A simple binary tree . 32

3.2 Elf structure adjusted based on Figure 2.14 37

3.3 The memory layout of the Elf constructed by level order linearization
of Table 3.1 (the first dimension and the MonoLists are marked in gray) 38

3.4 The memory layout of the Elf constructed by vertical linearization of
Table 3.1 (the first dimension and the MonoLists are marked in gray) 38

3.5 Memory layout of the Elf64 Level with Cutoffs based on Figure 3.2 . 39

xii List of Figures

3.6 Elf TIDs that stores TIDs in the order of MonoLists in Figure 3.5 . . 40

3.7 Memory layout of Elf64 Level Separated based on Table 3.1 41

3.8 Cutoff Pointer of Elf Level Separated and Elf Separated with cutoffs=2 42

3.9 Memory layout of Elf64 Level Separated Length based on Table 3.1 . 42

3.10 The process of constructing the first dimension of Elf64 Level (1) . . 45

3.11 The process of constructing the first dimension of Elf64 Level (2) . . 45

3.12 The memory layout of the vector Temp and Temp C2 generated based
on Table 3.4 . 47

3.13 The process of constructing the first dimension of Elf64 Level (3) . . 48

3.14 The process of adding TIDs to Elf TIDs 49

3.15 Elf structure with Cutoffs and memory layout of Elf TIDs 50

3.16 The memory layout of Elf64 Level starting from C3 60

3.17 The memory layout of Elf Level Separated starting from C3 60

3.18 Method of processing MonoLists (1) - Completely Traverse 61

3.19 Method of processing MonoLists (2) - First visited MonoList 62

3.20 Method of processing MonoLists (3) - MonoList with Length 63

4.1 The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (without Cutoffs
and without Lengths of MonoLists) 74

4.2 The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (without Cutoffs
and with Lengths of MonoLists)) . 74

4.3 The storage consumption required for the data structure of all Elf
variants when indexing a 10GB TPC-H table Lineitem (with cutoffs=1) 76

4.4 The storage consumption required for the data structure of all Elf
variants when indexing a 10GB TPC-H table Lineitem (with cutoffs=2) 77

4.5 The size of CUTOFF_POINTERS from cutoffs=0 to cutoffs=16 for all Elf
variants . 78

4.6 Construction time of all Elf variants without Cutoffs (readTSV) . . . 79

4.7 Construction time of all Elf variants with cutoffs=16 (readTSV) . . . 81

4.8 Average Query Times of all Elf variants for the Lineitem table with
a size of 10GB (without Cutoffs) . 86

4.9 The Speedup percentage of all level order linearized Elf variants for
the same query based on Figure 4.8 (without Cutoffs) 87

List of Figures xiii

4.10 Average Query Times of all Elf variants for the Lineitem table with
a size of 10GB (with cutoffs=16) . 87

4.11 The Speedup percentage of all level order linearized Elf variants for
the same query based on Figure 4.9 and Figure 4.10 (with cutoffs=16) 88

5.1 A B-tree of order 5 [BM72, Knu98] 92

5.2 A simple B+-tree example . 92

5.3 T-tree node . 93

5.4 Layout of a full CSS-tree (m=4) [RR98] 94

xiv List of Figures

List of Tables

1.1 New Bottleneck-Memory Access (adapted from David’s courseware) . 1

2.1 Full Table Scan and Non-Clustered Index Access cost estimation com-
parison table (adapted from [Cha01]) 7

2.2 Full Table Scan and Clustered Index Access cost estimation compar-
ison table (adapted from [Cha01]) . 7

2.3 Columnar selection predicate translation (from [BKSS17]) 10

2.4 Table adapted from Lineitem table based on TPC-H benchmark . . . 13

2.5 Fact Table for cube Sales (adapted from [SDRK02]) 17

2.6 Cube Operator in Dwarf base on value F1 in Table 2.5 as the prefix . 18

2.7 Data table adapted to Elf based on Table 2.5 20

2.8 Example Table ([BKSS17]) . 21

2.9 Sorted Example Table . 21

3.1 Complex example table . 36

3.2 Sorted complex example table . 36

3.3 The table formed after sorting the first column based on Table 3.1 . . 44

3.4 The table formed after sorting the second column based on Table 3.3 44

3.5 The table formed after sorting the third column based on Table 3.4 . 48

3.6 The table formed after sorting the fourth column based on Table 3.5 . 48

4.1 The construction time (s) of Elf and Elf variants for Lineitem tables
with different sizes (readTSV and without Cutoffs) 79

4.2 The size of data structure in the Elf and Elf variants constructed by
level order linearization for 100GB Lineitem tables (readTSV and
without Cutoffs) . 80

4.3 The construction time (s) of Elf and Elf variants for Lineitem tables
with different sizes (readTBL and without Cutoffs) 81

xvi List of Tables

4.4 The construction time [s] of Elf and Elf variants for Lineitem tables
with different sizes (readTSV and with cutoffs=16) 82

4.5 Details of the TPC-H query used for evaluation 85

List of Algorithms

3.1 Fibonacci sequence implemented using recursion 33

3.2 A recursive implementation of Depth First Search (DFS) 34

3.3 Breadth First Search (BFS) algorithm 35

3.4 Linearize the first dimension . 52

3.5 Linearize the remaining dimensions . 54

3.6 Linearize the DimensionList . 56

3.7 Linearize the first dimension for the Elf variants 58

3.8 PartialMatch algorithm for the first dimension (1) 64

3.9 PartialMatch algorithm for the first dimension (2) 65

3.10 PartialMatch algorithm for MonoLists (1) 66

3.11 PartialMatch algorithm for MonoLists (2) 67

3.12 PartialMatch algorithm for the n-th Dimension 68

List of Code Listings

2.1 Lineitem-Query without Selection . 6

2.2 Query with Selection Criterion . 6

2.3 Query with several Selection Criterion(TPC-H Query Q6) 9

2.4 Discounted Revenue (Part of Q19) . 10

2.5 Partial Match Query with One-Dimensional Index 13

2.6 Exact Match Query with Multi-Dimensional Index 13

2.7 Range Query based on Table 2.4 (multi-dimensional index) 14

2.8 One-Dimensional Range Query with Multi-Dimensional Index 15

3.1 Partial range query based on Table 3.1 40

4.1 Mono-column selection predicate query statement SQ1 adapted from Q1 83

4.2 Mono-column selection predicate query statement SQ2 adapted from Q1 84

4.3 Multi-column selection predicate query statement MQ1 84

xx List of Code Listings

List of Acronyms

BFS Breadth First Search

CPU Central Processing Unit

DFS Depth First Search
DL Dimension List

FIFO First In First Out
FTS Full Table Scan

I/O Input/Output
IDE Integrated Development Environment

LIFO Last In First Out
LP Level Pointer
LRU Least Recently Used

ML Mono List
MMDS The Main Memory Database System
MMIS The Main Memory Index Structure

PM Partial Match Query Algorithm

RQ Research Question

SIMD Single Instruction Multiple Data

xxii List of Acronyms

1. Introduction

In the past, the bottleneck of database system with hard disk as storage medium
was the access gap between permanent disk and volatile memory [Wol19]. To reduce
the impact of this bottlenecks, databases are typically optimized to speed-up loading
data into main memory. However, with the development of main-memory database
systems, this optimization combination becomes irrelevant [FCP+12]. The new task
of the database system engineer becomes to reduce the impact of the new bottleneck.
From the Table 1.1, without considering other factors, the CPU is 167 times faster
than the main memory, this means that CPUs will spend much of their time waiting
for memory. Additionally, the gap between the CPU and memory speed will also
increase with the development of hardware.

Component Capacity Latency

CPU bytes 0.3 ns
L1 Cache kilobytes ≈ 1 ns
L2 Cache kilobytes 3-10 ns
L3 Cache megabytes 10-20 ns
Main Memory gigabytes 50-100 ns
Disk terabyte 5 ∗ 106-107ns

Table 1.1: New Bottleneck-Memory Access (adapted from David’s courseware)

In the process of reducing the impact of the new bottleneck, the database system en-
gineer focus on achieving the best performance of the database operators. Database
operators can be affected by hardware and workload, and the most typical database
operator is the selection operator [Bro19]. Selectivity1 is inseparable from the se-
lection operator. In WHERE-Clause, the columns involved in different selection
predicates have different selectivities. Das et al. propose to use an index structure
for very low selectivities only, such as values under 2% [DYZ+15], hence, most OLAP
(Online Analytical Processing) queries would never use an index structure to evalu-
ate the selection predicates. However, this Approach neglected the possibility that

1Selectivity = Distinct Values / Total Number Rows

2 1. Introduction

the accumulated selectivity of the multi-column selection predicates is below the
2% threshold [BKSS17]. Therefore, a new research question has arisen, how to use
the combined selectivity of multi-column selection predicates to accelerate predicate
evaluation. For this question, Broneske et al. proposed the main-memory index
structure Elf, which implements an efficient query with multiple column selection
predicates and an efficient evaluation of complex analytical queries [KBSS15].

The Elf approach not only shows high efficiency in the execution of mono-column
selection predicates, but also the query performance for multi-column selection pred-
icates is far beyond the current state-of-the-art-approaches [Bro19]. The standard
build of Elf is a DFS2 algorithm. Therefore, this linearization is vertical, which also
means that the distance3 between the data of the ancestor nodes and the child nodes
is not as big as to sibling nodes.

Since the vertical linearization strategy is used when creating a standard Elf, hence,
query algorithms of the standard Elf must also use recursion to exploit the distance
in vertical linearization. Although selection predicate does not always start from
the first column, the query algorithm for the standard Elf must still traverse from
the root node. Additionally, the conceptual design of the standard Elf dictates that
we have to traverse down to the leaf levels of the Elf to reach TIDs, mono-column
selection predicates will suffer high-performance penalties from this case [Bro19].
Although the introduction of CUTOFFs optimizes these workloads, this optimiza-
tion poses further challenges, because not all levels of the Elf need to be equipped
with CUTOFFs (by incurring additional storage space consumption), and moreover,
the Seg-Tree, FAST, ART, VAST use horizontal vectorization in search operation
for a single (broadcasted) search the key in the index structure showing significant
performance improvements [Bro19]. Therefore, it is necessary to adopt different
linearization strategies (i.e., level order linearization) to expand Elf.

1.1 Goal of this Thesis

The goal of this thesis is to achieve level order linearization for all Elf variants and to
evaluate them. The purpose of the evaluation is to verify whether the Elf approach
can benefit from level order linearization. Combining the following Research Ques-
tion (RQ), we introduce the key contributions we have made within the framework
of this thesis:

RQ 1: How to implement level order linearization for the Elf Approach?

Based on the analysis of the build method of the vertical linearization, the
level order linearization for Elf approach is designed and implemented. We
will analyze the advantages of linearization for Elf in Chapter 2. Level
order linearization will retain this advantage, but change the process of
data processing.

2DFS is an algorithm for traversing or searching tree or graph data structures. The algorithm
starts at the root node and explores as far as possible along each branch before backtracking.

3The distance here is the distance between the positions of elements in the linearized ELF data
space, or can also be considered as the distance between offsets.

1.2. Structure of the Thesis 3

RQ 2: What is the difference between the Partial Match algorithm adapted to
level order linearization and the standard Partial Match algorithm?

According to the characteristics of level order linearization, we designed a
Partial Match algorithm with new characteristics, redesigned and adjusted
the relevant content of MonoLists. This will be analyzed and discussed in
Chapter 3.

RQ 3: How will the level order linearization strategies affect Elf’s performance?

We will evaluate level order linearization strategies through benchmark
tests. In Chapter 4, We will analyze and summarize the evaluation results.

1.2 Structure of the Thesis

In order to better understand the work and contribution of this thesis. We divided
the thesis into 6 chapters. In the following we brief summarize each chapter:

Chapter 2 - Background

In this chapter, we introduce the conceptual model and design model of standard
Elf. Through the intuitive understanding of vertical linearization, it will be more
helpful to understand the work of level order linearization.

Chapter 3 - Implementation

In this chapter, we introduce the implementation of level order linearization and
the corresponding partial-match algorithm. Additionally, we will discuss the Elf
variables and separation attributes mentioned in the second chapter.

Chapter 4 - Evaluation

In this chapter, we will benchmark different linearization strategies. Based on the
evaluation results, we will summarize the impact of different linearization on the
performance of Elf, in order to verify the primary goal of our paper.

Chapter 5 - Related Work

In this chapter, we will introduce the work related to horizontal linearization (or
horizontal vectorization). The typical tree structure (e.g., CSB-Tree [RR00]) in the
index structure is summarized and compared with Elf’s horizontal linearization.

Chapter 6 - Conclusion

This chapter will summarize the work of the thesis. In addition, we will introduce
some work that needs to be done in the future. The completion of these tasks will
make the level order linearization strategy perfect so that Elf can benefit from it.

4 1. Introduction

2. Background

In order to answer the presented questions and understand them fundamentally,
this chapter aims to create background knowledge and requirements. Before we
introduce the work of level order linearization for Elf approach, it is necessary to
understand the background knowledge of the standard Elf, such as conceptual model
and implementation method. For this purpose, We will first briefly introduce the
index structure.

2.1 Index Structure
For the purpose of achieving high performance in a database management system,
one of the approaches is to store the database in main memory rather than on
hard disk [LC85]. Although the performance of the database management system
has been greatly improved, there are still new bottlenecks (i.e., the gap between
the CPU and memory speed). Therefore, design new data structures (i.e., index
structures) and algorithms oriented towards making efficient to use CPU cycles and
memory space, this approach is more effective than minimizing disk access and disk
space usage [LC85].

To understand the principles and characteristics of the index structure, in this sec-
tion, we first introduce the two ways for the database system to access data and
some restrictions, so as to understand the principle of the index and the way to
access the index. Then, this thesis will introduce selection predicates, which in-
clude mono-column selection predicates and multi-column selection predicates, and
extends to four types of query. In addition, it also introduces the basic challenges
posed by multiple column selection predicates.

2.1.1 Ways to Access Data

The first step to understand an index structure is to know how the database system
accesses the data in the table. From a logical point of view, there are essentially two
ways to access data in database tables: Full Table Scan and with the help of a new
access tool - Index Structure [SSH18]. In the following, we will introduce these two
access methods.

6 2. Background

2.1.1.1 Full Table Scan

In order to achieve a full table scan, the table is stored in the memory of the database
system, and then the database system sequentially traverses all the tuples in the
table. If there is a selection predicate in the query statement (such as Listing 2.2),
it will check whether each row meets the WHERE restrictions. Of course, for queries
without selection predicate, this process is more obvious [Wol19]. For example, in
the statement in Listing 2.1, the database will completely traverse the Lineitem
table without performing any other operations.

SELECT *

FROM Lineitem;

Listing 2.1: Lineitem-Query without
Selection

SELECT *

FROM Lineitem

WHERE l_returnflag = 1;

Listing 2.2: Query with Selection Cri-
terion

Before the emergence of the main storage database system, I/O was one of the
important factors that affected the efficiency of full table scans. In Oracle, the
evaluation of I/O is for blocks instead of rows. Because if each I/O operation
processes a small amount of data, for a full table scan, the total number of I/O
will increase significantly, which affects the performance of the system, especially
for queries with selection predicates, the processing speed will be slower. If I/O can
read multiple database blocks at once, instead of reading only one data block, that
is, Multiple Block Reads, which will greatly reduce the total number of I/O and
improves the system throughput. Therefore, the method of multi-block reading can
efficiently achieve full table scan [Xu05]. In the past, multi-block read operations
can only be used in the case of full table scans, but the index fast full scan (IFFS),
which were introduced in Oracle 7.3 [Bur01], is also a type of multi-block reads.

In general, when query in a data table with a large amount of data, since a full table
scan always traverses the entire data table, using index access seems to be a better
way. From a cost perspective, the time complexity of a full table scan is O(n), as
the size of the table becomes larger, the cost of a full table scan increases linearly. In
addition, the cost of an index scan is O(Matches)+index traversal cost. However,
it is not intuitive to directly compare these two costs, hence, we used experiments
from Das et al. [DYZ+15] and Lin [Cha01] to analyze the differences between them.

1. An Experiment in SQL Server

Different from Oracle, SQL Server not only has a full table scan and index scan, but
it also has index seek. An index seek is performed when we search for the specific
record through a column that has an non-clustered index defined on the table. Lin
used a query plan with the same selection predicate to test the performance of the
full table scan and index access in the SQL server. The clustered index1 and non-

1A clustered index is a special type of index that reorders the way records in the table are
physically stored.

2.1. Index Structure 7

clustered index2 were used as experimental variables to achieve the purpose of use
index scan and index seek respectively to compare with full table scan.

Experimental data shows that the percentage of rows returned has a great impact
on retrieval performance. According to Lin’s thesis, if there is a mass of data to be
fetched, such as more than 5%-10% (full table scan compared with non-clustered
index access in Table 2.1) or 95% (full table scan compared with clustered index
access Table 2.2) of the total amount [Cha01], or the parallel query function is to
be used, using a full table scan in a larger data table is more efficient than index
access.

PMR 3% 4% 5% 6% 7% 8% 9% 10%

IDX Cost(ms) 5248 6704 8186 9888 11632 13360 14528 16272
FTS Cost(ms) 8432 8432 8432 8432 8432 8432 8432 8432
Method IDX IDX IDX FTS FTS FTS FTS FTS

PMR=The Percentage of Matched Rows; IDX=Index Access; FTS=Full Table Scan

Table 2.1: Full Table Scan and Non-Clustered Index Access cost estimation com-
parison table (adapted from [Cha01])

PMR 91% 92% 93% 94% 95% 96% 97% 98%

IDX Cost(ms) 8112 8208 8304 8400 8464 8560 8656 8752
FTS Cost(ms) 8432 8432 8432 8432 8432 8432 8432 8432
Method IDX IDX IDX IDX FTS FTS FTS FTS

Table 2.2: Full Table Scan and Clustered Index Access cost estimation comparison
table (adapted from [Cha01])

2. An Experiment in Oracle

Das et al. introduced the experiment of Single Table Query in their thesis Query
Optimization in Oracle 12c Database In-Memory. They created an on-disk table and
an in-memory table respectively, and the structure and content of the two tables are
exactly the same. Then they create a B-tree index on the same column of these two
tables. Finally set the variables and tested all possible combinations. The results
are shown in Figure 2.1, this figure shows the performance of the index access path,
on-disk full FTS, and in-memory FTS plans for 5 projected columns at various
selectivities [DYZ+15]. We can observe that when the selectivity is greater than
25%, compared with the full table scan on the on-disk table, the efficiency of the
index method begins to decrease.

2A non-clustered index is a special type of index in which the logical order of the index does
not match the physical stored order of the rows on disk. The leaf node of a non-clustered index
does not consist of the data pages. Instead, the leaf nodes contain index rows.

8 2. Background

Figure 2.1: Single Table Query with 5 Projected Columns (from [DYZ+15])

With the help of these two experiments, we find that when the percentage of rows
returned or selectivity exceeds a certain percentage, the efficiency of index access
will be reduced. In this case, the performance of the full table scan is outstanding.

2.1.1.2 Index Access

The full table scan is oriented to the data in the table, while the index access is
oriented to the index. In a relational database, an index is a separate, physically
stored data structure that sorts the values of one or more columns in a database
table. It is a collection of one or several column values in a table and a list of logical
pointers. These pointers point to data pages that physically identify these values in
the table. In simple terms, indexes are data structures that help database systems
efficiently obtain data.

Common index types include bitmap index, dense index [GM08], sparse index, re-
verse index, primary index and secondary index. Here, we focus on the primary index
and the secondary index, which helps to understand the content of this section. The
index consists of the search key K, and at least one data record or reference to it
(K↑) is assigned to this search key. If this mapping is bijective, then K happens to
point to a K↑, which is called the primary index. If K points to one or more K↑
is called the secondary index [SSH18]. The biggest difference between the primary
index and the secondary index is that the leaf node of the primary index stores the
entire row of data, and the leaf node of the secondary index stores the value of the
primary key. Additionally, the primary index is also called clustered index1 and the
secondary index is also called non-clustered index2.

All these indexes can be implemented using a variety of data structures. Classic
data structures include Balanced trees, B+-trees and Hashes [Pow06], such as both
primary and secondary indexes can be organized into a B-tree or B+-tree structure.
These structures are designed to access data more efficiently, because the traversal
cost of the tree-based index structure is usually O(log(n)), and the ways to access
data with the help of these index structures are called index access. Index access
includes index seek and index scan.

2.1. Index Structure 9

Index seek is a method that exists in SQL Server to access data by index. When
search criterion matches an index well enough that the index can navigate directly
to a particular point in data, that’s called an index seek [Jav17]. When we specify a
condition in WHERE clause like searching a lineitem by l_returnflag or tid if we
have a respective index. For example, the query in Listing 2.2 will use an index seek
when we run this on SQL server. In this case, the query optimizer can use the index
to go directly to where l_returnflag = 1 and retrieve the data. However, from
Table 2.1, we can find that the index seek also has limitations, that is, the percentage
of the number of rows returned cannot exceed 5%, and under some special conditions,
it will reach 10%. Therefore, when the size of the matched data is large, a full table
scan or index scan will be used. Additionally, according to Figure 2.1, in Oracle,
the method of accessing data is selected based on the selectivity and the location of
the table.

Index scan means that the database manager accesses the index before accessing
the base table and shrinks the collection of qualified rows by scanning the rows in
the specified range in the index. If the table has an index and we are firing a query
which needs all or most of the rows i.e. query without WHERE or HAVING clause (e.g.,
Listing 2.1), then it uses an index scan [Jav17]. It works similar to the table scan,
but it is slightly faster than a table scan. The main reason is that index scan look
at sorted data and query optimizer know when to stop and look for another range.
Excluding the effect of the amount of data, it can be seen from Figure 2.1 that index
scans are suitable for a lower selectivity.

SELECT * FROM Lineitem

WHERE l_shipdate >= [DATE] AND l_shipdate < [DATE] + "1Year"

AND l_discount between [DISCOUNT] - 0.01 AND [DISCOUNT] + 0.01

AND l_quantity < [QUANTITY]

Listing 2.3: Query with several Selection Criterion(TPC-H Query Q6)

However, in the experiment of Das et al., selectivity refers to the selectivity of a single
predicate. For example, in Listing 2.3, l_shipdate, l_discount, and l_quantity
are all in a query plan, but their selectivity is considered separately. What are
the potential challenges and how to find opportunities from the challenges, we will
explain the answers to these questions by introducing selection predicates in the
following section.

2.1.2 Selection Predicate and Types of Query

To filter out the data that meets the requirement from a large amount of data,
there are usually one or several filtering predicates in the query statement. These
predicates involve a mono-column or multiple-columns. The combination of the
number of columns involved in these selection predicates and the type of predicate
constitute different types of query.

2.1.2.1 Query with the Selection Predicate

A query with the selection predicate always involve one column or multiple columns,
for each of these columns, there is one of the following basic predicates given: =, <,

10 2. Background

≤, >, ≥, BETWEEN [BKSS17]. In Table 2.3, all possible integer attribute predicates
and the range or interval they represent are listed (max and min are the maximum
and minimum values of the attribute value range). Using this predicate translation
can help to understand the upper and lower boundaries of a selection predicate, and
can more intuitively understand the query algorithm. For example, col = x, where
x is both the upper boundary and the lower boundary, we can convert it to [x, x].
Therefore, for column col,x is a scalar.

Predicate Window

= x [x, x]
< x [min, x) ≡ [min, x− 1]
≤ x [min, x]
> x (x,max] ≡ [x + 1,max]
≥ x [x,max]
≤ x and ≥ y with x ≤ y [x, y]

Table 2.3: Columnar selection predicate translation (from [BKSS17])

After a brief introduction to the basic knowledge about predicates, the following will
specifically introduce the multi-column selection predicate and the basic challenges
it brings.

1. Multi-column selection predicates

The number of columns involved in a query plan with the WHERE-clause determines
the type of selection predicate. For example, the query in Listing 2.3 is a typical
TPC-H query involving several column predicates. We name such a collection of
predicates on several columns in the WHERE-clause a multi-column selection predicate.
The execution of a mono-column selection predicate is relatively simple because it
only involves one column or one dimension. Correspondingly, the database system
will only a scan single column or one-dimensional index. However, multi-column
selection predicates can be particularly complex, such as in Listing 2.4 is the part of
a TPC-H query Q19 given. Although both of Q6 and Q19 are multi-column selection
predicates, this query Q19 involve more columns than Q6 (Listing 2.3), which is also a
typical feature of complex analytical queries, that is, if the analytical query becomes
more complex, the number of selection predicates to be evaluated for each query also
increases, which will result in numerous multi-column selection predicates [BKSS17].

SELECT SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE

FROM LINEITEM , PART

WHERE (P_PARTKEY = L_PARTKEY

AND P_BRAND = "Brand #12"

AND P_CONTAINER IN ("SM CASE", "SM BOX", "SM PACK", "SM PKG")

AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10

AND P_SIZE BETWEEN 1 AND 5

AND L_SHIPMODE IN ("AIR", "AIR REG")

AND L_SHIPINSTRUCT = "DELIVER IN PERSON")

Listing 2.4: Discounted Revenue (Part of Q19)

2.1. Index Structure 11

2. The basic challenge of multi-column selection predicate

For a main memory database system, if the data table can be completely stored
in the main memory, since the I/O bottleneck between the main memory and the
disk is eliminated, the overhead of the full table scan will be greatly reduced. In
addition, from Figure 2.1 we know that selectivity is an important factor that affects
whether the database system uses a full table scan or an index structure. Therefore,
in the main memory database system, the selectivity threshold required to use an
index structure will be very low, or even lower than the selectivity threshold of the
disk-based database system [BKSS17]. This also conforms to the point made by Das
et al. in their thesis, that is, the index structure is used only for very low selectivity,
such as values under 2% [DYZ+15]. This means that the chance of using an index
structure is greatly reduced, and even most OLAP queries would never use an index
structure to evaluate selection predicates.

Figure 2.2: The Selectivity of TPC-H query Q6 and its predicates Q6.1 - Q6.3 on
Lineitem table scale factor 100 (from [BKSS17])

David et al. analyzed the difference between the selectivity of single-predicate and
accumulative selectivity of a query by TPC-H query Q6 in their thesis Accelerating
multi-column selection predicates in main-memory – the Elf approach. They marked
the selection predicates of l_shipdate, l_discount, and l_quantity as Q6.1, Q6.2
and Q6.3 respectively. It can be observed from Figure 2.2 that the selectivity of each
single predicate is greater than 2%, and the selectivity of Q6.3 even exceeds 40%.
In this case, according to the point of view proposed in the thesis by Das et al., a
full table scan will be used. However, if considering the accumulated selectivity of
multi-column selection predicates, that is, accumulated selectivity of Q6, this value
will be as low as 1.72% (less than 2%).

This also leads to the basic challenge of multi-column selection predicates. The se-
lectivity of the overall query is often small, but the selectivity of the column involved
in each single predicate is high enough to enable the database system to decide to
use a scan for all columns. Therefore, we cannot use an index to complete the query.
As a result, a common way is to use optimized column scans [LP13] [SK13]. Based
on this situation, an index structure would be favored if it could exploit the rela-
tion between all selection predicates of the query [BKSS17]. The realization of this
multi-dimensional index structure (i.e., Elf) is the main contribution of David et al.

12 2. Background

and is also the basis of the work of this thesis. Before introducing it, we will briefly
introduce how to classify queries to understand the principle of the partial-match
query.

2.1.2.2 Query Type

Whether it is a mono-column selection predicate or a multi-column selection predi-
cate, they are an essential part of the query. We can use their different combinations
to form different query types. Understanding these query types is helpful to under-
stand the query-related work of this thesis. According to different criteria, such
as a number of search keys and type of predicate, the query can be divided into
exact-match query, partial-match query, range query and partial range query. For
example, when the number of search keys is equal to the number of columns, and the
selection predicates are col = x, it is an exact query. In order to better understand
these query types, we assume that there is a table with k columns, one or more
selections can be used to specify qualification conditions for up to k search keys in a
query. If key values meet these requirements, they can be included in the result set
of Q. Hence, the types of these queries can be explained by the following numerical
attributes [HR13]:

1. Exact Match Query: It specifies a value for each key.

Q = (A1 = a1) ∧ (A2 = a2) ∧ ... ∧ (Ak = ak)

2. Partial Match Query: It specifies s key values, which s < k.

Q = (A1 = a1) ∧ (A2 = a2) ∧ ... ∧ (As = as), with s < k

3. Range Query: It specifies a range ri = [li ≤ ai ≤ ui] for each key Ai

Q = (A1 ∈ r1) ∧ (A2 ∈ r2) ∧ ... ∧ (Ak ∈ rk)

≡ (A1 ≥ l1) ∧ (A1 ≤ u1) ∧ ... ∧ (Ak ≥ lk) ∧ (Ak ≤ uk)

4. Partial Range Query: It specifies a range for s keys, which s < k.

Q = (A1 ∈ r1) ∧ (A2 ∈ r2) ∧ ... ∧ (As ∈ rs), with s < k

If we define an exact range ai ∈ [li, ui] and an unlimited range ai ∈ (−∞, ∞) in
the query, all four types of queries can be regarded as general range queries [HR13].
Especially when s = k, all partial queries can be regarded as exact queries.

2.1.3 One-Dimensional Index and Multi-Dimensional Index

Generate an index on an attribute in the relationship and use it in the query, this
index is a one-dimensional index. Similarly, the index generated for n attributes in
the relationship is a multi-dimensional index. A multi-dimensional index can be a
one-dimensional index (n = 1). The one-dimensional index can also be executed

2.1. Index Structure 13

multiple times to complete the work of the multi-dimensional index. But the ef-
ficiency is far lower than the multi-dimensional index. We will introduce this in
detail below. In this thesis, we refer to query statements involve one attribute such
as Listing 2.2 as one-dimensional queries, and query statements involve at least two
attributes are collectively referred to as multi-dimensional queries. In order to better
explain, in Table 2.4 we adapted the Lineitem table, only set four attributes, LID as
a unique identifier, the range is [L0, L9], the range of l_quantity is still [1, 10], the
l_shipdate is [2010, 2020], the range of l_returnflag is [0, 1], K2dim uses arrays
to represent the simplified relationship between attribute l_quantity and attribute
l_shipdate.

LID l_quantity l_shipdate l_returnflag K2dim

L3 1 2015 0 (1, 2015)
L7 2 2011 0 (2, 2011)
L0 2 2018 0 (2, 2018)
L4 4 2016 0 (4, 2016)
L1 4 2019 0 (4, 2019)
L8 5 2011 1 (5, 2011)
L5 5 2015 1 (5, 2015)
L2 8 2018 1 (8, 2018)
L9 9 2012 1 (9, 2012)
L6 9 2015 1 (9, 2015)

Table 2.4: Table adapted from Lineitem table based on TPC-H benchmark

2.1.3.1 One-Dimensional Index

First, we introduce the one-dimensional index. As mentioned in the previous chap-
ter, common data structures such as B-tree and B+-tree can be used to implement
a one-dimensional index, and the index is ordered. If we build an index for the flag
attribute in Listing 2.2, all rows with l_returnflag = 1 in the table are arranged
sequentially due to the order of the index. After a search for the first position of
l_returnflag = 1 in the index, the LID can be obtained sequentially to the end,
thereby avoid full table scans and improve query efficiency.

SELECT *

FROM Lineitem

WHERE l_shipdate = 2011;

Listing 2.5: Partial Match Query with
One-Dimensional Index

SELECT *

FROM Lineitem

WHERE l_returnflag = 1

AND l_shipdate = 2011;

Listing 2.6: Exact Match Query with
Multi-Dimensional Index

Although a one-dimensional index is built for l_returnflag, the use of this one-
dimensional index structure for other one-dimensional queries such as Listing 2.5 will
not improve efficiency. Such queries will still use full table scans or index scans. The
reason is that the l_returnflag is ordered in the index structure. If it is mapped to

14 2. Background

the table, it means that the rows will be reordered in the order of l_returnflag, so
other attributes depend on the l_returnflag. As can be observed from Table 2.4,
l_shipdate is out of order. Therefore, the advantage of the one-dimensional index
is not reflected in the one-dimensional query such as Listing 2.5, unless the attribute
l_shipdate also has its own index.

For multi-dimensional queries, use l_returnflag and other attributes to form a
multi-dimensional query such as Listing 2.6, this index structure can be used to
effectively implement such queries. However, for multi-dimensional queries without
l_returnflag such as Listing 2.7, it is the same as Listing 2.5, all of them cannot
benefit from a one-dimensional index structure (l_returnflag). This means that
for any type of query that contains indexed attributes (i.e., Listing 2.2, Listing 2.6),
its one-dimensional index structure can efficiently obtain results. In contrast, other
query plans will still use full table scans. Therefore, whether the attribute in the
query statement is indexed will affect the execution efficiency of the query.

SELECT *

FROM Lineitem

WHERE l_quantity >= 4 AND l_quantity <= 7

AND l_shipdate >= 2014 AND l_shipdate <= 2017;

Listing 2.7: Range Query based on Table 2.4 (multi-dimensional index)

However, if we build their own one-dimensional index for each attribute involved
in a query, the situation will be different for one-dimensional queries and multi-
dimensional queries. For a one-dimensional query such as Listing 2.2 and Listing 2.5,
results can be obtained from their respective index structures, thereby improve query
efficiency. For multi-dimensional query (i.e., Listing 2.3, Listing 2.6, Listing 2.7), it
needs to retrieve data from the index structure of each attribute. Then calculating
the intersection of all returned result sets to get the final result set.

For example, for Listing 2.7, if we create separate one-dimensional indexes for
l_quantity and l_shipdate, and assume that the sets returned by each attribute
are |S1| = m, |S2| = n, then the matched data can be obtained by calculating their
intersection, so their time complexity is O(m ∗ n). For a query with n dimensions,
use |Sn| = Mn to represent the set returned by each attribute. The time complexity
can be expressed as O(M1 ∗M2 ∗ ...∗Mn), as the dimension increases, this value will
increase significantly, which also means that the efficiency of this method decreases.
In addition, using the traditional tree structure (i.e., B-tree, B+-tree) or hash table as
a data structure for store two-dimensional or multi-dimensional indexes, compared
with store one-dimensional indexes, its performance will be significantly reduced
[LY10]. Therefore, it is necessary to introduce a data structure that can implement
a multi-dimensional index.

2.1.3.2 Multi-Dimensional Index

An index generated for n attributes in the relationship is a multi-dimensional in-
dex. Common data structures used to implement multi-dimensional indexes include

2.1. Index Structure 15

Grid-Files (hash), K-d tree, k-dB tree, R-tree and UB-tree. The biggest differ-
ence between the multi-dimensional index and one-dimensional index is that the
process of multi-dimensional data in multi-dimensional index structure spans multi-
dimensional space. For example, based on the multi-dimensional query Listing 2.7
and Table 2.4, we can map l_quantity and l_shipdate to the two-dimensional
space plane shown in Figure 2.3. In this two-dimensional plane, the abscissa is
l_quantity ∈ [0, 10], the ordinate is l_shipdate ∈ [2010, 2020]. Their coordinate
combination contains all the rows in Table 2.4, for which we use grid points to
represent and map to LID (i.e., L3(1, 2015)).

L3

L7

L2

L6

L9

L5

L8

L4

L1

L0

0 10
2010

2015

2020

l_quantity

l_
sh
ip
da
te

5

Figure 2.3: Two-dimensional plane on
Table 2.4 and attributes contained in
Listing 2.7

L3

L7

L2

L6

L9

L5

L8

L4

L1

L0

0 10
2010

2015

2020

l_quantity

l_
sh
ip
da
te

5

R0

Figure 2.4: Range Query in Two Dimen-
sional plane on Listing 2.7 and Figure 2.3

After converting the two attribute columns l_quantity and l_shipdate into a two-
dimensional plane, we can display the result set of the range query Listing 2.7 in
Figure 2.4 based on this two-dimensional plane. First, determine the upper and
lower boundary values of each attribute in the query plan, that is, l_quantity
∈ [4, 7] and l_shipdate ∈ [2014, 2017], then draw a vertical line to the respective
coordinate axis. All the grid points in the finally formed dark region R0 are the
result set of Listing 2.7, which contains two grid points L4 and L5. In Table 2.4, we
use K2dim to represent this array of coordinate forms, and they will also be stored in
the corresponding index structure. For example, the Grid File will save each array
in the bucket3 of the corresponding area, and the tree structure such as K-d tree or
k-dB tree will directly store array in child nodes or leaf nodes.

SELECT *

FROM Lineitem

WHERE l_shipdate >= 2014 AND l_shipdate <= 2017

Listing 2.8: One-Dimensional Range Query with Multi-Dimensional Index

3A bucket is a data structure that uses the key values as the indices of the buckets, and store
items of the same key value in the corresponding bucket.

16 2. Background

This way of process with two-dimensional planes is a kind of visualization, which
shows how the multi-dimensional index structure associates data of different dimen-
sions and how to query data that meet the predicate conditions. In terms of cost, for
example, a k-dB tree is used to save the multi-dimensional index, for exact match,
the cost is O(logn), and partial-match is better than O(n) [KSS14], both of them
are much smaller than O(m ∗ n)4. Therefore, the use of multi-dimensional index
structure can effectively achieve multi-dimensional query, in the same way, it can
also effectively implement one-dimensional query, in the plane make a vertical line
on the boundary value of the corresponding attribute coordinate, the data on the
vertical line (i.e., Listing 2.5) or within the range of two vertical lines (Listing 2.8)
are result sets of the one-dimensional query.

2.2 Elf as Multi-Dimensional Index Structure

After understanding the advantages of index structure (especially multi-dimensional
index structure), we introduced a novel multi-dimensional index structure - Elf,
which is used to solve the challenge brought by multi-column selection predicates.
This chapter mainly introduces the background of Elf, such as conceptual design,
vertical linearization and Elf variables. On this basis, we finally introduce the core
work of this thesis - level order linearization and briefly explain it.

2.2.1 Conceptual Design of Elf

Before introducing the background of Elf, it is necessary to explain the source of
inspiration for Elf (i.e., Dwarf). Hence, in this chapter, we will first describe the
background, construction methods and advantages of Dwarf. Then on this basis,
the concept design of Elf will be introduced.

2.2.1.1 Dwarf

The Dwarf is a highly compressed data structure that is commonly used for comput-
ing, storing, and querying data cubes [SDRK02]. The main contribution of Dwarf
is to reduce the storage requirements by dramatically compressing the cube without
reducing the precision of the cube query.

This requirement mainly comes from the cube operator. Whether it is computing
or storage, the size of the cube operator is an inevitable challenge, because the
operator performs the computation of one or more aggregation functions for all
possible combinations of grouping attributes [SDRK02]. The number of grouping
combinations will increases exponentially as the dimension increases. Assume that
there are only two dimensions a, b in a data set, its groupings are a, b, ab. If we
add a dimension c, the grouping combination will be a, b, c, ab, ac, bc, abc, hence,
for an n-dimensional cube, there are 2n− 1 grouping combinations. This also causes
the size of the cube operator to increases exponentially as the dimension increases.
Therefore, Simen et al. designed this data structure (i.e., Dwarf) to store a highly
compressed version of the cube operator [BKSS17].

4This time complexity comes from the cost of using a one-dimensional index to process a multi-
dimensional query in Section 2.1.3.1

2.2. Elf as Multi-Dimensional Index Structure 17

The way that Dwarf highly compressing the cube is to avoid the redundancy of the
cube. To be specific, it identifies prefix redundancies and suffix redundancies in the
cube entries and factoring them out of the store, so as to achieve the purpose of high
compression.

1. Prefix Redundancy

In a sample cube with three dimensions a, b, c, we listed all the grouping combi-
nations in the previous paragraph. We can observe that each value of dimension a
will appear in four group-bys (a, ab, ac, abc). Here, dimension a is the prefix of
dimensions b and c, and each value of dimension a may appear multiple times in
different groupings, then these repeated values are prefix redundancy. It can also
happen when the prefix size is larger than one node, in which case the prefixes will
appear in pairs. Such as (a, b) will appear in group-bys ab and abc. In simple terms,
prefix redundancy occurs when two or more dimension keys share a common prefix
[BKSS17].

2. Suffix Redundancy

Use the same sample cubes, the suffix redundancy is like abc and bc. Suppose there
is a value bi in dimension b, which appears in the fact table only with the value ai in
dimension a, that is, (ai, bi). Then for any value m in dimension c, groups 〈ai, bi,m〉
and 〈bi,m〉 always have the same value. The reason is that for 〈bi,m〉, all values of
dimension a are aggregated. Since bi only appears with ai, the value in dimension
a here is just the value ai. In simple terms, suffix redundancy occurs when two or
more group-bys share a common suffix [SDRK02].

Sismanis et al. used this way to compress a Petabyte cube with up to 25 dimensions,
and finally they got a Dwarf Cube with only 2.3 GB, the high compression rates
reached 1: 400000. However, even with such dramatically compression, Dwarf still
maintains 100% precision of the cube query [SDRK02]. To introduce Dwarf Cube,
in the following we refer to the example fact table (Table 2.5) from the thesis of
Simen et al. to show how to compress this fact table into a Dwarf cube.

Filiale Customer Product Price

F1 C2 P2 $ 70
F1 C3 P1 $ 40
F2 C1 P1 $ 90
F2 C1 P2 $ 50

Table 2.5: Fact Table for cube Sales (adapted from [SDRK02])

Table 2.5 contains four attributes. We will grouping attributes Filiale, Customer,
and Product, then perform the aggregation operation SUM on the fact Price in the
corresponding group-by. For example, with the value F1 in the attribute Filiale
as a prefix, the corresponding group-bys are 〈F1, C2, P2〉, 〈F1, C3, P1〉, 〈F1, C2〉,
〈F1, C3〉, 〈F1, P2〉, 〈F1, P1〉, 〈F1〉. For 〈F1, C2, P2〉 and 〈F1, C2〉, their combina-
tion can also be regarded as group-bys, which prefixed by the dimension pair (F1,
C2). Hence, for 〈F1, C2〉 mean that all values of the dimension Product is aggre-
gated, which is reflected in the SUM computation of the Price. Here we use a special

18 2. Background

value All to replace the aggregated attributes after grouping, hence, 〈F1, C2〉 is
equivalent to 〈F1, C2, All〉. We display all group-bys prefixed with F1 in Table 2.6
in this form. Since the value pair (F1, C2) only appears once in Table 2.5, hence,
in Table 2.6, 〈F1, C2, P2〉 and 〈F1, C2, All〉 have the same value $70 in the fact
Price. Otherwise, the aggregation operation SUM will be performed. For example,
for 〈F1, All, All〉, all tuples with F1 in Table 2.5 will be aggregated, and the fact
Price will be added to get $110 (i.e., $70 + $40).

Filiale Customer Product Price

F1 C2 P2 $ 70
F1 C3 P1 $ 40
F1 C2 All $ 70
F1 C3 All $ 40
F1 All P2 $ 70
F1 All P1 $ 40
F1 All All $ 110

Table 2.6: Cube Operator in Dwarf base on value F1 in Table 2.5 as the prefix

C1

F1 F2

C2 C3 C1 C2 C3

P1			$40 P2			$40 $110

P1			$40 $40

P2			$70 $70

P1			$90 P2			$50 $140 P1			$130 P2			$120 $250

Filiale(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Dimension

Dimension Customer

Dimension Product

Figure 2.5: Dwarf Operator base on Table 2.5

Figure 2.5 shows the Dwarf Cube for the table shown in Table 2.5. It can be observed
from Figure 2.5 that the height of Dwarf is the number of dimensions in Table 2.5,
and the value of Price is stored in each leaf node. Each node consists of several
cells. For non-leaf nodes, in addition to the cell representing All (small and dark
rectangles in Figure 2.5), each cell of each node contains one for each distinct value of
corresponding dimension and a pointer. We use the form [key, pointer] to represent
a cell. The pointer of the cell points to a node, which contains all the distinct values
of the next dimension associated with the key of this cell. For example, the node(2)
pointed to by the cell with key = F1 contains two key values (C2, C3), both of
which are related to F1. The cell All contains only one pointer, and the node
pointed to by this pointer contains all the different values of the next dimension
(e.g., Node(8)). For the cell of the leaf node, we use the form [key, aggregate] to
represent. This means that each cell of the leaf node holds a distinct value of the

2.2. Elf as Multi-Dimensional Index Structure 19

last dimension and a corresponding aggregate value. For example, 〈F1, C2, P2〉
in Table 2.6 corresponds to the path 〈(1), (2), (3)〉 in Figure 2.5, and 〈F1, C2, All〉
also corresponds to the path 〈(1), (2), (3)〉, but the cells in node(3) they access are
different.

Dwarf associates values of different dimensions through pointers, and eliminates
prefix redundancy at non-leaf nodes, especially at the root node. In addition, suffix
redundancy is recognized and processed during the construction of Dwarf [SDRK02].
After analyzing the Dwarf cube, we can summarize the advantages of Dwarf into
four points, three of which are the main factors for Elf to choose Dwarf as the basis.

1. Prefix redundancy elimination

Each node contains different values in the corresponding dimension. Especially
the first dimension contains all the different values in the first dimension, and
each value appears only once in this node. Nodes in other dimensions only
contain the dimension values associated with the prefix key value, and there
are also no duplicate values in the nodes. This also means that along the path
from the root node to the leaf node, the dimension value of the prefix is only
saved once.

2. Suffix redundancy elimination

In Dwarf, when two or more nodes of a dimension share a common suffix, the
pointers of these nodes will point to the same node in the next dimension.
This suffix node appears only once in Dwarf.

3. Ordered node elements

In a node of Dwarf, all elements are arranged in order. Using this order can
improve the efficiency of the query. And this also corresponds to the order of
the index.

4. Fixed search depth

The height of a completed Dwarf is equal to the number of dimensions, which
means that the path length from the root node to the leaf node is fixed. For
a query, a dimension can be better exploited instead of a tuple.

2.2.1.2 Elf

In order to accelerate the multi-column selection predicate in the main memory,
the index structure can be used on the multi-column selection predicate with low
cumulative selectivity. Inspired by Data Dwarf, Broneske et al. implemented a novel
multi-dimensional index structure for order-preserving dictionary-compressed data
or numeric data, that is, Elf, which is a tree structure, and the index structure it
constructs can effectively use the relationship between several selection predicates in
a query [BKSS17], this means that for the main memory database system, optimized
accelerated scan is no longer the only option. In addition, the emergence of Elf
has greatly improved the selectivity threshold for using index structures, with 18%
instead of 2% (proposed by Das et al.), which greatly increases the opportunity of
using index structures in a query [DYZ+15, BKSS17].

20 2. Background

In the following, we first convert the Dwarf table (Table 2.5) and cube (Figure 2.5)
into an Elf form to compare the differences between Dwarf and Elf and introduce
the conceptual design of Elf. Then, we introduce the specific construction process
of Elf through a simple example.

1. Compare Dwarf and conceptual design of Elf

Due to one of the advantages of Dwarf, that is, the elimination of suffix redundancy,
it allows the suffix node in Dwarf to have multiple direct precursor pointers, so
Dwarf is a graph structure. The All cell is the main factor that causes multiple
direct pointers to a node.

For Elf, as a multi-dimensional index structure, it will not store any facts (that is,
column Price in Table 2.5), and because it is a tree structure, its non-root node will
only have a precursor pointer. Therefore, compared to Dwarf, Elf as the index struc-
ture does not retain the characteristics of All cell and suffix redundancy elimination,
and because Elf stores a reference to the tuple, the fact will not appear in Elf, but
a unique identifier TID. In Table 2.7, we will replace the fact with TID, and in the
Elf structure, the TID does not appear in the form of a dimension but is stored in
the leaf node as the fact.

Filiale Customer Product TID

F1 C2 P2 T1
F1 C3 P1 T2
F2 C1 P1 T3
F2 C1 P2 T4

Table 2.7: Data table adapted to Elf based on Table 2.5

In Figure 2.6, we use the data in Table 2.7 to construct an Elf structure. Compared
with Figure 2.5, we can observe that Elf retains three of Dwarf’s advantages. The
height of Elf is equal to the number of dimensions, which also means that the path
length from the root node to the leaf node is fixed. In Elf, we named all non-leaf
nodes DimensionLists, these nodes are consist of values and a pointer. These values
in a single node are distinct, and in the node, these values are arranged in order.
The leaf node stores the data of the last dimension and the TID of the tuple. For
the general Elf, the final saved TIDs are unordered. The 1 of T1 has no practical
significance and is only used as a reference for the unique identifier. In addition,
since there is no All-cell in Elf, each level in Elf is a column of data.

2. Construction of Elf

After the introduction of the conceptual design of Elf, we show the complete process
of constructing an Elf through a simple and typical example. Table 2.8 shows the
four columns being indexed and a tuple identifier to uniquely identify each row.
Table 2.9 is the final table after building Elf. During the construction of Elf, the
order of the tuples in Table 2.8 will also change due to the order of the elements
within the nodes in Elf. Based on Table 2.8, we show the complete process of
constructing Elf in Figure 2.7.

2.2. Elf as Multi-Dimensional Index Structure 21

F1 F2

C2 C3

P2	T1 P1	T2

C1

P1	T3 P2	T4

Dimension	Filiale

Dimension	Customer

Dimension	Product

Figure 2.6: Elf Structure base on Table 2.7

TID C1 C2 C3 C4

T1 0 1 0 1

T2 1 0 0 1

T3 0 2 0 0

Table 2.8: Example Table ([BKSS17])

TID C1 C2 C3 C4

T1 0 1 0 1

T3 0 2 0 0

T2 1 0 0 1

Table 2.9: Sorted Example Table

First, sort the column Ci in Table 2.8, and then create node entry in the Dimen-
sionList for each distinct value of this column. When i = 1, this step corresponds
to step I in Figure 2.7, and column C1 contains two distinct values (0, 1). Then
perform logical partitioning in the sorted Table 2.9, which is prefixed with distinct
values of C1 (0, 1). Then sort C2(Ci+1), and repeat these steps recursively.

0 1 0 1

1 2

0 1

1 2

0

0 1

1 2

0

1	T1

0 1

1 2

0

1	T1

0

0 1

1 2

0

1	T1

0

0	T3

0 1

1 2

0

1	T1

0

0	T3

0

1

0	T2

(1) (1) (1) (1)

(1) (1) (1)

(2) (2) (2)

(2) (2) (2)

(3) (3)

(3) (3) (3)

(4)

(4) (4) (4)

(5) (5)

(6)

(5)

(6)

(7)

(8)

(9)

I II III IV

V VI VII

C1

C2

C3

C4

C1

C2

C3

C4

Figure 2.7: Construction Process Diagram of Elf base on Table 2.9

In Figure 2.7, we number each node according to the construction order. It can
be observed that this order is a standard depth-first algorithm. Its characteristic is
that each recursion will start from the root node (1), first construct the left subtree,
first reach the left leaf node (4) in step IV, and then to the right leaf node (6) in

22 2. Background

step VI, until return to the root node (1). Then the right subtree is processed until
the last leaf node (9) in VII is constructed, and every time the path from the root
node to the leaf node is a complete tuple.

2.2.2 Linearization of Elf

The principle of linearization for Elf approach is an important foundation of this
thesis. In this chapter, we introduce the vertical linearization for the standard Elf.
The use of linearization is to enhance the query performance of OLAP, so that Elf is
linearized into an array of integer values in order to use an explicit memory layout
[BKSS17]. Based on Elf in Figure 2.7, we briefly introduce the memory layout of
Elf, the optimization method (i.e., the introduction of MonoList) and the linearized
memory layout structure after optimization.

2.2.2.1 Memory Layout based on Elf

In Figure 2.7 step VII is a complete Elf, which is constructed based on Table 2.8.
Assume that column values and pointers within this Elf are 64-bit integer values
[BKSS17]. We can show the linearized Elf from step VII in Figure 2.8. In the
previous chapter, we collectively referred to nodes in Elf as DimensionList. In order
to store nodes, we need to map each DimensionList here to an array.

0 [04] -1 [16] 1 [08] -2 [12] -0 [10]

-1

-0

-0 -0 -0 -1[14] [18] [20]T1 T3

T2

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9
（1） （2） （3）

（4） （5） （6） （7） （8）

（9）

Figure 2.8: Memory layout as an array of 64-bit integers (adapted from [BKSS17])

For example, for the element of the node (1) in Figure 2.7, which is the first Di-
mensionList L(1), we map it to two integers. In the memory layout of Figure 2.8,
the node (1) as the root node is stored at position 0 and contains two elements:
E(1), the value is 0, the pointer is 04, and use the format of [04] in the figure to
distinguish it from the value of the element. The second element is E(2), the value
is 1, and the pointer is 16. In the figure, the minus sign is used to identify the value
of E(2) to indicate that this element is the last element of the DimensionList L(1).
The elements in a DimensionList are adjacent in the memory layout. The purpose
of this design is because if a DimensionList is long enough, the number of distinct
elements in it is large, then scanning this list will have a significant improvement
in performance. The reason is that the elements in Elf’s nodes are ordered. In the
memory layout, the order and adjacent characteristics of elements can be used to
speed up the scan.

Pointers at position 1 and position 3, respectively, point to the next DimensionList
associated with the current element, that is, position 4 and position 16. From
Figure 2.7, we can observe that 0 in L(1) points to the left subtree and 1 points to
the right subtree. In the memory layout, it is mean that from position 4 (L(2)) to

2.2. Elf as Multi-Dimensional Index Structure 23

position 16 (L(7)), the entire left subtree is stored, and from position 16, the entire
right subtree is stored. This also conforms to the construction order of Elf, that is,
the order of the numbers (1 - 9) in Figure 2.7 completely corresponds to the order
of the DimensionList in the memory layout (L(1) - L(9)). In addition, for the last
column of data (C4), since there is no next dimension, the pointer will not be saved,
but the TID will be stored.

2.2.2.2 Optimization Methods

Optimization 1: Use a hash map on the first DimensionList

In a standard Elf, all values in the first DimensionList must be traversed until the
upper boundary of the interval defined on the first column is found. In order to solve
this bottleneck and ensure that Elf is always sensitive to the column. Broneske et
al. found that the three characteristics of the first DimensionList can be used to
store pointers in the form of a hash map, and the dimension value is used as the
hash graph value.

Denseness. Since dictionary compression of data is sequentially retained, there
exist all integer values between 0 and the maximum value of the column [Bro19].

Ordering. In the node of Elf, which is DimensionList, all the element values are
arranged in order.

Uniqueness. One of the advantages of the Elf structure is the elimination of prefix
redundancy, which means that nodes only contain distinct values of corresponding
dimensions. Only the first DimensionList contains all the distinct values of the first
column.

This optimization method can be intuitively shown in Figure 2.9. The upper part
is the Elf memory layout without hash map, and the lower part is the optimized
Elf with hash map. The position of the dimension value is marked with red. These
dimension values are used as hash map values. In other words, the position of the
layout below is equal to the corresponding dimension value. If the dimension value
does not exist, a null pointer can be stored at this position, indicating that the
dimension value does not exist. This optimization eliminates the bottleneck of the
first dimension column and only requires the original DimensionList half the space
[BKSS17, Bro19]. Since other DimensionList do not save all the distinct values of
the corresponding dimension, this method is only used for the first DimensionList.

Optimization 2: The introduction of MonoList

Broneske et al. found in experiments that along the path of the Elf structure, the
deeper the search path, the shorter the DimensionList [BKSS17]. That is, the closer
to the leaf node in Elf, the greater the probability that a DimensionList with only
one element appears. They display this issue for the TPC-H Lineitem table of scale
factor 100 with all 15 attributes resulting in a 15-level Elf in Figure 2.10 [BKSS17].
It can be easily observed from the Figure 2.10 that start from the dimension 11,
all the DimensionList (100%) contain only one entry, and they are connected by
pointers, which is more like a linked list. The prefix of the one-element DimensionList

24 2. Background

0 [P0] 1 [P1] 2 [P2] 3 [P3] 4 [P4]ELF[00]

0 1 2 3 4 5 6 7 8 9
（1）

5 [P5]

10 11

[P1] [P2] [P5]ELF[00]

0 1 2 3 4 5
（1）

[P0] [P3] [P4]

without	hash	map

with	hash	map

Figure 2.9: Hash-map property of the first DimensionList (adapted from [Bro19])

becomes unique, so there will be no more branches. In addition, each one-element
DimensionList still needs to store a pointer, which also increases the storage space
requirements of Elf.

Figure 2.10: Percentage of 1-element lists per dimension for the TPC-H Lineitem
table with scale factor 100 (from [BKSS17])

In order to overcome this deterioration, Broneske et al. introduced MonoList. In the
absence of prefix redundancy, the column values in the tuple will be stored adjacent
to each other, which similar to a row storage manner. Figure 2.11 is an Elf structure
optimized based on Figure 2.7. The gray DimensionList represents MonoList. It can
be observed from Figure 2.11 that the start dimension of MonoList is not fixed, for
example, L(3) starts from C2, which covers C2, C3 and C4. L(4) and L(5) start from
C3, they cover C3 and C4. Compared to 9 DimensionLists in Figure 2.7, the sum
of the number of DimensionLists and MonoLists in Figure 2.11 is only 5. From this
perspective, the introduction of MonoList reduces the unnecessary storage overhead
of Elf. To better illustrate this, we use the optimized memory layout as shown in
Figure 2.12 to explain.

Figure 2.12 shows the final memory layout of the Elf approach, which combines these
two optimization methods. In Figure 2.12, the first DimensionList only holds the
pointer, and the dimension value is used as the hash map value, which is equal to the
position number. The pointer with a minus sign in the figure indicates that the next
dimension is a MonoList. In the implementation process, we represent this minus
sign by setting the most significant bit for the pointer of the dimension element.
Compared with Figure 2.8, the optimized memory layout for Elf approach has a

2.2. Elf as Multi-Dimensional Index Structure 25

0 1

1 2 0

0 0

Column	C1

Column	C2

Column	C3		

Column	C4

(1)

(2) (5)

(3) (4)

1 0	T2

0	T31	T1 +

Figure 2.11: Elf with MonoLists (from [BKSS17])

significantly reduction in storage consumption, and the values in the later columns
have a better adjacency.

[02] -[12] 1 -[06] -2 -[09] 0 1

00

0

0 1

T1

T3 T2

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9
（1） （3）

（5）

（2） （4）

Figure 2.12: Final memory layout of the Elf approach (adapted from [BKSS17])

2.2.3 Partial Match Algorithm of Elf

In Section 2.1.2.2 four types of queries are briefly introduced. This section mainly
introduces partial match algorithm for standard Elf. The partial match query can be
regarded as part of the exact match query. The only difference is that the number of
columns involved in the partial match query is less than the total number of columns
in the table. Here, we separately discuss a single partial matching query and a group
of partial matching queries.

For a single query, used the standard Elf as the index structure. Due to verti-
cal linearization and prefix redundancy, all queries must start from the root node
regardless of whether the first dimension is in the query condition.

If the query condition contains the first dimension, because the first dimension in Elf
uses a hash graph, it can be directly mapped to the position of the first dimension
in Elf, so as to obtain the pointer of the next dimension. If the pointer is not a
null pointer, it means that the first dimension is matched successfully. If the query
value is not within the hash value range of the first dimension or the pointer is a
null pointer, the query does not match. If the value in the first dimension matches
successfully, then use the pointer to find the position of the next dimension and
repeat the above steps. Perform recursion until all conditions are matched, then
return TID.

If the first dimension is not involved in the query condition, this means that all
elements of the first dimension need to be recursively one by one until a path matches
the condition is found. Or until no path matches the query condition at the end.

For a set of queries, according to the characteristics of Elf, we can find the upper
and lower boundaries of the query values of the same dimension involved in these

26 2. Background

query conditions, that is, the maximum and minimum values. Use the window form
to indicate that it is [Rmin, Rmax]. Because of the order of the elements in the node,
after determining the upper and lower boundaries, it is possible to avoid traversing
the unnecessary paths.

2.3 Elf Variants

This chapter briefly introduces several variants of Elf. The main purpose of using
the variants is to support the final SIMD scanning algorithm. Before introducing
the Elf variant, a new variable needs to be introduced, namely Cutoffs. Cutoffs
are an additional data structure used for direct access to TID at an earlier time, it
only saves the cutoff-pointer. These pointers will not point to the data structure of
Elf but will point to a new data structure named Elf TIDs. In this data structure,
the TIDs of all tuples are saved. The order of TIDs is not the natural order in
Table 2.8, but the order of TIDs in the new table formed after Elf is constructed,
as in Table 2.9. This also means that if there is only one query condition for a
partial matching query, such as Listing 2.2, it can directly obtain the TID through
Cutoffs instead of continuing down until it reaches the leaf node to obtain the TID.
The Cutoffs has two sides, using Cutoffs will improve query performance, but in
storage consumption, Cutoffs also has some drawbacks, which will be explained in
subsequent chapters.

2.3.1 Elf64

Elf64 provides a standard implementation of Elf. If it is an Elf64 without Cutoffs,
its memory layout is the same as the figure, they only contain the value and the
pointer of the next dimension. If it is Elf64 with Cutoffs, we need to reserve the
space for cutoff-pointers for each element in the memory layout, we can illustrate
this with a picture. In Figure 2.13, we used the new data structure ELF TIDs for
Elf in Figure 2.11 and added TIDs.

[02] -[12] 1 -[06] -2 -[09]

0 1 000 0 1T1 T3 T2

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9
（1）

（3） （5）

T1 T2T3ELF_TIDs

0 1 2

[00] [02]
（2）

[00] [01]
（4）

Figure 2.13: Memory layout of the Elf approach with Cutoffs

Elf64 does not use a separate CUTOFFs data structure to store the cutoff-pointers
but reserves a place for it in the memory layout. As show in Figure 2.13, the
positions 1, 3, 6, and 9 in the memory layout store cutoff-pointers, which point
to the positions in ELF TID. In ELF TID, it saves all TIDs in the order of TID

2.3. Elf Variants 27

in Table 2.9. And it can be observed that because MonoList contains TID, only
the DimensionLists holds the cutoff-pointers. Each element in DimensionList only
saves the cutoff pointer of its corresponding leftmost leaf node. For example, the
DimensionList L(1) in Figure 2.7 contains two elements E(1) and E(2), where the
dimension below element E(1) has branches, which means that there are at least two
TIDs with an E(1) prefix, here are T1 and T3 respectively. They are adjacent in
ELF TID, so store the position of T1 means store the start position of the TIDs
prefixed by E(1). Its end position is the position of the cutoff-pointer stored by E(2).

2.3.2 Elf Separated

Elf separated is the basis of all Elf variables. In this chapter, we introduce how to
separate the standard Elf items. For a better explanation, we use an Elf which is
more complicated than in Figure 2.7. In Figure 2.14, we mark all MonoLists in gray.

0 1 2

1 2
0

0 1

0
1	T3

0
0	T1

0
1	T5

0 2 1
0	T4

1	T2 0	T6

Column	C1

Column	C2

Column	C3

Column	C4

（1）

（2）

（3）

（6）

（4）

（5）

（7）

（8） （9）

（10）

Figure 2.14: More complex Elf structure

The idea of separation is to divide the entries in Elf into five types, and then use
a separate data structure to store them. In the Elf memory layout, there are two
types of data, one is a value and the other is a pointer. The value saved by the
node can be divided into the values in DimensionList and MonoList. There are
also two types of pointers, one is a pointer to the next dimension, and the other
is a cutoff-pointer. According to these classifications, we can store these values in
different data structures.

1. Elf stores the dimension values of DimensionList.

2. MonoLists only stores the dimension value and TID of MonoList.

3. Elf_TIDs only stores TIDs.

4. Child_Pointers only stores the pointer of the DimensionList element.

5. CUTOFF_Pointers only stores the cutoff-pointer corresponding to the elements of
DimensionList.

In Figure 2.15, we show the Elf memory layout after the linearization and separation
for the Elf of Figure 2.14. Due to the use of a hash map, the dimension value of
the first dimension will not be stored in Elf, but from the second dimension. Mark
the dimension value with a minus sign to indicate the end of the DimensionList.

28 2. Background

0 1 2 3 4 5 6 7 8 9

Elf[00] 1 -2 0 -1 0 -2
(2) (6) (7)

0 1 2 3 4 5 6 7 8 9

Elf_TIDs[00] T3 T1 T5 T2 T6 T4

0 1 2 3 4 5 6 7 8 9

Child_Pointers[00] [00] -[06] [02] -[00]-[03] [04]

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3 0 0
(3) (4)

-T1 0 0 1 -T5

1 -T2 0 -T6 1 0 -T4

(5)

(8) (9) (10)MonoLists[10]

-[14]-[10]-[12]

0 1 2 3 4 5 6 7 8 9

Cutoff_Pointers[00] [00] [02] [03] [00] [01] [03] [05] [03] [04]

Figure 2.15: Elf Separated layout

MonoLists store all MonoLists individually, marking the end of MonoList with a
negative sign. For tuples with the same value and different TIDs, we only need to
store the value once, then store multiple TIDs, and set the most significant bit of
the last TID. Elf_TID stores TIDs, and its order is the TIDs order after building Elf.
Child_Pointers stores the pointer of DimensionList but does not include the cutoff-
pointers. In addition, because Child_Pointers contains the first DimensionList, its
storage space requirement is always greater than Elf. If we subtract the size of Elf
from the size of Child_Pointers, the result we get will be exactly the size of the first
dimension. Because Child_Pointers stores the pointer of the DimensionList, the
pointer with the minus sign means that the corresponding dimension value points to
a MonoList stored in MonoLists. The cutoff-pointer corresponding to the dimension
value in each DimensionList is stored in the CUTOFF_Pointers.

2.3.3 Elf Separated Length

In order to use the size of the DimensionList (except the first DimensionList), we
explicit store it at the front of each DimensionList in Elf instead of set the most
significant bit for the last dimension element of the DimensionList. For example,
DimensionList L(2) in Figure 2.15 contains two dimension elements, so its length
is 2. Mapping the most significant bit of the last element to the Elf is equivalent

2.3. Elf Variants 29

to using a negative sign for the last dimension element to indicate the end of the
DimensionList.

The purpose of this design is to adapt to the final variable of Elf - SIMD (Single
Instruction Multiple Data). The reason for using explicit lengths for SIMD will
be explained in the next section. This design needs to adjust the corresponding
data structure. Although only Elf has been redesigned here, the data structures
associated with Elf include Child_Pointers and CUTOFF_Pointers, and their data
structures also need to be adjusted. We show this design in the new data structure
in Figure 2.16.

0 1 2 3 4 5 6 7 8 9

Elf[00] 1 2 0 1 0 2
(2) (6) (7)

0 1 2 3 4 5 6 7 8 9

[00] -[06] [03] -[00]-[03] [06] -[14]

0 1 2 3 4 5 6 7 8 9

[00] [02] [03] [00] [01] [03] [05]

[03] [04]

Child_Pointers[00]

Cutoff_Pointers[00]

2 2 2

-[10]-[12]Child_Pointers[10]

Cutoff_Pointers[10]

Figure 2.16: Elf Separated length layout based on Figure 2.15

In Figure 2.16, the start position of each DimensionList in Elf stores the length
of DimensionList. This changes the position of all dimensional elements. Because
we use the position of the dimension element as the offset to get the position of
the pointer in Child_Pointers. Therefore, not only the position information of
DimensionList must be modified in Child_Pointers, but also a gap must be reserved
for the length of DimensionList.

2.3.4 Elf SIMD

SIMD (Single Instruction, Multiple Data) can copy multiple operands and pack
them into a set of instructions in large registers. In a synchronous manner, the
same instruction is executed at the same time. Take the addition instruction as
an example. After the SISD (Single instruction, Single data) CPU decodes the
addition instruction, the execution component first accesses the memory and obtains
the first operand; then accesses the memory again to obtain the second operand;
then the sum operation can be performed. However, in the SIMD CPU, several
execution components access the memory at the same time after the instruction is
decoded [ZR02], and all the operands are obtained at one time for calculation. This
feature makes SIMD particularly suitable for data-intensive operations.

Elf SIMD uses SIMD for the scanning algorithms in the Elf to take advantage of
data parallelism and accelerate their execution if necessary. This variant only pro-
vides an improvement on the query algorithm. It uses the Elf structure constructed

30 2. Background

by the Elf variant Elf Separated Length Offset. The content of this part is com-
prehensively introduced in Kai Wolf’s master’s thesis Datenparallele Selektionen auf
der multidimensionalen Indexstruktur Elf. At the same time, this part occupies a
small proportion in our task, so we only make a brief introduction.

2.4 Summary

This chapter introduces the basic principles of this work. We introduce the back-
ground of our thesis from two aspects. The first is the index structure. We in-
troduced the index structure by introducing the way of accessing data, and then
respectively explained the query type, the one-dimensional index structure and the
multi-dimensional index structure in detail. The second is Elf, the basis of our the-
sis. We first introduce the origin and thoughts of Elf. On this basis, we describe the
concept of Elf based on the tree structure. Then we introduced the basic memory
layout of Elf and its optimization methods, especially the optimization of lineariza-
tion. Since our contribution contains some improvements to the partial match query
algorithm, we give a brief introduction to the partial match query algorithm for the
Elf approach. Finally, based on these backgrounds, we introduced variants of the
Elf.

3. Implementation

After we introduced Elf’s background, we talked about our work and contributions.
In the previous chapters, we briefly mentioned the necessity of level order lineariza-
tion for Elf, especially the impact on Cutoffs. For the vertically linearized Elf, even
if the dimensions do not require Cutoffs, the Elf will still reserve space for Cutoffs
for all dimensions during the construction process. Secondly, it was found in the
evaluation work that it is beneficial to use level order linearization for some other
index structures (e.g., the Seg-Tree, FAST, ART, VAST) [Bro19]. In addition, due
to the characteristics of DFS, the Elf approach of vertical linearization cannot skip
unnecessary dimensions when executing queries (e.g., PartialMatch Query, Colum-
nColumn Query). Therefore, for Elf, whether it can benefit from using level order
linearization is a new research direction. In this regard, our task is to modify the
vertical linearization of the standard Elf to a level order linearization through a
new algorithm. In this chapter, we will introduce the implementation of level order
linearization in detail.

This chapter is divided into three parts. We introduced the conceptual model of hor-
izontal linearization in the first part, which demonstrated the concept and theory
of level order linearization for the Elf approach. The second part is the implemen-
tation. In this part, we introduce the algorithm and its code for constructing level
order linearization Elf. In the last part, we will introduce the new PartialMatch
query algorithm. This algorithm takes advantage of the characteristics of level order
linearization. In addition, in the next chapter, we will use this query algorithm for
evaluation.

3.1 Conceptual Model

In order to understand the work of level order linearization, we use a simple example
(i.e., Figure 2.11) to explain. In Section 2.2.2 we introduced the vertical linearization
of standard Elf, and we simplified this process into a way of sorting DimensionsLists
and MonoLists. After vertical linearization of Figure 2.11, the node sequence we
obtain is L(1), L(2), L(3), L(4), L(5). If we use level order linearization for the same

32 3. Implementation

Elf, the order we expect to obtain is L(1), L(2), L(5), L(3), L(4). We can observe that
the node order of Elf using level order linearization has changed. Our task is to
achieve this change.

The process of constructing Elf is also the process of linearization. Due to the
difference between the level order linearization algorithm (BFS) and the vertical
linearization algorithm (DFS), we cannot use recursion as the main algorithm in
level order linearization. So in simple terms, our task is to rewrite the standard Elf
construction algorithm to achieve level order linearization.

Before introducing the algorithm we implemented, we first introduce and compare
the DFS and BFS algorithms in the first section. Then we will introduce a conceptual
model based on the BFS algorithm. Finally, we will briefly introduce the advantages
and disadvantages of level order linearization that can be predicted in advance during
the design process. In addition, in order to better explain the details of level order
linearization, we will use a more complex Elf in the following chapters, that is, the
Elf shown in Figure 2.14.

3.1.1 Depth First Search and Breadth First Search

Both of Depth-First Search (DFS) and Breadth-First Search (BFS) are graph-based
search algorithms [VAQLMJ20]. Their purpose is to traverse all the vertices in the
graph. However, due to their different principles and implementation methods, they
are often used in different fields and purposes. Because Elf is a tree structure, in
this chapter we use the binary tree in Figure 3.1 to introduce the principles of DFS
and BFS, and the differences between them.

A

B C

D E F G

Figure 3.1: A simple binary tree

3.1.1.1 Depth First Search

The DFS algorithm will start from the root node of the tree and traverse longitu-
dinally along the direction of the left subtree until the leaf node is found. Then
backtrack to the previous node, and traverse the right subtree node until all reach-
able nodes are traversed. If we use DFS to traverse the tree in Figure 3.1, the order
of the nodes we get is A,B,D,E,C, F,G. DFS always traverses the nodes of the
tree along with the depth of the tree, searching the branches of the tree as deep as
possible, so we can also call this algorithm vertical linearization.

The key to implementing the DFS algorithm lies in backtracking (i.e., back to front,
tracing the way it has traveled). For this, we can use the Last In First Out (LIFO)

3.1. Conceptual Model 33

feature of the stack or use recursion to implement DFS. What we should know is
that the implementation of standard Elf linearization uses a recursive method.

1. Stack and Last-In-First-Out

The stack is a data structure in which data items are arranged in order, and data
items can only be inserted and deleted at one end (called the top of the stack). We
use push and pop to represent these two main principal operations. Push, which
adds an element to the collection, and pop, which removes the most recently added
element that was not yet removed. The order in which elements come off a stack
gives rise to its alternative name, LIFO. Additionally, a peek operation may give
access to the top without modifying the stack [KT07]. The name ”stack” for this
type of structure comes from the analogy to a set of physical items stacked on top
of each other. This structure makes it easy to take an item off the top of the stack,
while getting to an item deeper in the stack may require taking off multiple other
items first [CLRS09].

2. Recursion

Recursion is a way to solve problems. It usually converts a large and complex
problem layer by layer into a smaller problem similar to the original problem. Then
it iteratively calculates these small questions, and finally obtains the answer to the
original question. In programs, recursion solves such recursive problems by using
functions that call themselves from within their own code [Epp10]. Among the many
problems that people use recursion to solve, the Fibonacci sequence is one of the
most classic. Each item in this sequence starting from item 3 is equal to the sum of
the first two items. Mathematically, the Fibonacci sequence is defined by recursion
as follows [BG10, Bón02]:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n > 1, n ∈ N∗)

Algorithm 3.1: Fibonacci sequence implemented using recursion

Input: the n th term of the Fibonacci sequence
Output: the n th Fibonacci number

1 Function fib(n):
2 if n equals 0 then
3 return the first Fibonacci number 0;
4 else if n equals 1 then
5 return the second Fibonacci number 1;
6 else
7 return recursively call fib(n− 1) + fib(n− 2) and finally returns
8 the n th Fibonacci number;

9 End Function

We use recursion to implement the Fibonacci sequence in Algorithm 3.1. Suppose
we need to get the nth value in the Fibonacci sequence (the sequence counts from
0). If n < 2, the value of the sequence is fixed, they are 0, 1. If n > 1, because the
value of each item is equal to the sum of the previous two items, it calls itself within
the function to get the value of the first two items. If the value of n is large enough,
it will iteratively call itself until fib(2) is called. Then all the results are added

34 3. Implementation

retrospectively until the value of fib(n) is obtained. This process is a complete
recursion. When we use the DFS algorithm to traverse the tree in Figure 3.1, we
can simplify this process into three steps:

1. Visit root node A. Saved nodes:[A].

2. Visit the leftmost child node B, and perform a depth-first traversal of the
subtree with B as the root node until the rightmost leaf node of the B subtree
is visited. Saved nodes:[A→B] → [A→B→D→E].

3. Visit the child node C on the right, and perform a depth-first traversal of
the subtree with C as the root node until the rightmost leaf node of the C
subtree is visited. If there is still a subtree on the right side of node C, repeat
step 3. Saved nodes:[A→B→D→E→C] → [A→B→D→E→C→F→G].

Algorithm 3.2: A recursive implementation of DFS

Input: A vertex v of a graph G
Output: All vertices reachable from v labeled as visited

1 Procedure dfs(v):
2 label v as visited;
3 foreach vertex w adjacent to v do
4 if vertex w has not been visited then
5 recursively call dfs(w);
6 end

7 end

8 End Procedure

Recursion can be used to implement the process of DFS traversing the tree, and
the generated pseudo code is shown in Algorithm 3.2 (adapted from [GT06]). This
algorithm first visits vertex v and prints the node. Then it traverses the child
node w of v, if the node w exists and has not been visited, it processes the node
w recursively. This process continues until there are no unvisited nodes. Now we
discuss the space complexity and time complexity of DFS. Assume that the graph
or tree to be traversed by DFS has V vertices in total. Because the goal of the
DFS algorithm is to visit all nodes in the graph or tree and save each node once, its
space complexity is O(V). The time complexity of DFS is relatively complicated.
The process of DFS traversing the graph or tree is essentially the process of finding
the neighboring points of each vertex. The time it takes depends on the structure
of the storage node used. If we use the form of adjacency list for storage, because
each vertex needs to be searched once, T1 = O(V). In the search process, each edge
of the graph (E) or tree is accessed at least once, so T2 = O(E). The total time
complexity is O(|V | + |E|) [CLRS01a]. If we use the adjacency matrix for storage,
the time complexity required to find the adjacent point of each vertex is O(V), so
the total time complexity is O(|V |2).

3.1. Conceptual Model 35

3.1.1.2 Breadth First Search

Compared with DFS, BFS is easier to understand. BFS starts from the root node
and traverses the nodes of the tree (graph) along the width of the tree (graph). If
all nodes are visited, the algorithm stops. It uses the opposite strategy of DFS,
which instead explores the node branch as far as possible before being forced to
backtrack and expand other nodes [CLRS09]. The key for implementing the BFS
algorithm is replay. It is the opposite of backtracking. For example, we traverse
Figure 3.1 according to the BFS idea. We first traverse the root node A. Then
traverse all the child nodes B and C of A. In order to continue traversing the child
nodes of B and C, we need to review the vertices B and C that we have traversed
just now in order. So we can find the neighboring vertices D and E from the vertex
B; find the neighboring vertices F and G from the vertex C. The final vertex order
is A,B,C,D,E, F,G. The process of reviewing the traversed vertices in the order
of traversal is called replay.

We often use queues to implement BFS. This is similar to DFS, which implemented
using a stack (non-recursive way). A queue is a collection of entities that are main-
tained in a sequence. The operation of adding an element to the rear of the queue
is known as enqueue, and the operation of removing an element from the front is
known as dequeue. The operations of a queue make it a First In First Out (FIFO)
data structure [Dro12]. In a FIFO data structure, the first element added to the
queue will be the first one to be removed [Knu97].

Algorithm 3.3: BFS algorithm

Input: A vertex root of a graph G
Output: All vertices reachable from root labeled as visited

1 Procedure bfs(root):
2 let Q be a queue;
3 label root as visited;

// add root to Q;

4 Q.enqueue(root);
5 while Q is not empty do

// take the vertex v in Q and delete it from the Q;

6 v := Q.dequeue();
7 forall vertex w adjacent to v do
8 if w is not labeled as visited then
9 label w as visited;

// add w to Q;

10 Q.enqueue(w);

11 end

12 end

13 end

14 End Procedure

We show the pseudo-code that implements BFS in Algorithm 3.3 (adapted from
[CLRS01b]). We know from the code that the traversal starts from the root node.
First, we store the root node in the queue. Then we use a loop to process the

36 3. Implementation

nodes in the queue. Because the queue currently only contains the root node, in
the while loop, we first take out the root node and traverse all its adjacent nodes
(that is, all child nodes of the root node). These vertices are added to the queue in
turn until all the child nodes of the root node have been visited. Then continue to
loop through the newly added nodes in the queue until all vertices are marked as
visited. The time complexity can be expressed as O(|V | + |E|), since every vertex
and every edge will be explored in the worst case. |V | is the number of vertices
and |E| is the number of edges in the graph. Note that O(|E|) may vary between
O(1) and O(|V |2), depending on how sparse the input graph is [CLRS01a]. The
BFS algorithm also traverses all vertices and stores them, so its space complexity is
O(|V |).

3.1.1.3 Comparison and Summary

Through the analysis of these two algorithms, we will find that DFS and BFS are
the same in time complexity and space complexity. The difference between them
lies in the order of access to vertices [YW02]. Because the order of accessing vertices
is different, the data structures used to implement them are also different. Back-
tracking is the main idea of the DFS algorithm, so we can use stack and recursion
to implement it. The Replay is the core concept of BFS, so we use queues and loops
to implement it. Understanding the background of these two algorithms is helpful
to understand our tasks and contributions that will be introduced next.

3.1.2 Concept Design

After introducing the background of the BFS algorithm, we introduce the conceptual
design of level order linearization in this chapter. It explains how to construct a level
order linearized Elf through theoretical analysis.

TID C1 C2 C3 C4
T1 0 2 0 0

T2 2 0 0 1

T3 0 1 0 1

T4 2 1 1 0

T5 1 0 0 1

T6 2 0 2 0

Table 3.1: Complex example table

TID C1 C2 C3 C4
T3 0 1 0 1

T1 0 2 0 0

T5 1 0 0 1

T2 2 0 0 0

T6 2 0 2 0

T4 2 1 1 0

Table 3.2: Sorted complex example table

The Elf structure in Figure 2.14 is constructed by linearizing the data table in
Table 3.1. After we construct the Elf, the original data table has been sorted.
Finally, a new data table as shown in Table 3.2 is formed, which conforms to the
ordered node mentioned in Section 2.2.1.1. In the following chapters, we will use
these two tables for analysis. First, we will introduce the algorithms used in our
task, then conduct theoretical analysis and discuss the derived problems.

The implementation of level order linearization for Elf is based on the breadth-
first search algorithm. After introducing the DFS and BFS algorithms, we know

3.1. Conceptual Model 37

that the recursive method is no longer applicable. The Elf structure with width
as the search level will be constructed and traversed in units of dimensions (i.e.,
columns). Therefore, the process of constructing a level order linearized Elf can
also be regarded as a process of sequentially scanning each column of the data
table. As we introduced in the second chapter, the standard Elf uses a hash map
for the first dimension, which not only improves the performance of the Elf but
also reduces the storage space of the first dimension. In addition, whether we use
vertical linearization or level order linearization to construct an Elf, scanning the
first dimension (i.e., first column) is the first step. Therefore, as long as we maintain
the vertical linearization processing method for the first dimension, we do not need
to pay attention to the first dimension.

0 1 2

1 2 0 0 1	T5 0 1

0 1	T3 0 0	T1 0 2 1 0	T4

1	T2 0	T6

（1）

（2）

（3） （4）

（5） （6）

（7）

（8） （9）

（10）

Column	C1

Column	C2

Column	C3

Column	C4

Figure 3.2: Elf structure adjusted based on Figure 2.14

For the second dimension, since we cannot use recursive methods to implement level
order linearization, the process of constructing or traversing Elf does not require
backtracking. In addition, level order linearization retains the processing method
of vertical linearization for the first dimension. For all dimensions from the second
dimension to the last dimension, they can all use the same linearization method.
Therefore, for all dimensions except the first dimension, we use a separate loop.
The entire first dimension is treated as a dimension column, so there is no spe-
cial case. However, due to the introduction of MonoList, starting from the second
dimension, there are multiple possibilities for the composition of each dimension.
We can use combination pairs to represent these possibilities: 〈DimensionLists〉,
〈MonoLists〉, 〈DimensionLists,MonoLists〉. For example, in Figure 3.2, there
is only one DimensionList L1 in the first dimension C1. The second dimension
C2 and third dimension C3 have both DimensionLists (L2, L6, L7) and MonoLists
(L5, L3, L4, L10). The fourth dimension C4 has only MonoLists (L8, L9).

According to the definition of MonoList, when a MonoList is retrieved during the
construction of Elf, we store the entire MonoList in the corresponding data struc-
ture. We use vertical linearization and level order linearization to construct Elf
for Table 3.1, and show the memory layout of the Elf approach formed by these
linearizations in Figure 3.3 and Figure 3.4. In Figure 3.2, L5 will be the first Mono-
List stored when the Elf is constructed in a level order linearized manner. The
constructed Elf stores MonoLists in the order of dimensions. For MonoLists in the
same dimension, Elf stores them in order from left to right. Therefore, the order of
the MonoList stored in the Elf constructed by level order linearization in Figure 3.3

38 3. Implementation

is L5, L3, L4, L10, L8, L9. However, in Figure 3.4, the order of MonoList stored in Elf
constructed by vertical linearization is L3, L4, L5, L8, L9, L10.

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9

1 2 0 0 1

T5 0 1 0 1 T3 0 0

T1 0 2 1 0 T4 1 T2

0 T6

[03] -[07]

ELF[30]

[11]
（1） （2） （5）

（6） （3） （4）

（7） （10） （8）

（9）

-[15] -[18]

[21] -[25]

-[28] -[30]

Figure 3.3: The memory layout of the Elf constructed by level order linearization of
Table 3.1 (the first dimension and the MonoLists are marked in gray)

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9

1 2

0 1

0 1 T3

0 0 T1

0 2 11 T2 0 T6

[03]

ELF[30]

[17]
（1） （2）

（6）

（3）

（4）

（7） （10）（8） （9）

[21]

-[29]

0 0 1 T5

0 T4

（5）

-[07] -[10]-[13]

-[25] -[27]

Figure 3.4: The memory layout of the Elf constructed by vertical linearization of
Table 3.1 (the first dimension and the MonoLists are marked in gray)

We can observe that the order of the MonoLists stored in standard Elf is consistent
with the order of all leaf nodes in Figure 5 from left to right. In contrast, the
MonoLists stored in the Elf constructed by level order linearization are out of order.
However, it still has an observable law. In Figure 3.2, the MonoList L5 in the second
dimension C2 contains 3 elements and a TID. All MonoLists in the third dimension
C3 contains 2 elements and a TID. In addition, all MonoLists in the fourth dimension
C4 contain 1 Element and a TID. Therefore, for an N-dimensional Elf, if there is at
least one MonoList in each dimension except the first dimension, then the length of
the MonoList on the M -th dimension is N −M + 1 (M > 1). Its value range is
[N − 1, 1]. This rule has no special meaning for vertical linearization. However, it is
very important for level order linearization, because the length of the MonoList is an
important indicator. From Figure 3.3, we observe that the length of the MonoLists
decreases in the order of storage (the MonoLists in the same dimension have the
same length). When we use other variants of the Elf to save the MonoLists, we can
more easily observe this rule. In addition, because the MonoLists are stored in the

3.1. Conceptual Model 39

specified data structure, if we can use the rule that the number of elements in the
MonoLists decreases in the order of storage, it will make our processing of MonoList
easier.

3.1.3 Elf Variants

In this chapter, we will introduce the different Elf variants constructed by level order
linearization (e.g., Elf64 Level, Elf Level Separated). We have already introduced
the background of Elf variants in Section 2.3. Therefore, we will directly introduce
and analyze their memory layout.

3.1.3.1 Elf64 Level

Figure 3.3 shows the memory layout of Elf64 Level without Cutoffs. Figure 3.5
shows the memory layout of Elf64 Level with Cutoffs. In Figure 3.5 we mark the
entire first dimension and all the MonoLists with a gray background. In addition,
the blue font indicates the cutoff-pointer. By comparing the memory layout of Elf64
in Figure 3.4 and the memory layout of Elf64 Level in Figure 3.3, We can deduce
several features about the level order linearization.

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9

1 2[06] -[12]

ELF[30]

（1） （2）

（5）

Elf_TIDs[00]

0 1 2 3 4 5 6 7 8 9

T3 T1 T2 T6 T4

[00] [02] [03] [00]

[01] 0 0 1 0 1

0 1 0 0 0

（6）

（3） （4） （7）

[03]

[05]

-[22]

T3 T1

-[25]

2[03] [04] 1 0 T4 1 T2

T6

[28]

-[34]

0

-[37]

ELF[40]

-[39]

[16]

（8） （9）（10）

T5

T5

Figure 3.5: Memory layout of the Elf64 Level with Cutoffs based on Figure 3.2

Feature 1: The pointers in the first dimension of the level order linearized Elf are
more densely distributed than those of the vertical linearized Elf. For example, the
Elf[00] in Figure 3.3 and Figure 3.4 both point to Elf[03], the Elf[01] in Figure 3.3
(level order linearization) points to Elf[07], but the same element in Figure 3.4
(vertical linearization) points to Elf[13]. The reason for this situation is that Elf64
first stores the entire subtree, but Elf64 Level first stores the entire dimension.

Feature 2: We can quickly determine the start pointer and end pointer of a certain
dimension. For example, in Figure 3.5, the start position of the first dimension is
Elf[00]. It points to Elf[06], which is the start position of the second dimension.
Therefore, the position range of the first dimension can be simplified to [00, 06).
Similarly, the range of the second dimension is [06, 22). This also means that the
pointers stored in the first element in the first DimensionList of each dimension point

40 3. Implementation

to the start position of the next dimension. With this feature, we can also quickly
determine the coordinate range of a certain dimension.

SELECT * FROM Table WHERE C1 < 2;

Listing 3.1: Partial range query based on Table 3.1

Feature 3: The order of TIDs in Elf TIDs is different from the order of traversing
MonoLists. The Elf TIDs in Figure 3.5 are exactly the same as the Elf TIDs gen-
erated by standard Elf. Because the order of such TIDs conforms to the order of
the leaf nodes from left to right in the Elf structure. Many queries can benefit from
this order of TIDs. For example, we perform the partial range query in Listing 3.1
in Table 3.1. We use the interval to express C1 < 2, which is [0, 2). Then we use
the closed interval [0, 1] instead of [0, 2). From Table 3.2, we can directly find the
qualified TIDs: T3, T1, T5. If we perform this partial range query on the Elf64 Level
with Cutoffs in Figure 3.5. We only need to traverse its first dimension to find its
upper boundary Elf[00] and lower boundary Elf[02]. Then we determine the range
of the corresponding cutoff-pointers, which is ([00], [02]). Finally, we take out all
TIDs in this range from the data structure Elf TIDs and store them in the result
vector. From the Elf TIDs in Figure 3.5, we get the TIDs in the range of ([00], [02]):
T3, T1, T5. This result is consistent with the expected result.

Elf_TIDs[00]

0 1 2 3 4 5 6 7 8 9

T3 T1 T2 T6T4T5

Figure 3.6: Elf TIDs that stores TIDs in the order of MonoLists in Figure 3.5

When we use the data structure Elf TIDs shown in Figure 3.6, the order of TIDs in
this data structure is equivalent to the order of traversing the MonoLists in the level
order linearization process. Then, the cutoff-pointer of Elf[00] is Elf TIDs[01], and
the cutoff-pointer of Elf[02] is Elf TIDs[00]. Their corresponding TIDs in this range
only contain T5 and T3, so we cannot use these two cutoff-pointers to simplify the
query process. Therefore, when we implement the level order linearization algorithm,
we will preserve the order of TIDs in Figure 3.5 in a special way.

Feature 4: It can be observed from the memory layout of Elf64 Level that the
position coordinates (pointer) stored in its DimensionLists are increasing, rather
than out of order as shown in Figure 3.4. For example, Elf64 Level without Cutoffs in
Figure 3.3, where the position coordinates stored in all DimensionLists are arranged
in order [03], [07], [11], [15], [18], [21], [25], [28], [30]. The reason for this feature is
the same as for feature 1. They are all because level order linearization constructs
Elf in the order of dimensions.

3.1.3.2 Elf Level Separated

We have introduced the first variant of the standard Elf in Section 2.3.2. In this chap-
ter, we will introduce Elf Level Separated, which is the first variant of level order
linearization Elf. In Figure 3.7 we show the memory layout of Elf Level Separated

3.1. Conceptual Model 41

constructed by level order linearization and its cutoffs=N (N is the total number of
dimensions).

Compared with Figure 2.15, we can more intuitively observe that the order of stor-
age nodes has changed. At the same time, in the data structure called MonoLists,
we have a deeper understanding of the length of the MonoLists mentioned in Sec-
tion 3.1.2. In Figure 3.7, we use red lines to identify the elements in each MonoList.
We can find that those MonoLists with the same number of elements belong to
the same dimension. For example, L3, L4 and L10 belong to the third dimension
C3 in Figure 3.2. Therefore, this storage order in MonoLists implies information
about dimensions. Reasonable use of this information is very helpful for us to skip
unselected predicates.

0 1 2 3 4 5 6 7 8 9

1 -2 0 -1 0 -2
(2) (6) (7)

0 1 2 3 4 5 6 7 8 9

Elf_TIDs[00] T3 T1 T5 T2 T6 T4

0 1 2 3 4 5 6 7 8 9

Child_Pointers[00] [00] -[00] [02] -[04]-[07] [04]

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3 0 0
(3) (4)

-T10 0 1 -T5

1 -T2 0 -T61 0 -T4

(5)

(8) (9)(10)
MonoLists[10]

-[10]-[13]-[15]

0 1 2 3 4 5 6 7 8 9

Cutoff_Pointers[00] [00] [02] [03] [00] [01] [03] [05] [03] [04]

Elf[00]

Figure 3.7: Memory layout of Elf64 Level Separated based on Table 3.1

Feature: Unselected dimensions will not reserve space for Cutoffs. This feature
only applies to Elf Separated variants. We provide a new Elf structure on the left
side of Figure 3.8. According to this structure, we show the memory layout of Cut-
off pointers of Elf Level Separated and Elf Separated on the right side of Figure 3.8.
In these memory layouts, we only add cutoff-pointers for the first two dimensions.
We can observe from the figure that there are gaps (for L3) in Elf Separated. This
means that it needs to reserve space of Cutoffs pointers for all DimensionLists.

42 3. Implementation

Elf Level Separated eliminates this gap. It only provides space for the dimensions
that need to add cutoff-pointers.

0 1 2 3 4 5 6 7 8 9

Cutoff_Pointers[00]

0 1 2 3 4 5 6 7 8 9

Cutoff_Pointers[00]

0 1

0 1

1 2

0 1

1 2

0	T1 0	T2 0	T3 0	T4

0 1 2 3

Elf_TIDs[00] T1 T2 T3 T4

[00]

[00]

[03]

[03]

[00] [02] [03]
0	0	T5 0	1	T6

4 5
T5 T6

[04]

[00] [02] [03] [04]

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8) (9)

(10) (11)

(1)

(1)

(2)

(2)

(7)

(3) (7)

Elf_Level_Separated	↑

Elf_Separated	↑

Figure 3.8: Cutoff Pointer of Elf Level Separated and Elf Separated with cutoffs=2

3.1.3.3 Elf Level Separated Length

Elf Level Separated Length has not changed much in the memory layout compared
to the standard Elf variant. The only difference is still the different traversal or-
der caused by different algorithms. We show in Figure 3.9 the memory layout of
Elf Level Separated Length constructed by level order linearization. Because the
memory layout of Elf_TID and MonoLists has not changed, we no longer show
them in the figure.

0 1 2 3 4 5 6 7 8 9

Elf[00] 1 2 0 1 0 2
(2) (6) (7)

0 1 2 3 4 5 6 7 8 9

[00] -[00] [02] -[04]-[07] [04] -[10]

0 1 2 3 4 5 6 7 8 9

[00] [02] [03] [00] [01] [03] [05]

[03] [04]

Child_Pointers[00]

Cutoff_Pointers[00]

2 2 2

-[13]-[15]Child_Pointers[10]

Cutoff_Pointers[10]

Figure 3.9: Memory layout of Elf64 Level Separated Length based on Table 3.1

3.1.4 Theoretical Advantages and Disadvantages

According to the conceptual design and the research on the variants, we put forward
the possible advantages and disadvantages of the Elf constructed with horizontal
linearization in theory. Then in the evaluation stage, we verify these theoretical
conjectures in practice.

3.2. Algorithm of Level Order Linearization 43

Advantages

1. Space advantage for Elf Separated. This involves the space issue of Cutoffs
that we have been talking about. In the Elf constructed by level order lin-
earization, since the tree structure is traversed in the BFS manner, we can
only reserve space for Cutoffs in the DimensionLists before the n-th dimension
(cutoffs=n, n≤N, N is the total number of dimensions) instead of reserving
space for all DimensionList. This not only avoids the waste of space but also
eliminates the gap problem of Cutoffs.

2. Retrieve directly from the dimension corresponding to the first selection pred-
icate. Due to the characteristics of horizontal linearization, we can easily find
the start and end positions of a certain dimension. Therefore, it is different
from vertical linearization in that not all query operations must start from the
first dimension. For example, when querying, if our first selection predicate
corresponds to the third dimension, then in the Elf constructed by Level order
linearization, it can be retrieved directly from the third dimension. For the
dimensions before the third dimension, we only need to deal with the possible
MonoLists.

Disadvantages

1. In terms of construction time, although the theoretical space-time complex-
ity of DFS and BFS are the same, because the algorithm and data structure
may not be implemented completely in accordance with the standard algo-
rithm of BFS, there are still some differences in the specific implementation.
For level order linearization, we need to traverse and process each dimension
(column). Perhaps this process is still weaker than the recursive method of
vertical linearization.

2. In terms of query time, level order linearization may not perform as well as
vertical linearization due to differences in data tables and selection predicates.
For example, if the mono-column selection predicate only involves the first
dimension, then the characteristics of level order linearization are not partic-
ularly prominent. However, these are only speculations. In fact, even if there
are some special cases, the performance of level order linearization is similar
to that of vertical linearization.

These advantages and disadvantages are only based on theory, they are some points
that we can consider in the design stage. We will perform reasonable evaluations to
verify these points after implementing the level order linearization algorithm.

3.2 Algorithm of Level Order Linearization

In the previous section, we have introduced the conceptual design and theoretical
background of level order linearization. In this section, we will introduce the imple-
mentation and code of level order linearization.

44 3. Implementation

3.2.1 Implementation

In this section, we first introduce the construction algorithm of level order lineariza-
tion by dividing Table 3.1. Then we introduce how to preserve the same storage
order of TIDs as vertical linearization during the level order linearization process.
Finally, we briefly introduce some special methods we used in the process of imple-
menting other Elf variants.

3.2.1.1 Algorithm Design

When we process a data table, the data table will be cached in a temporary two-
dimensional vector in units of columns. Then, we scan each column. We first sort
the scanned columns until all the column elements are in order. For example, after
we sort the first column, a new table will be formed. All the same values in the first
column can be regarded as a common prefix, which also means that the number of
unique values in the first column is equal to the number of prefixes. If the second
dimension of the same prefix has different unique values, then the prefix points to
a DimensionList. The existence of different values in the second dimension with
the same prefix can also be called existence branch. If there are no branches in all
dimensions with the same prefix, they are MonoLists. After understanding these
backgrounds, we began to analyze Table 3.1. First, we complete the first step of the
algorithm, which is to sort the first column C1 of the table. We show in Table 3.3 the
new table formed after sorting the first column. In order to show the arrangement
of DimensionLists and MonoLists on each column more clearly, we use bold red to
identify DimensionLists from Table 3.3 to Table 3.6 and use black bold to identify
MonoLists.

TID C1 C2 C3 C4
T1 0 2 0 1

T3 0 1 0 0

T5 1 0 0 1

T2 2 0 0 0

T4 2 0 2 0

T6 2 1 1 0

Table 3.3: The table formed after sorting
the first column based on Table 3.1

TID C1 C2 C3 C4
T3 0 1 0 1

T1 0 2 0 0

T5 1 0 0 1

T2 2 0 0 0

T6 2 0 2 0

T4 2 1 1 0

Table 3.4: The table formed after sorting
the second column based on Table 3.3

1. Processes the First Dimension

After we temporarily store the table in a two-dimensional vector, we can initialize
the Elf size according to the total size of the data volume. Because for Elf64 Level,
all data must be stored in the same data structure Elf, so the initial size of Elf can be
preset to the size of the entire data table containing TIDs. Then we process the data
in the first column (first dimension) after sorting. From Table 3.3, we can obtain
three distinct values, which are 0, 1, and 2. Since we do not change the processing
method for the first dimension, we still use the hash map to store the relevant data of

3.2. Algorithm of Level Order Linearization 45

the first dimension. Therefore, in this step, we determine the spatial size of the first
dimension. This means that we have also determined the starting position of the
second dimension (Elf[03] in Figure 3.10) and store this position information under
the first element of the first dimension (Elf[00] in Figure 3.10). In Figure 3.10, what
we have marked with red boxes are the three dimension values of the first dimension.
The gray background is used to fill the space of the first dimension in the Elf.

ELF[00]

0 1 2 3 4 5 6 7 8 9

[03]
（1）

Figure 3.10: The process of constructing the first dimension of Elf64 Level (1)

We know that in the first dimension, the hash map value is equal to the corresponding
dimension value. We need to store pointers in the first dimension. Because these
pointers are based on the construction of the second dimension, while we deal with
the first dimension, we need to process the dimension value of the second dimension.
Sorting is still the first step when we deal with new dimensions. We sorted all the
dimension values of the first dimension as a whole. However, for other dimensions,
we first need to partition according to its prefix. Then we sort the dimension values
in each partition separately. Table 3.4 is the new table formed after we sort C2 in
this way. In addition, when we use the dimension value in C1 as a prefix, we can
divide the second column C2 into three partitions: prefix 0 - 〈T3, T1〉, prefix 1 - 〈T5〉
and prefix 2 - 〈T2, T6T4〉. According to the definition of the DimensionList and the
MonoList, we know that the partitions prefixed with 0 and 2 have different dimension
values in C2. Therefore, the dimension values 0 and 2 in the first dimension point to
DimensionLists. Since there is no branch in the partition prefixed by the dimension
value 1 of the first dimension, the dimension value 1 points to a MonoList. Their
relationship is clearly shown in column C1 and column C2 in Figure 3.2.

ELF[00]

ELF[10]

0 1 2 3 4 5 6 7 8 9

1 2 0 0 1

T5 0 1

（2） （5）

（6）

[03] -[07] -[15][11]
（1）

Figure 3.11: The process of constructing the first dimension of Elf64 Level (2)

After the sorting is complete, our next step is to add the unique values of all par-
titions in the second dimension to the Elf in the order of the prefix. We show in
Figure 3.11 the memory layout after adding the dimension value of the second di-
mension. Because all the DimensionLists (L2, L6) and MonoLists (L5) in the second
dimension have been stored in the Elf, we can obtain the corresponding pointer
(-[07], [11]) to store in the first dimension. At the same time, we can also get the
space size of the second dimension and add the start pointer of the third dimension
to Elf[04]. We can find that if we want to add the complete data (i.e., space size
and pointer) of the first dimension to the Elf, we need to process the data in the
first and second columns of the data table at the same time.

46 3. Implementation

Whether we deal with the first dimension or the second dimension, their common
feature is that we must traverse each of their rows. This is a key point to realize
the level order linearization algorithm. Because our processing method for the first
column of all data tables is fixed, we can observe the law when it adds the dimension
value of the second dimension to the Elf. For example, from C1 we can get three
dimension values: 0, 1, and 2. We need to partition C2 based on these prefixes. The
number of rows in these partitions is 0 (2 rows), 1 (1 row) and 2 (3 rows). Their
sum is also the total number of rows in the data table.

If we can save the information about the number of these rows in the order of
prefixes, we can deal with them according to the number of rows when processing
the second dimension, because these rows have their own prefixes. For example, we
use a temporary vector Temp to store the number of rows: Temp = [2, 1, 3]. When
we process C2, we take the data in Temp in order, we can know that the first two
rows in Table 3.3 have the same prefix 0. Then, the second data of Temp is 1, we
use a variable rowSum to save the calculated number of rows, rowSum = 2 + 1,
which is the third row. Therefore, rowSum[n] = Temp[0] +Temp[1] + ...+Temp[n]
(n < total number of rows). With this vector, we can directly obtain the range of
rows under the same prefix without comparing the prefix information of C1.

2. Processes the Second Dimension

When we deal with the second dimension, the biggest difference between it and the
first dimension is that the second dimension is composed of several DimensionLists
and several MonoLists. We partitioned the second dimension by the dimension
values of the first dimension. Each partition is either DimensionList or MonoList.
The criterion for determining the type of each partition is that we sort each partition
of C2. If there are different dimension values in the partition, then the partition is
DimensionList. If there is only one dimension value in the partition, there are two
cases. If the partition contains only one row, then the partition must be a MonoList.
The second case is that if there are multiple rows in the partition, then we perform
branch determination. If there is a branch in the later dimension, the partition is
a DimensionList. Otherwise, there are multiple MonoLists. We store related row
information in the temporary vector Temp C2 according to whether the partition is
DimensionList or MonoList. For example, we sort the partitions of C2:

1. Temp[0] = 2, we directly sort the second column of the first two rows T3

and T5 of Table 3.3. We found that this partition meets the criteria of the
DimensionList. So we store the number of rows (1 and 1) contained in these
two dimension values, but because this partition is a DimensionList, we need to
mark the last entry of it. We set the last 1 through the bitwise OR operation.
Therefore, the data of the first partition we save in the Temp C2 is [1, 1(L)],
which means that the first row of the data table is the starting point of the
first DimensionList in the second dimension, and the second row is the end
point of this DimensionList, L represents the last entry mask.

2. Temp[1] = 1, which means that this partition has only one row, which meets
the standard of MonoList. Because we use the bitwise OR operation identi-
fier as a MonoList, and then store it in Temp C2 as [1, 1(L), 1(M)], and M
represents the Mono Mask.

3.2. Algorithm of Level Order Linearization 47

3. Temp[2] = 3, the new partition contains three rows. As shown in Table 3.4,
after we sort them, the partition meets the standard of DimensionList. It has
two dimension values 0 and 1. The dimension value 0 involves two rows, and
1 involves only one row, so it is stored in Temp C2 as [1, 1(L), 1(M), 2, 1(L)].

1 1

12 3

1 2 1

Temp[00]

Temp_C2[00]

[0] [1] [2]

[0] [1] [2] [3] [4]

Figure 3.12: The memory layout of the vector Temp and Temp C2 generated based
on Table 3.4

In the implementation, we only use one temporary vector to store information about
the number of these rows. We will clean up the vector in each loop, and then add the
data about the number of rows in the next column to the vector. However, for the
convenience of explanation, we use its own temporary vector for each column in this
chapter. Next, we analyze the existing two temporary vectors Temp and Temp C2.
We show the memory layout of these two vectors in Figure 3.12. From the figure,
we can observe that the value of Temp[0] is 2, which represents two rows in the
data table. When we deal with the second dimension, we need the value of Temp to
determine the range of each partition on C2, that is, we need to split the elements
of Temp[n] when Temp[n] > 1, so Temp[0] will be split into two vector elements
Temp C2[0] and Temp C2[1] with both values 1. We can simplify this relationship
to:

• Temp[0] = Temp C2[0] + Temp C2[1]

• Temp[1] = Temp C2[2]

• Temp[2] = Temp C2[3] + Temp C2[4]

In Figure 3.11, we add the dimension values in the partitions into the Elf according
to the order of the partitions in the second column. Whenever a complete partition
is added to the Elf, we can set the pointer for the first dimension until all partitions
in the second dimension are added to the Elf. Similarly, if we want to set pointers
for the second dimension in Elf, we need to use the vector value of Temp C2 to
process the third dimension, and add the dimension value in the third dimension to
the Elf. Next, we begin to deal with the third and fourth dimensions.

3. Processes the Third and Fourth Dimensions

From the size of Temp C2, we know that the third column C3 is divided into 5
partitions. Temp C2 = [1, 1(L), 1(M), 2, 1(L)]. Since we use the number of rows
as the vector value, the value range of all vector values is the closed interval [1, N]
(N is the total number of rows in the data table). The minimum value is 1, which
represents a row in the data table. The vector values not marked with M in C2 are all
part of the DimensionList. For example, Temp C2[0] and Temp C2[1] together form
a DimensionList. However, because their respective partitions in C3 only contain one

48 3. Implementation

TID C1 C2 C3 C4
T3 0 1 0 1

T1 0 2 0 0

T5 1 0 0 1

T2 2 0 0 0

T6 2 0 2 0

T4 2 1 1 0

Table 3.5: The table formed after sorting
the third column based on Table 3.4

TID C1 C2 C3 C4
T3 0 1 0 1

T1 0 2 0 0

T5 1 0 0 1

T2 2 0 0 0

T6 2 0 2 0

T4 2 1 1 0

Table 3.6: The table formed after sorting
the fourth column based on Table 3.5

row, starting from C3, these two rows are MonoLists. We add the corresponding data
in Temp C3, which is [1(M), 1(M)]. In addition, Temp C2[2] (1(M)) already has
the identifier M , which means that when we are processing the second dimension,
Temp C2[2] has been processed in the first dimension as a MonoList, so we can
ignore it. In order to be able to distinguish it from the new MonoList in the latter
dimension, we use the bitwise OR operation to make a new set of this vector value,
which is 1(M EX). When we encounter the M EX mark again, we can skip it
directly. Therefore, we save it in Temp C3, which is [1(M), 1(M), 1(M EX)]. We
can know from Table 3.5 that the fourth partition of C3 is a DimensionList. Then,
we split Temp C2[3] (2) into Temp C3[3] and Temp C3[4]. Since Temp C2[4] has
the same state as Temp C2[0], it is a MonoList. Therefore, the vector Temp C3[3]
after we added is [1(M), 1(M), 1(M EX), 1, 1(L), 1(M)].

ELF[00]

ELF[10]

0 1 2 3 4 5 6 7 8 9

1 2 0 0 1

T5 0 1

（2） （5）

（6）

[03] -[07] -[15][11]
（1）

ELF[20]

0 1 T3 0 0

T1 0 2 1 0 T4

（3） （4）

（7） （10）

-[18]

[21] -[25]

-[28]

Figure 3.13: The process of constructing the first dimension of Elf64 Level (3)

We showed in Figure 3.13 the memory layout of Elf after we processed the third
dimension. Compared with Figure 3.11, the second dimension has been constructed
(the pointer insertion is completed), and all the DimensionLists and MonoLists of
the third dimension have been added, only the pointers of its DimensionLists have
not been set. In order to add pointers to the third dimension, we use the same
method to process the fourth dimension. Temp C3 divides the fourth column in
Table 3.6 into 6 partitions, and each partition contains only one row. For the Mono-
List that has been processed, we use M EX to set. Therefore, the Temp C4 we get
is [1(M EX), 1(M EX), 1(M EX), 1(M), 1(M), 1(M EX)]. However, since C4 is
already the last dimension, the vector value with the mark M can also be set to
the mark M EX through the bitwise OR operation. Therefore, the final saved
Temp C4 is: [1(M EX), 1(M EX), 1(M EX), 1(M EX), 1(M EX), 1(M EX)].
At the same time, the final Elf memory layout is shown in Figure 3.3. At this

3.2. Algorithm of Level Order Linearization 49

point, the construction of Elf64 Level is complete. The sign of its completion is
when all the values in our temporary vector are 1(M EX).

3.2.1.2 Algorithms related to Cutoffs

We have introduced the construction algorithm of level order linearization for Elf
without Cutoffs. When Elf introduces Cutoffs, in addition to reserving space for
Cutoffs in the data structure, we also need to store TIDs in Elf TIDs. We have
already discussed the different storage order of TIDs in Elf TIDs in Section 3.1.3.1
with Figure 3.6. Now we will introduce how to preserve the order of TIDs in vertical
linearization during the construction of level order linearization.

When we introduced the construction algorithm in Section 3.2.1.1, we used tempo-
rary vectors to store information about the number of rows spanned by the dimension
value. If we add up all the items in the vector, its sum is equal to the total number
of rows in the data table. From this feature, we can introduce Length. Except for
the first dimension, every time it loops, all rows in the next column will be traversed.
We use Length in each loop to record the number of rows we are processing. We
know that whenever we find a MonoList, the position of this row in the table will no
longer change. As in Table 3.4, we find the first MonoList whose TID is T5. Then
we compare the position of T5 in Table 3.5 and Table 3.6, we will find that this
position has been fixed. Because the size of Elf TIDs is equal to the total number
of rows in the data table. Therefore, when we find a MonoList, we can map the
number of rows recorded in Length to Elf TIDs, and save the TID of the MonoList
in the corresponding position in Elf TIDs.

Length TID Map MonoList?

1 T3 [00] N

2 T1 [01] N

3 T5 [02] Y

4 T2 [03] N

5 T6 [04] N

6 T4 [05] N

0 1 3 4 5 6 7 8 92
Elf_TIDs[00] T5

Figure 3.14: The process of adding TIDs to Elf TIDs

We show the process of adding T5 to Elf TIDs in Figure 3.14. This process is
based on Table 3.4. Correspondingly, Temp C2 = [1, 1(L), 1(M), 2, 1(L)]. From the
term of this temporary vector, we can observe that in the process of processing the
second dimension, we have found the first MonoList (1(M)). The length of this item
is 1 + 1(L) + 1(M), which is equal to 3. We map it to Elf TIDs, and its position
is Elf TIDs[02]. Then we only need to put T5 in this position. Whenever we find
MonoList, we use its Length to determine the position in Elf TIDs and add TID in
it. However, even if Elf TIDs is empty, we can still set the cutoff-pointers for the
dimension values of each DimensionList.

As shown in Figure 3.15, we add the cutoff-pointers to the Elf structure and use the
red font to identify it. Taking the first dimension as an example, when we process

50 3. Implementation

the first dimension, we will get a temporary vector Temp = [2, 1, 3]. The size of
Temp is 3, which is the number of dimension values in the first dimension. We
use the Length in Figure 3.14 to represent the three partitions divided by Temp:
2 - 〈1, 2〉, 1 - 〈3〉, 3 - 〈4, 5, 6〉. We take the first Length of each partition, which
is 1, 3 and 4. These Lengths correspond to positions 0, 2 and 3 on Elf TIDs in
Figure 3.15. Therefore, we can directly use the Length to set the cutoff-pointers for
the DimensionList without having to wait until all TIDs are added to Elf TIDs. The
Length can also be used to set a pointer for the dimension column, skip the MonoList
that has been processed, and serve as an indicator of the end of the construction.

0	[0] 1	[2] 2	[3]

1	[0] 2	[1] 0 0 1	T5 0	[3] 1	[5]

0 1	T3 0 0	T1 0	[3] 2	[4] 1 0	T4

1	T2 0	T6

（1）

（2）

（3） （4）

（5） （6）

（7）

（8） （9）

（10）

Column	C1

Column	C2

Column	C3

Column	C4

Elf_TIDs[00]
0 1 2 3 4 5 6 7 8 9
T3 T1 T2 T6 T4T5

Figure 3.15: Elf structure with Cutoffs and memory layout of Elf TIDs

3.2.1.3 Examples of extreme scenarios

After introducing the construction algorithm of level order linearization, we propose
two possible extreme scenarios based on this algorithm.

1. There is no DimensionList from the nth dimension

When the nth dimension is processed, the construction is complete (0 < n < N , N
is the total number of dimensions). Because the level order linearization algorithm
we implemented is not like vertical linearization, it does not need to go from the
root node to the leaf node every time. This provides the possibility to complete
the construction after processing certain dimensions near the front. For example,
the data table of lineitem.tbl has 15 columns. After sorting, starting from the 12th
dimension, all are MonoLists, which means that the construction of the level order
linearization ends when the processing reaches the 13th dimension. Because the 12th
dimension is not the last dimension, the value in the temporary vector still contains
1(M) at this time, so we need to perform the bitwise OR operation for all 1(M) in
the 13th dimension to set the bit to 1(M EX). When the values in the vector are
all 1(M EX), we don’t have to scan the remaining dimensions.

2. There is a DimensionList in the N − 1th dimension

In the construction phase, for level order linearization, the other extreme scenario
is that there are DimensionLists in the N − 1 th dimension (N is the total number

3.2. Algorithm of Level Order Linearization 51

of dimensions, n ∈ [1, N]). In addition, if there is only one DimensionList in this
dimension, a lot of time will be used to scan the temporary vector from the second
dimension to the N−1th dimension. Because the level order linearization algorithm
is different from the recursive algorithm, each time it loops through the entire column
of data in the data table. Although the theoretical time complexity of DFS and
BFS algorithms is the same, due to the influence of MonoList and DimensionList,
the construction time of level order linearization is slightly inferior in theory.

3.2.2 Introduction of Pseudo-Code

After introducing the algorithm we designed, in this chapter, we introduce our im-
plementation code. We use pseudo-code to illustrate the construction process of level
order linearization in detail. For existing algorithms, such as reading data tables,
storing the data of the data table in a multi-dimensional vector, etc., we will not
introduce them. For the level order linearization algorithm, we split it into three
parts. The first part is the linearization of the first dimension, the second part is
the linearization of the remaining dimensions (1 < Dim ≤ N , N is the total num-
ber of dimensions), and the third part is the linearization of the DimensionList. In
addition, we will also selectively introduce the implementation code of Elf variants.

3.2.2.1 Linearize the First Dimension

After we read the data table and store the compressed and encoded data in the
Store. We can start the work of linearizing the data table. In Algorithm 3.4
linearizeFirstDim, we use pseudo-code to describe the process of linearizing
the first dimension.

First, we pass the vector member store of the object s into the function as a param-
eter. Then we initialize the variables (Lines 1-2). In order to keep the pseudo code
concise, we did not list all the variables. Here, we introduce the key variables that
appear in the code. For example, nextDimTemp (see line 22) is a vector whose size
is equal to the total number of rows in the data table. We use it to store the number
of rows associated with each dimension value in each column. It is also the temporary
vector mentioned in Section 3.2.1.1. Then, data_array is a two-dimensional vec-
tor, and the data items it stores can be expressed as data_array[TID][value].
We dump the data in the vector store into data_array row by row. After it
saves all the data, we sort data_array[TID][0], that is, sort the first value of
each row, which is equivalent to sorting the first dimension (Lines 3-7). We take the
first value of the first dimension after sorting. Then, we reset the size of the Elf,
because we use the hash map for the first dimension, so we only need to get the
maximum value of the first dimension to set the size of the Elf (Lines 8-11).

We start to retrieve the rows involved in each dimension value in the first dimension.
This method compares the first data in each row with the data stored in cur until
it finds the first different dimension value. Therefore, the first value of all rows
involved during this period is the same dimension value. We store these rows in
a two-dimensional vector temp, and analyze these rows in vector temp, using the
dimension value of the first dimension as the prefix to determine whether it has
branches in other dimensions (Lines 13-15). If there is a branch, it means that there

52 3. Implementation

Algorithm 3.4: Linearize the first dimension

Input: The vector store saves the data of the data table in a row-store
manner

Output: An Elf containing the complete first dimension and dimension
values of the second dimension.

1 Procedure linearizeFirstDim(&store[]):
2 initialization;
3 vector〈TID〈tid type, value type〉〉 data array;
4 for i ← 0 to NUM POINTS do

// fetch a row of data from the store each time the loop;

5 data array[i] ← &store[i*NUM DIM] to &store[(i+1)*NUM DIM];

6 end
7 sort(data array[].begin().value[0], data array[].end().value[0]);
8 cur ← data array.front().value[0];
9 pos ← cur;

10 Elf.resize(max dims[0] + 1)*getStepSize(0);
11 begin ← 0;
12 for i ← 1 to NUM POINTS do

// get the dimension value of the first dimension;

13 if cur != data array[i].value[0]) then
14 temp[] ← &data array.at(begin) to i - begin;
15 if hasBranchOut(temp[], 0) then
16 setPointer(pos, 0, Elf.size());
17 if Cutoffs > 0 then
18 setCutoffPointer(pos, 0, Elf TID.size());
19 end
20 linearizeDimList(pos, temp[], 1);

21 end
22 else
23 nextDimTemp[] ← ((i-begin) | VECTOR MONO MASK);
24 setPointer(pos, 0, Elf.size() | MONO LIST MASK);
25 if Cutoffs > 0 then
26 setCutoffPointer(pos, 0, Elf TID.size());
27 end
28 linearizeMonoList(temp[], 1);

29 end

30 end
31 begin ← i;
32 cur ← data array[i].value[0];
33 pos ← cur;

34 end
// linearize remaining dimension;

35 linearizeRemainDim(data array[]);
36 Elf TID ← NUM POINTS;

37 End Procedure

3.2. Algorithm of Level Order Linearization 53

is a DimensionList in the following dimension. If there is no branch, then these rows
are MonoLists.

If there is a branch, because the first dimension uses a hash map, we can use the
function setPointer to directly set the pointer for it. Then, if the use of Cutoffs
is allowed, we call the function setCutoffPointer to set the cutoffs pointer for
the first dimension. Since we have set the size for the first dimension in Elf, we can
add the pointer of the start position of the second dimension to the first dimension.
In order to continue setting the pointer for the first dimension, we need to deal
with the DimensionList. This means that we need to call linearizeDimList to
add the dimension value of the DimensionList in the second dimension to the Elf
(Lines 15-21). We will analyze linearizeDimList in the next section. If there
is no branch, we process these rows as MonoList. First, we store the number of
rows in the temporary vector nextDimTemp, and perform a bitwise OR operation
on the data and the bit mask VECTOR_MONO_MASK to identify the type of these
rows as MonoList. Then we set the pointers of MonoList and cutoff-pointers for
the first dimension. Finally, we use the function linearizeMonoList to add
MonoList to the second dimension in Elf. After processing this dimension value,
we use a loop to process the remaining dimension values (Lines 22-34). After the
first dimension is processed, we get the Elf as shown in Figure 3.11. Since the con-
struction method of level order linearization for the first dimension is not applicable
to other dimensions, we put the processing of other dimensions in another function
linearizeRemainDim.

3.2.2.2 Linearize the Remaining Dimensions

Starting from the second dimension, the level order linearization process for all
dimensions is the same. We demonstrated the linearization algorithm for the re-
maining dimensions in Algorithm 3.5 linearizeRemainDim. We pass the vector
data array as a parameter to the function linearizeRemainDim. This vector
stores the data of the data table and the first dimension and the second dimension
of these data have been sorted.

First of all, we are still initializing variables, such as the dimension, the number
of rows to be processed beginPos, and the starting number of rows for the next
prefix realPos. A nested loop is the main implementation algorithm, the outer
loop is the loop of the dimensions, and the inner loop is the traversal processing
for each dimension. Because each time through the loop, the data table will be
rearranged, and a new temporary vector nextDimTemp will be generated, which
stores the latest information about the number of rows. Each time the loop ends,
the data table will be rearranged and a new temporary vector will be generated,
which stores the latest information about the number of rows. Therefore, before
we deal with the new dimension, we use a new local vector dimTemp to store the
data in vector nextDimTemp. Then we use vector dimTemp to process the new
dimensions and vector nextDimTemp to store new data about the number of rows
(Lines 1-6). In the inner loop, we use iterators to get the data from dimTemp.
Since in the temporary vector we use several different bit masks to identify the
MonoList(M), the last dimension value of the DimensionList(L) and the processed
MonoList (M EX), we need to remove all the masks to get real data (Lines 6-10).

54 3. Implementation

Algorithm 3.5: Linearize the remaining dimensions

Input: A vector that stores rows with the common prefix data array
Output: A complete Elf constructed by level order linearization

1 Procedure linearizeRemainDim(&data array[]):
2 initialization;
3 for dimension ← 1 to NUM DIM do
4 dimTemp[].clear();
5 dimTemp[].swap(nextDimTemp[]);

// Traverse each column by number of rows;

6 for subSpan ← dimTemp[].begin() to dimTemp[].end() do
7 pos = *subSpan;
8 if isLastEntry(pos) || isMono(pos) || isMonoEx(pos) then
9 pos ← pos & ALL MASK RECOVER;

10 end
11 realPos ← beginPos + pos;
12 temp[] ← &data array[beginPos] to &data array[pos];

// Processing DimensionLists;

13 if pos!=1 && hasBranchOut(temp[], dimension) then
14 linearizeDimList(*subSpan, temp[], dimension+1);
15 end
16 else

// Skip processed MonoList;

17 if *subSpan & MONO MASK EX then
18 ++count;
19 nextDimTemp[] ← *subSpan;

20 end
// Process the MonoList processed in the previous dimension

and set it to MONO_MASK_EX;

21 else if *subSpan & MONO MASK then
22 linearizeDimList(*subSpan, temp[], dimension+1);
23 end

// Process the MonoList;

24 else
25 setPointer(curPointer, dimensionm, Elf.size());
26 nextDimTemp[] ← *subspa | MONO MASK;
27 linearizeMonoList(temp[], dimension+1);

28 end

29 end
30 beginPos ← realPos;

31 end
// Construction completion indicators;

32 if count == dimTemp[].size() then
33 break;
34 end

35 end

36 End Procedure

3.2. Algorithm of Level Order Linearization 55

Then, we perform the corresponding level order linearization according to the types
of these lines. If the number of rows is greater than 1 and there are branches, it
means that there are unprocessed DimensionLists in these rows. We execute function
linearizeDimList to add DimensionLists (Lines 12-15). However, if the number
of rows is 1, there are several states, such as the Monolist that has been processed
before the previous dimension, that is, the number of rows marked with M EX, we
just need to skip it (Lines 17-20). If it is the MonoList processed in the previous
dimension, that is, the number of rows marked with M , we need to process it in
linearizeDimList so that it is marked as M EX and provides position information
for setting the pointer (Lines 21-22). If the number of rows is 1, but there is no
mask related to MonoList, it also means that the row is a MonoList starting from
the current dimension (Lines 25-28). We determine whether the construction is
complete by counting the number of rows marked with M EX (see Line 18 and
Line 32-34). When the value of count is equal to the total number of rows in the
data table, it means that all columns have been processed. There are no longer any
unprocessed DimensionLists and MonoLists. At the same time, this represents that
the construction of level order linearization has been completed.

3.2.2.3 Linearize the DimensionList

In the process of constructing Elf with level order linearization, it is very important
to deal with DimensionLists reasonably. It involves the problem that for the same
dimension the time of adding dimension value and adding pointer is not synchro-
nized. When we add the dimension value of the n-th dimension (n ∈ [2, N], N is
the total number of dimensions), we can only set the pointer for the DimensionLists
of the n-1 th dimension. In addition, the process of adding the dimension value
of the n+1 th dimension to Elf belongs to work of the next loop. Therefore, we
introduce how to implement this algorithm in this chapter and show its pseudo-code
in Algorithm 3.6.

The three parameters we need to pass in the function are position, data array and
dim. The parameter position is the value obtained directly from the temporary vec-
tor nextDimTemp, and this value has not been processed by removing the mask.
We use this raw data to determine whether these rows are MonoLists or Dimension-
Lists. The parameter data array stores the row data of those rows corresponding
to the position. The parameter dim represents the dimension we will deal with. We
divide the pseudo-code in Algorithm 3.6 into three parts according to their func-
tions. The first part is the initialization, in this part, we mainly pre-process the
necessary and qualified data. The second part is to add the dimension value of the
second dimension into the Elf to set the pointer for the first dimension. The third
part is to set the pointer for the DimensionList of the previous dimension. Next, we
will analyze this algorithm comprehensively.

If we want to set a pointer for the n-th dimension, then we need to add all the
DimensionLists and MonoLists in the n+ 1 dimension to the Elf, and since it is not
possible to set pointers for these DimensionLists at the same time, we only add the
dimension values of all DimensionLists in the n+ 1 dimension to the Elf. Therefore,
when we initialize variables, we need a vector dimList to store the starting row
number of each dimension value of the DimensionList (see Lines 10).

56 3. Implementation

Algorithm 3.6: Linearize the DimensionList

Input: Number of rows (with mask) position,
A vector that stores rows with the common prefix data array,
Number of the dimension to be processed dim

Output: A complete Elf constructed by level order linearization
1 Procedure linearizeDimList(position, &data array[], dim):
2 initialization;
3 if !isMonoMask(position) || dim - 1 == FIRST DIM then
4 sort(data array[].begin().value[dim], data array[].end().value[dim]);
5 begin ← 0 ;
6 cur ← data array[0].value[dim];
7 for i ← 1u to data array[].size() do
8 if cur != data array[i].value[dim] then
9 dimList[] ← begin;

10 begin ← i;
11 cur ← data array[i].value[dim];

12 end

13 end
14 dimList[] ← begin;

15 end
16 if dim - 1 == FIRST DIM then
17 Elf.resize(ElfStartSize + dimList.size() * getStepSize(dim));
18 for j ← 0u to dimList.size() do
19 listLength ← dimList[j + 1] - dimList[j];
20 nextDimTemp[] ← listLength;
21 setValue(curValuePos, data array[dimList[j]].value[dim]);
22 if cutoffs > dim then
23 setCutoffPointer(curValue, dim, tidSize);

24 end

25 else
26 if position & MONO MASK then
27 ++count;
28 nextDimTemp[] ← position | MONO MASK EX;

29 else
30 setPointer(curPointerPos, dim - 1, position);
31 Elf.resize(ElfStartSize + dimList.size() * getStepSize(dim));
32 for j ← 0u to dimList.size() do
33 nextDimTemp[] ← listLength;
34 setValue(curValuePos, data array[dimList[j].value[dim]]);
35 if cutoffs > dim then
36 setCutoffPointer(curValuePos, dim, tidLength);

37 end

38 end

39 end

40 End Procedure

3.2. Algorithm of Level Order Linearization 57

After initializing the variables, we first retrieve the dimension values of the dim-th
dimension in the rows stored in the data_array. This process is similar to how
we deal with the dimension values of the first dimension. First, we sort the values of
the dim-th column in data_array. After sorting, the rows in data_array have
been rearranged in the order of the dim-th column. We use the variable cur to
store the first dimension value of the dim-th column after sorting. In addition, we
use the variable begin to record the start position of these dimension values (row
number in data_array). Whenever we find a new dimension value, we store the
information of its starting position and use cur to save this new dimension value
in order to find the next dimension value. After we find all the dimension values,
the start position of all dimension values is saved in dimList. These position
data are also the main reference data when we add data to the temporary vector
nextDimTemp (Lines 3-16).

After we get all the dimension values of a certain DimensionList in the dim-th col-
umn, we need to expand the size of the Elf first (see Line 17), and then add these
dimension values to the Elf (see Line 21). Due to the special situation of the first
dimension, we set the pointer for the first dimension in the function linearize-
FirstDim. In the function linearizeDimList, we only add the dimension value
of the second dimension to Elf and save the corresponding number of rows to the
temporary vector NextDimTemp (see Line 19-20). In addition, if we need to set
the cutoff-pointers for the current dimension dim, we only need to set the value of
cutoffs to be greater than dim. In line 19, we show the calculation method of
the data stored in the temporary vector NextDimTemp, which is the calculation
method of Length mentioned in Section 3.2.1.2. It is the number of rows involved
in a dimension value. The result obtained by subtracting the starting position of
the current dimension value from the starting position of the next dimension value
is the number of rows.

When dim> 1, we need to perform a set operation for the MonoList processed in
the previous dimension (dim−1), so that the row of the MonoList is marked with
M EX (Lines 26-29). Then, when we process the next dimension (dim+1), we can
skip this line directly by identifying the M EX identifier. In line 27, we use the
global variable count to count the number of new M EX identifiers. The advantage
of this is that in the temporary vector nextDimTemp, once all the values become
1(M EX), the construction is completed immediately instead of scanning the vector
again. For the DimensionList, we first set the pointer for the DimensionList of the
(dim−1)-th dimension in the Elf, and then add the dimension value of the dim-th
dimension to the Elf to set the pointer for the next DimensionList of the (dim−1)-th
dimension (Lines 30-40).

3.2.2.4 Construction Algorithm in Elf Variant

The main difference between Elf’s variant and Elf is that instead of using only
one data structure to store all the data, the Elf variant store the data in different
data structures. For example, Elfs, MonoLists, Elf_TIDs store numeric data,
Child_Pointers, Cutoff_Pointers store pointer data. We only need to replace the
data structure in the implementation code of Elf64 to complete the implementation
of Elf variants. Since the algorithm is the same, we only show the part that replaced
the data structure and some key statements in Algorithm 3.7.

58 3. Implementation

Algorithm 3.7: Linearize the first dimension for the Elf variants

Input: The vector store saves the data of the data table in a row-store
manner

Output: Elf the DimensionLists of the second dimension,
MonoLists all the monoLists of the second dimension,
Child_Pointers all the pointer of the first dimension,
Cutoff_Pointers cutoff-pointers of the first dimension,
Elf_TIDs TIDs of MonoLists in the second dimension

1 Procedure linearizeFirstDim(&store[]):
2 initialization;
3 for i ← 1 to NUM POINTS do
4 if cur != data array[i].value[0]) then
5 if hasBranchOut(temp[], 0) then
6 Child Pointers[pos] ← Elf.size();
7 if Cutoffs > 0 then
8 Cutoff Pointers[pos] ← Elf TIDs.size();
9 end

10 linearizeDimList(pos, temp[], 1);

11 end
12 else
13 nextDimTemp[] ← ((i-begin) | VECTOR MONO MASK);
14 Child Pointers[pos] ← MonoLists.size() |

MONO LIST MASK;
15 if Cutoffs > 0 then
16 Cutoff Pointers[pos] ← Elf TIDs.size();
17 end
18 linearizeMonoList(temp[], 1);

19 end

20 end

21 end

22 End Procedure

3.3. Partial Match Query Algorithm 59

Compared to Algorithm 3.4, we can observe that for the Elf variant, we do not call
the function to add the corresponding data to the Elf, but directly store the data in
the corresponding data structure. For example, when we store the cutoff-pointers
and the DimensionList pointer, we directly use the corresponding data structure
Cutoff_Pointers and Child_Pointers to store the data (see Line 6 and 8). For
algorithm linearizeRemainDim and algorithm linearizeDimList, we also
store the data in the corresponding data structure to complete the construction of
the Elf variant.

3.3 Partial Match Query Algorithm

After we analyze the construction algorithm, we introduce our other contribution in
this chapter, that is, Partial Match Query Algorithm (PM). We redesigned the PM
algorithm based on the features of Elf variants constructed by level order lineariza-
tion. In addition, we have implemented PM algorithms for Elf variants (e.g. Sep-
arated, Separated Length). The new PM algorithm does not apply to Elf64 Level,
the reason we will explain in the following section. Before we introduce the pseudo
code, we first introduce the algorithm design and compare it with the PM algo-
rithm adapted to the Elf constructed by vertical linearization. Then, we present an
important problem that we found during the design process and discuss its solution.

3.3.1 Partial Match Query Algorithm Design

In Section 3.1.3.1, we analyzed and summarized the features of Elf64 Level. Com-
bined with our analysis of the Elf constructed by level order linearization, we expect
that the new PM algorithm can effectively utilize the horizontal traversal charac-
teristics of BFS. In addition, we have briefly introduced the four query types in
Section 2.1.2.2, from which we can summarize the scope of the selection predicate
of PM query. For a data table with N columns, if the total number of selection
predicates given in the query statement is less than N , the query statement is a PM
query. The selection predicates appearing in a query statement are often randomly
combined and it is possible that there is no selection predicate on the first column.
What we expect to achieve by using the characteristics of horizontal traversal is that
we can directly jump to the first predicate for PM queries. Therefore, we can first
determine that the two functions provided by the new PM algorithm are:

1. When there is a selection predicate in the first column, the PM algorithm
starts to match from the first dimension;

2. When there is no selection predicate in the first column, the PM algorithm
directly jumps to the first selection predicate for the query.

We use these two functions as the start point for designing a new PM algorithm.
When there is a selection predicate in the first column, we will retrieve matches
from the first dimension. This is consistent with the PM algorithm of vertical
linearization. The query statement is divided into mono-column select predicate
query and multi-column select predicate query. Therefore, if the predicate involves

60 3. Implementation

the first column and the query is a one-dimensional query, we only traverse the
first column. At this point, we can use Cutoffs to quickly obtain query results. If
we don’t use Cutoffs, we perform normal traversal retrieval, which also applies to
the case of multi-column selection predicate queries. When there is no predicate in
the first column, whether it is a mono-column selection predicate query or a multi-
column selection predicate query, we directly jump to the dimension where the first
predicate is located and start searching. However, for vertical linearization, due to
the algorithm limitation of DFS, it still needs to traverse and retrieve from the first
dimension.

The new PM algorithm does not apply to Elf64 Level

ELF[00]

ELF[10]

ELF[20]

0 1 2 3 4 5 6 7 8 9

0 1 T3 0 0

T1 0 2 1 0 T4 1 T2

0 T6ELF[30]

（3） （4）

（7） （10） （8）

（9）

-[28] -[30]

Figure 3.16: The memory layout of Elf64 Level starting from C3

Combined with the analysis of the Elf and Elf variants constructed by level order
linearization in the Section 3.1.2, we know that for the MonoList L5 of the second
dimension in Figure 3.2, we directly store it in the second dimension of Elf (see
Figure 3.3). If the first predicate starts from the third dimension (C3) in Figure 3.2,
for Elf64 Level, according to the new PM algorithm, we jump directly to the Elf[15]
in Figure 3.16, so we will not be able to match the MonoList L5 stored in the
second dimension. If we want to determine the position of L5, we must retrieve the
first dimension to get the pointer. Therefore, Elf64 Level will use the general PM
algorithm, that is, it always starts retrieval from the first dimension.

0 1 2 3 4 5 6 7 8 9

0 -2
(7)

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3 0 0
(3) (4)

-T10 0 1 -T5

1 -T2 0 -T61 0 -T4

(5)

(8) (9)(10)
MonoLists[10]

Elf[00]

Figure 3.17: The memory layout of Elf Level Separated starting from C3

For variants of Elf64 level, such as Elf level Separated, it stores MonoLists in a
separate data structure. The above situation becomes solvable. We can handle
MonoLists and DimensionLists separately. As shown in Figure 3.17, we only need

3.3. Partial Match Query Algorithm 61

to deal with L5 in the data structure MonoLists, without having to traverse C1 and
C2 completely. If the dimension of the first predicate contains several DimensionLists
and MonoLists or only DimensionLists, we first process all the MonoLists before this
dimension, and then directly jump to this dimension. If this dimension only contains
MonoLists, we only need to retrieve all MonoLists. Therefore, effective retrieval of
the data structure MonoLists has become one of the focuses of our design.

3.3.2 MonoLists in Elf level separated

In Section 3.1.3.2, we analyze the data structure MonoLists of Elf Level Separated.
We can quickly determine the start position of each dimension, but we cannot quickly
determine the start position of each dimension in MonoLists, so we need to design
a method to quickly confirm the dimension in the process of retrieving MonoLists.
For example, when the first predicate is C3, we need to process all the MonoLists
of the second dimension in the data structure. The challenge at this time is that
we have to confirm when this process ends. Obviously, when it traverses to the first
MonoList of the third dimension, this process can end. However, how to effectively
obtain this indicator is of great significance for us to realize the new PM algorithm.
We have proposed three possible solutions to discuss which one is more efficient.

3.3.2.1 Completely Traverse

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3 0 0
(3) (4)

-T10 0 1 -T5

1 -T2 0 -T61 0 -T4

(5)

(8) (9)(10)
MonoLists[10]

Length	>	2 Length	=	2
P1 P2

Figure 3.18: Method of processing MonoLists (1) - Completely Traverse

This method requires us to traverse all MonoLists from the front. In this process, we
traverse each MonoList and record the number of data in each MonoList. The way
to get this value is that we traverse a MonoList and start counting when we read
the first value. When we read the first TID, the count ends. The data we get is the
length of this MonoList. We apply the same method for other MonoLists. In the
process of traversal, if we find that the MonoList currently traversed is shorter than
the length of MonoLists in the first predicate, we can stop the traversal process. It
means that we have reached the next dimension. The length of the MonoList in the
next dimension is always shorter than the length of the MonoList in the predicate.
In addition, the MonoLists of the next dimension does not need to be processed in
advance.

As shown in Figure 3.18, we still use C3 as the first predicate of the PM query.
According to the algorithm in Section 3.2.1.1, the length of the MonoList on the
M -th dimension is N −M + 1(M > 1). Therefore, the length of the MonoList on

62 3. Implementation

C3 is 2 (value of 4 − 3 + 1). When we traverse the MonoLists, if we encounter the
first MonoList whose length is not greater than 2 (P2 in Figure 3.18), we can stop.
The last position we traversed in Figure 3.18 is MonoLists[06].

3.3.2.2 First visited MonoList

In the process of level order linearization construction, we use a temporary vector
to store the pointer of the first MonoList we encounter in each dimension. We can
use this method to indirectly get the start pointer of each dimension in MonoLists.

0 1 2

1 2 0 0 1	T5 0 1

0 1	T3 0 0	T1 0 2 1 0	T4

1	T2 0	T6

（1）

（2）

（3） （4）

（5） （6）

（7）

（8） （9）

（10）

Column	C1

Column	C2

Column	C3

Column	C4

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3 0 0
(3) (4)

-T10 0 1 -T5

1 -T2 0 -T61 0 -T4

(5)

(8) (9)(10)
MonoLists[10]

00 04 13monoTemp[00]

0 1 2

Figure 3.19: Method of processing MonoLists (2) - First visited MonoList

As shown in Figure 3.19, we store the position of the first MonoList in each dimension
in a temporary vector monoTemp during the construction process. Since the entire
first dimension constitutes a large DimensionList, there is no MonoList in the first
dimension. Therefore, monoTemp[01] in the temporary vector is the start pointer of
MonoLists on C3. In the process of matching the MonoLists of the second dimension,
the last position we visit in MonoLists is MonoLists[04] and the first two values in
the monoTemp.

3.3.2.3 MonoList with Length

This method is similar to the way of Elf Level Separated Length stores Dimension-
Lists. We add sizes of the MonoList to the front of each MonoList. This will tell
us until which MonoList we have to check. As shown in Figure 3.20, we added the
size of each MonoList to the memory layout of MonoLists based on Figure 3.7. In
this way, we can determine where we terminate the search directly by comparing the
first value of each MonoList. For example, we find that MonoLists[00]>2, so the
position of this MonoLists is before C3, and then we compare with MonoLists[05],
we can find that its value is 2, which means we have reached C3. This process can
end. In addition, we can also directly determine the position of the data we want
to match in the DimensionList through the Length. For example, we know that the
length of MonoList on C3 is 2. When we traverse to MonoLists[00], the length of
L5 we get is 3, so the position of the data we need to match in this MonoList (L5)
is MonoLists[1+(3-2)], that is, MonoLists[02].

3.3. Partial Match Query Algorithm 63

0 1 2 3 4 5 6 7 8 9

MonoLists[00] 0 1 -T3

0 0

(3) (4)

-T1

0 0 1 -T5

1 -T2

0 -T6

1 0 -T4

(5)

(8)

(9)

(10)
MonoLists[10]

Length	>	2 Length	=	2P1 P2

3 2 2

2 1

MonoLists[20] 1

Figure 3.20: Method of processing MonoLists (3) - MonoList with Length

3.3.2.4 Compare and Summary

For the first method, there is no need for extra auxiliary methods. We only need
to compare the length of the MonoList during the traversal process, but we must
traverse one more MonoList each time to ensure that it meets the termination condi-
tion. For the second method, we need an additional vector to store the start pointer
of MonoLists. In addition, during the construction process, we need to determine
whether it is the first MonoList in the dimension when we add the MonoList to
MonoLists. In terms of function, it only provides a start pointer. For the third
method, we only need to add the size of the MonoList in front of each MonoList,
which is equivalent to simplifying the first method. It can also quickly determine the
start pointer of the dimension in MonoLists without traversing the entire MonoLists
because we can skip MonoList according to the length. In addition, we can also use
this length to directly process a value in the MonoList. Therefore, after we compared
these three methods, we chose MonoList with length as the solution.

3.3.3 Introduction of Pseudo-Code

In this chapter, we introduce the Pseudo-Code of the new PM algorithm based on
the query type. For a query, its predicate either contains the first dimension or does
not contain it.

1. If the query predicate contains the first dimension, there are two cases: mono-
column select predicate query (one-dimensional query) and multi-column se-
lect predicate query (multi-dimensional query). We respectively introduce the
algorithms for handling these two types of queries.

2. If the query predicate does not contain the first dimension, there are also two
cases. The first case is that the first selection predicate in the Elf variant con-
tains DimensionLists. The second case is that the first selection predicate only
contains MonoLists. Both of these cases involve the processing of MonoLists.
Therefore, we will first introduce the algorithm for processing MonoLists with
different cases, and then introduce the algorithm for processing DimensionLists
with the first case.

64 3. Implementation

In addition, we use each type of query as the title of the algorithm. For example, for a
multi-dimensional query whose predicate contains the first dimension, we named the
section title as the first dimension as the first selection predicate. Correspondingly,
there is only one predicate for a one-dimensional query whose predicate contains
the first dimension. In order to indicate that the algorithm is for a one-dimensional
query, we named its section name as the first dimension as the last dimension.
Our introduction to each query type algorithm is based on the order from the first
dimension to the last dimension. For example, we process the first dimension first,
then the nth dimension, and finally the n+1th dimension, etc.

3.3.3.1 The First Dimension as Last Selected Predicate

In Algorithm 3.8 we showed the algorithm firstDimAsLastSelected. When
the first dimension is used as the predicate in a mono-column selection predicate,
we use this algorithm to traverse the data on the first dimension.

Algorithm 3.8: PartialMatch algorithm for the first dimension (1)

Input: A class, which contain information about the query data query,
Scope of cutoffs cutoffs

Output: A vector that stores all TIDs that meet the query conditions
resultTIDs

1 Function firstDimAsLastSelected(cutoffs, &query[]):
2 if cutoffs > FIRST DIM then
3 if lastSelected == FIRST DIM then
4 lower ← max(query.lowerBound[0], minDims[0]);
5 upper ← min(query.upperBound[0], maxDims[0]);
6 while !getPointer(lower, 0) && lower ≤ upper do
7 lower ← lower + 1;
8 end
9 if lower > upper then

10 return resultTIDs[];
11 end
12 do
13 upper ← upper + 1;
14 while !getPointer(upper, 0) && upper ≤ maxDims[0]
15 if upper > maxDims[0] then
16 endTID ← NumPoints;
17 resultTIDs[] ← vector(getTIDs(lower), getTIDs(endTID));

18 else
19 endTID ← upper;
20 resultTIDs[] ← vector(getTIDs(lower), getTIDs(endTID));

21 end
22 return resultTIDs[];

23 end

24 end

25 End Procedure

3.3. Partial Match Query Algorithm 65

The two parameters we pass into the function are query and cutoffs. The query
is an object of the Query class. This class stores all the information about the query
statement, such as which selection predicates are selected and the conditions of
the selected predicates. cutoffs represent the range of dimensions with cutoff-
pointers. When the first dimension is used as the predicate of a single-column
selection predicate query, it will be more conveniently and quickly if we use Cutoffs
to obtain the result set. This is because we can find the corresponding TIDs as long
as we find the upper and lower boundaries of the query predicate.

We first find the intersection of the upper and lower bounds of the predicate and
the dimension value range of the first dimension [minDims[0], maxDims[0]]
(Lines 4-5). Because we use a hash map to store pointers in the first dimension,
not all values in the first dimension have pointers. Therefore, we need to retrieve
the range of intersection to find the first dimension value that stores a valid pointer.
We use the same way to find the real upper boundary (Lines 6-14). Once we have
determined the real upper and lower boundaries, we can take all TIDs in the range
of the two cutoff-pointers and store them in the resultTIDs(Lines 15-22). If there
is no cutoff-pointer, we will call the traversal algorithm. The algorithm starts from
the first dimension and traverses until it finds all TIDs that meet the conditions.

3.3.3.2 The First Dimension as First Selected Predicate

Algorithm 3.9: PartialMatch algorithm for the first dimension (2)

Input: query, lower, upper
Output: resultTIDs

1 Function firstDimAsFirstSelected(lower, upper, &query[]):
2 if firstSelected == FIRST DIM then
3 while lower ≤ upper do
4 nextDimPointer ← getPointer(lower, FIRST DIM);
5 if nextDimPointer == NOT FOUND then
6 lower ← lower + 1 ;
7 continue;

8 nextEntry ← lower + 1;
9 while getPointer(nextEntry, FIRST DIM)==NOT FOUND do

10 nextEntry ← nextEntry + 1;
11 end
12 if !isMonoListPointer(nextDimPointer) then
13 partialMatch(1, nextDimPointer, resultTIDs, query);
14 else
15 partialMatchMonoList(1, nextDimPointer, resultTIDs, query);
16 end
17 lower ← nextEntry;

18 end

19 end

20 End Procedure

66 3. Implementation

In Algorithm 3.9 we showed the algorithm firstDimAsFirstSelected. When
the first dimension is used as the predicate in a multi-column selection predicate,
we use this algorithm for queries.

There are three parameters in this algorithm, which are query, lower and upper.
We have already introduced the object query in the previous algorithm. lower is
the maximum value between the lower boundary of the predicate and the minimum
value of the first dimension. upper is the minimum value between the upper bound-
ary of the predicate and the maximum value of the first dimension. We still need
to confirm that our query boundary is valid, that is, a pointer is stored under the
corresponding dimension value (Lines 4-8). After confirmation, we sequentially fol-
low the dimension values of the first dimension until the upper boundary is reached
(Line 9-17).

3.3.3.3 MonoLists before the First Selected Dimension

Algorithm 3.10 is suitable for queries that use a non-first dimension as the first selec-
tion predicate, and this dimension contains the DimensionLists. It and Algorithm
3.12 form a complete algorithm for processing such queries. This algorithm only
handles all MonoLists that existed before that dimension. We need four parame-
ters in this algorithm 3.10. dimStartPointer stores the start pointer of each
dimension. MONO_LISTs store all MonoLists. firstSelected represents the
first selected dimension. query is an instance object of class Query.

Algorithm 3.10: PartialMatch algorithm for MonoLists (1)

Input: dimStartPointer[], MONO LISTS[], firstSelected, query
Output: resultTIDs[]

1 Function monoListsBeforeSelectedDim(dimStartPointer[],
MONO LISTS[], firstSelected, query):

2 if firstSelected > FIRST DIM then
3 pos ← 0;
4 monoLength ← getMonoLength(pos);
5 startDim ← NUM DIM - monoLength;
6 while startDim ≤ firstSelected && pos < MONO LISTS.size() do
7 partialMatchMonoList(startDim, pos, resultTIDs, query);
8 pos ← pos + monoLength;
9 while !isLastEntryMaskMono(getTID(pos)) do

10 pos ← pos + divideRoundNext();
11 end
12 pos ← pos + 2;
13 if pos < MONO LIST.size() then
14 monoLength ← getMonoLength(pos);
15 startDim ← NUM DIM - monoLength;

16 end

17 end

18 end

19 End Procedure

3.3. Partial Match Query Algorithm 67

In this algorithm, we find the length of a MonoList stored in MONO_LISTs, and
then use it to calculate the dimension information (Lines 2-4). We can use dimension
and offset to control the end condition of the loop. Every time we finish processing a
MonoList, we reset the dimension information and offset so that the next MonoList
can be processed (5-14). These new PM algorithms are all adapted to MonoList
with length.

3.3.3.4 Algorithm for MonoLists only

Algorithm 3.11 is suitable for queries that use a non-first dimension as the first
selection predicate, and there are only MonoLists in this dimension (such as C4

in Figure 3.2). In this case, we only need to deal with the MonoLists. We show
pseudocode in Algorithm 3.11. It can be observed that the logic of the algorithm
is the same as that of the algorithm 3.10, only minor adjustments are made in the
judgment conditions. Algorithm 3.10 is to process the MonoLists before the specified
dimension, while algorithm 3.11 is to process all MonoLists. After processing, all
TIDs that meet the query conditions are returned.

Algorithm 3.11: PartialMatch algorithm for MonoLists (2)

Input: dimStartPointer[], MONO LISTS[], firstSelected, query
Output: resultTIDs[]

1 Function monoListsInSelectedDim(dimStartPointer[], MONO LISTS[],
firstSelected, query):

2 if firstSelected > dimStartPointer.size() - 1 then
3 pos ← 0;
4 monoLength ← getMonoLength(pos);
5 startDim ← NUM DIM - monoLength;
6 while pos < MONO LISTS.size() do
7 partialMatchMonoList(startDim, pos, resultTIDs, query);
8 pos ← pos + monoLength;
9 while !isLastEntryMaskMono(getTID(pos)) do

10 pos ← pos + divideRoundNext();
11 end
12 pos ← pos + 2;
13 if pos < MONO LIST.size() then
14 monoLength ← getMonoLength(pos);
15 startDim ← NUM DIM - monoLength;

16 end

17 end
18 return resultTIDs[];

19 end

20 End Procedure

3.3.3.5 Non-first Dimension as the First Selected Predicate

Algorithm 3.12 is suitable for queries that use a non-first dimension as the first
selection predicate, and this dimension contains the DimensionLists. It implements

68 3. Implementation

Algorithm 3.12: PartialMatch algorithm for the n-th Dimension

Input: firstSelected, lastSelected, lower, upper, query,
dimStartPointer[]

Output: resultTIDs[]
1 Function nDimAsFirstSelectedDim(firstSelected, lastSelected, lower,

upper, query, dimStartPointer[]):
2 if firstSelected != FIRST DIM then
3 if firstSelected + 1 < dimStartPointer.size() then
4 dimEnd ← dimStartPointer[firstSelected + 1] - 1;
5 else
6 dimEnd ← Child Pointer.size() - 1;
7 end
8 dimStart ← dimStart - firstDimEndPointer;
9 dimEnd ← dimEnd - firstDimEndPointer;

10 while dimStart ≤ dimEnd do
11 nextDimPointer ← getPointer(dimStart, firstSelected);
12 dimValue ← getValue(dimStart, false);
13 if !isIn(lower, upper, dimValue) then
14 dimStart ← dimStart + 1;
15 continue;

16 end
17 nextEntry ← dimStart + 1;
18 if isLastEntryPointer(nextDimPointer) then
19 if !isMonoListPointer(nextDimPointer) then
20 temp ← getDimTID(firstSelected + 1, nexDimPointer);
21 end

22 else
23 temp ← getCutoffPointer(nextEntry, firstSelected);
24 end
25 if !isMonoListPointer(nextDimPointer) then
26 if ENABLE Cutoff then
27 partialMatch(firstSelected + 1, nextDimPointer,

resultTIDs, query, lastSelected, temp);

28 else
29 partialMatch(firstSelected + 1, nextDimPointer,

resultTIDs, query);
30 end

31 else
32 partialMatchMonoList(firstSelected + 1, nextDimPointer,

resultTIDs, query);
33 end
34 dimStart ← nextEntry;

35 end

36 end

37 End Procedure

3.4. Summary 69

the main function of the new PM algorithm, that is, directly jumps to the first
predicate for PM queries. We use algorithm monoListsBeforeSelectedDim in
the algorithm 3.10 to match all MonoLists before the first predicate.

After processing the MonoLists of the first n−1 dimensions, we jump directly to the
n-th dimension. First, because the first selected dimension contains DimensionLists
and MonoLists, we need to determine the end pointer of this dimension (Lines 3-7).
Since the new PM algorithm is only applicable to Elf variants other than Elf64 Level,
if we want to obtain the dimension value of the dimension value, we need to subtract
the size of the first dimension from the pointer data (Lines 8-9). This is because
the data structure used to store the DimensionLists does not contain the dimension
value of the first dimension.

Next, we traverse this dimension. The most important point is that this algorithm
only processes all DimensionLists in that dimension. Therefore, we only need to
traverse the data structure used to store the DimensionLists. The dimension value
of each DimensionList is ordered, but when the dimension value of the DimensionList
of the entire dimension is placed in the same data structure, it is out of order. We
need to obtain each dimension value one by one to determine whether it is in the
upper and lower boundaries of the predicate (Lines 11-16). If we use Cutoffs, we
need to get the cutoff-pointer in advance to get more accurate results (Lines 18-24).
Because in this process, we will provide a function getDimTID that can query the
last cutoff-pointer of each DimensionList. The reason for using this function is that
when we use the cutoff-pointers of the two DimensionLists on the n-th dimension to
form an interval, some TIDs contained in this interval may come from the processed
MonoLists in the first n−1 dimensions. After obtaining the relevant cutoff-pointers,
we select the corresponding function according to the requirements (Lines 25-33).
Finally, we matched all the dimension values of the dimension.

3.4 Summary

In this chapter, we give a comprehensive introduction to our tasks and contributions.
We first introduced the BFS and DFS algorithms. By comparing these two well-
known graph algorithms, we can initially understand our task requirements, that
is, which aspects need to be adjusted and changed compared to the standard Elf.
Subsequently, we introduced the conceptual design of the level order linearization
for the Elf approach. It simplifies the process of level order linearization, then
displays it in the form of graphs and analyzes them briefly. Then, based on the
conceptual model, we introduced the algorithm for level order linearization in detail
in the implementation part. These contents can be regarded as the answer to the
first scientific question RQ1 raised in Section 1.1. Finally, we introduce the partial
Match Query algorithm adapted to the level order linearization algorithm. In this
part, we answer the second research question RQ2. In addition, We complete the
introduction of these two main contributing algorithms by analyzing pseudo-code.

70 3. Implementation

4. Evaluation

In Chapter 3, we introduced level order linearization for Elf Approach, which is
the contribution of our thesis. In the next step, we check whether this lineariza-
tion is meaningful in terms of performance of the Elf Approach. In addition, we
also verify the theoretical advantages and disadvantages of level order lineariza-
tion, we introduced in Chapter 3. Before conducting evaluation experiments, we
explain the experimental environment, experimental settings and procedures. Then
we introduce our evaluation results, analyze the data and discuss the subjective and
objective factors of these results.

4.1 Framework of the Experiment
Before we conduct the experiment, we introduce the framework of our experiment
in this section. It mainly consists of three parts. The first is the experimental
environment. We introduce the hardware facilities to perform the evaluation. Then
there is the data for evaluation. The last is the subject of our evaluation, including
evaluation objects and evaluation types.

4.1.1 Experimental Environment

The experiment will be performed on a machine with CentOS Linux release 7.3.1677
(Core). This machine is equipped with an Intel(R) Xeon(R) CPU E5-2630 v3 with
2.4 GHz base clock. This CPU has 8 cores and 16 threads. In addition, the memory
size of this machine is 1TB.

4.1.2 Data for Evaluation

The evaluation experiment uses the TPC-H benchmark test. TPC-H is a decision
support, transaction processing and database benchmark. It consists of business
oriented ad-hoc queries and concurrent data modification. In addition, it defines 8
tables, 22 queries and follows SQL92. The database model of the TPC-H benchmark
follows the third normal form. In this experiment, we do not perform a cross-table
query, so we only choose one data table Lineitem as the data table for evaluation. In
order to make a horizontal comparison, we evaluate the Lineitem tables of different
sizes separately. The size of these data tables is 1GB, 10GB, 50GB and 100GB.

72 4. Evaluation

4.1.3 Evaluation Objects

The Elf constructed by level order linearization is the main contribution of this the-
sis, so we mainly evaluate it. Because our main purpose is to verify whether the
level order linearization approach is meaningful for the performance of Elf, we need
to evaluate the vertical linearization at the same time under the same experimen-
tal environment. By comparing the evaluation results of vertical linearization and
level order linearization, we can more intuitively observe the impact of the level
order linearization approach on the performance of Elf. We select four representa-
tive Elf variants, which are the standard Elf, Elf Separated, Elf Separated Length,
Elf SIMD. Similarly, for level order linearization we select the corresponding four
Elf variants.

4.1.4 Evaluation Type

The impact of the level order linearization approach on the performance of Elf is
mainly reflected in the construction and query. Therefore, we mainly evaluate the
construction of Elf and queries that use Elf as an index.

4.1.4.1 Construction Evaluation

The level order linearization approach is a new linearization type for the Elf ap-
proach, and it is necessary to conduct a comprehensive evaluation for its construc-
tion. We mainly evaluate the two aspects, memory consumption and build time.
The main way of our evaluation is to construct the same data file in the same en-
vironment with the level order linearization method and the vertical linearization
method. Then we analyze the acquired data to show some advantages of level order
linearization.

4.1.4.2 Query Evaluation

Regarding query evaluation, we separately evaluate mono-column select predicate
queries and multi-column select predicate queries. Because the main purpose of
our evaluation is to verify whether the Elf approach can benefit from the level order
linearization, we designed several new TPC-H benchmark query statement for query
evaluation. These query statements are adapted from Q1, Q6, Q10 and Q19. They
may not have practical significance, but it can support our evaluation work well.

4.2 Experiment

After introducing the experimental framework, in this chapter, we introduce the
specific evaluation work, analyze the evaluation data and summarize the evaluation
results. According to the evaluation type, we divide this chapter into two parts,
construct evaluation and query evaluation.

4.2. Experiment 73

4.2.1 Construction Evaluation

In this chapter, we evaluate the construction of vertical linearization and level order
linearization for Elf approach in the same environment. The Elf variants we mainly
evaluated are the construction of Elf and Elf Separated, and Elf Separated Length.
The construction algorithm of Elf Level SIMD is based on
Elf Level Separated Length. Their construction process is almost the same. In
terms of construction, the performance of Elf SIMD is almost the same as
Elf Separated Length, so we only show the evaluation data of Elf Separated Length.
For the construction of Elf, we evaluate them from two aspects, storage consumption
and construction time.

4.2.1.1 Storage Consumption

We use the TPC-H data file Lineitem with a size of 10GB as experimental data
to evaluate storage consumption. The reason we chose this data file is that for the
constructed Elf and Elf variants, there are some observable rules between them.
For example, if we observe the data structure ELF in Figure 3.5 and the Sepa-
rated data structures in Figure 3.7, we can find that it has the following rules:
Size(ELF)=Size(Elf + Child_Pointers + Cutoff_Pointers + MonoLists). This
means that if the level order linearization approach can optimize storage consump-
tion, it will certainly feedback this optimization through the size of these data struc-
tures. Regardless of the size of the data file we choose, as long as the amount of data
in the data file is sufficient to support feedback such changes, the impact of the level
order linearization approach can be well confirmed. Therefore, when we evaluate
storage consumption, it is reasonable for us to use a 10GB data file for evaluation.
In the experiment, we will separately analyze the case of without Cutoffs and with
Cutoffs.

1. Without Cutoffs

In Figure 4.1 and Figure 4.2, we both show the storage consumption of Elf64,
Elf Separated and Elf Separated Length constructed from a 10GB TPC-H data file
using the vertical linearization method, and the storage consumption of Elf64 Level,
Elf Level Separated and Elf Level Separated Length constructed using the level or-
der linearization approach.

We use the red line in the figures to mark the Elf variant with the greatest storage
consumption. In addition, we introduced Lengths for MonoLists in the Elf variant
of Level order linearization (e.g. Elf Level Separated) and explained the Lengths
in Section 3.3.2.3. In order to compare the difference in storage consumption before
and after the Lengths is introduced. We show the storage consumption of the Elf
variant without Lengths in Figure 4.1. The storage consumption of the Elf variant
with the Lengths is shown in Figure 4.2. Since we only set Lengths for the level
order linearized variants, the data for the vertically linearized Elf variants are the
same in these two figures.

When we index the same data file, whether we use the vertical linearization method
or the level order linearization method to construct the corresponding Elf, the num-
ber of DimensionLists and MonoLists in this data file must be fixed. Therefore,

74 4. Evaluation

E
lf6

4

E
lf

Se
pa

ra
te

d

E
lf

Se
pa

ra
te

d
Len

gt
h

E
lf6

4
Lev

el

E
lf

Lev
el

Se
pa

ra
te

d

E
lf

Lev
el

Se
pa

ra
te

d
Len

gt
h0

1

2

3

4

5

·109

0.7545
0.7545

0.7545
0.7545

0.1972 0.2187 0.1972 0.2187

1

0.0484 0.0591

1

0.0484 0.0591

S
to

ra
g
e

co
n
su

m
p
ti

o
n

[B
y
te

]

ELF CHILD POINTERS MONOLISTS

Figure 4.1: The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (without Cutoffs and without
Lengths of MonoLists)

E
lf6

4

E
lf

Se
pa

ra
te

d

E
lf

Se
pa

ra
te

d
Len

gt
h

E
lf6

4
Lev

el

E
lf

Lev
el

Se
pa

ra
te

d

E
lf

Lev
el

Se
pa

ra
te

d
Len

gt
h0

1

2

3

4

5

·109

0.7545
0.7545 0.8046

0.8046

0.1972 0.2187 0.1972 0.2187

1

0.0484 0.0591

1

0.0484 0.0591

S
to

ra
g
e

co
n
su

m
p
ti

o
n

[B
y
te

]

ELF CHILD POINTERS MONOLISTS

Figure 4.2: The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (without Cutoffs and with
Lengths of MonoLists))

4.2. Experiment 75

without Cutoffs, the storage consumption of the Elf variant constructed by the level
order linearization method should be the same as the storage consumption of the
corresponding Elf variant constructed by the vertical linearization method. We can
observe in Figure 4.1 that the storage consumption of the corresponding variants of
the vertical linearization method and the level order linearization approach is the
same. For example, the ratio of ELF in Elf Separated and Elf Level Separated is
0.484. This ratio is obtained by dividing the size of a single data structure in Sepa-
rate by the size of ELF in Elf64 or Elf64 Level (e.g., ratio(Separated.MONOLISTS) =
size(Separated.MONOLISTS)/size(Elf64.ELF)).

However, when we use the level order linearization approach to construct an Elf
Separated variant, we will add the size of the MonoList in front of each Mono-
List. We have introduced this in Section 3.3.2. Then, the storage requirement
of MONOLISTS in Elf Level Separated and Elf Level Separated Length should be
greater than Elf Separated and Elf Separated Length. This is consistent with the
performance of MONOLISTS in Elf Level Separated and Elf Level Separated Length
in Figure 4.2 (i.e., 0.8046 > 0.7545). The number of Lengths stored in MonoLists in
Elf Level Separated is equal to the number of MonoLists. In addition, the number
of MonoLists will not exceed the number of rows, that is, the range of the number
of Lengths is (0, M] (M is the total number of rows or the number of TIDs).

Therefore, without Cutoffs, the storage requirements of the standard Elf
(Elf64 Level) constructed by the level order linearization approach are the same as
those of the standard Elf (Elf64) constructed by the vertical linearization method.
This is because the number of MonoLists and DimensionLists in the same data file
is equal. For other Elf variants without Cutoffs, since MONOLISTS adds Lengths, the
storage requirement of the level order linearization approach is slightly higher than
that of the vertical linearization approach.

2. With Cutoffs

In Section 3.1.3.2, we have discussed the theoretical advantages of the level order
linearization approach in terms of Cutoffs compared to the vertical linearization
approach. Next, we set the cutoff-pointers for the specified dimensions (from the first
dimension to the n-th dimension, n ∈ [1, N], N is the total number of dimensions)
under the same experimental environment. We set the variable cutoffs to 1, which
means we add the cutoff-pointers for the first dimension.

In Figure 4.3, we can observe that the value of Cutoffs in the Elf variant constructed
by vertical linearization is much greater than the value of Cutoffs in the Elf variant
constructed by level order linearization. For example, the ratio of CUTOFF_POINTERS
in Elf Separated is 0.158, and the ratio of CUTOFF_POINTERS in Elf Level Separated
is 0.0805. The numbers in the corresponding data structure are 117,842,192 (0.158)
and 60,000,002 (0.0805). The absolute value obtained by subtracting these two
values is 57,842,190 (converted into a ratio, it is 0.0388). From Figure 4.3, we
can find two data structures with a ratio of 0.0388, that is, the ratio of ELF in
Elf Separated and Elf Level Separated. For the Elf variant, we know that ELF only
stores all DimensionLists except the first dimension, while CUTOFF_POINTERS stores
cutoff-pointers for all DimensionLists. Therefore, the value of |CUTOFF_POINTERS -
ELF| is the size of the first dimension (60,000,002). From this, we can know that

76 4. Evaluation

E
lf6

4

E
lf

Se
pa

ra
te

d

E
lf

Se
pa

ra
te

d
Len

gt
h

E
lf6

4
Lev

el

E
lf

Lev
el

Se
pa

ra
te

d

E
lf

Lev
el

Se
pa

ra
te

d
Len

gt
h0

2

4

6

·109

0.0402 0.0402
0.0402

0.0402
0.0402 0.0402

0.1581
0.1753

0.0805 0.0805

0.6049 0.6049 0.6451 0.6451

0.1581 0.1753 0.1581 0.1753

0.9598

0.0388 0.0474

0.9598

0.0388 0.0474

S
to

ra
g
e

co
n
su

m
p
ti

o
n

[B
y
te

]

ELF CHILD POINTERS MONOLISTS CUTOFF POINTERS TIDs

Figure 4.3: The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (with cutoffs=1)

the CUTOFF_POINTER in Elf Level Separated and Elf Level Separated Length only
stores the cutoff-pointers of the first dimension. In addition, because the data struc-
ture ELF and the data structure CUTOFF_POINTERS store different data types, the
ratio of the corresponding storage space size cannot be directly used for calculation.

However, the data types stored in TIDs and MONOLISTS are the same, and we can use
ratios to directly perform calculations to express the relationship between data struc-
tures. For example, MONOLISTS (0.6451) in Elf Level Separated has stored Lengths.
As we have introduced, the number of Lengths is not bigger than the number of
TIDs. We add the ratio of TIDs (0.0402) and MONOLISTS (0.6049) in Elf Separated
to get 0.6451, which is the ratio of MONOLISTS (0.6451) in Elf Level Separated.

cutoffs = 2

We carried out the experiment with cutoffs = 2 in the same environment. We
show the obtained evaluation data in Figure 4.4. We compared it with the evalua-
tion data in Figure 4.3 and found that, except for the size of CUTOFF_POINTERS in
Elf Level Separated and Elf Level Separated Length, the size of the data structure
of other Elf variants has not changed. In addition, when cutoffs=2, we set the cutoff-
pointers for the first dimension and the second dimension. Therefore, the number
of extra pointers in CUTOFF_POINTERS in Elf Level Separated and
Elf Level Separated Length is the number of cutoff-pointers in the second dimen-
sion. Although in Figure 4.4, the ratio of CUTOFF_POINTERS in the corresponding
Elf variants is the same, but these data are not the same in the size of the specific
data structure. They are just very close. For example, the size of CUTOFF_POINTERS
of Elf Separated is 130,698,330, and the size of CUTOFF_POINTERS of

4.2. Experiment 77

E
lf6

4

E
lf

Se
pa

ra
te

d

E
lf

Se
pa

ra
te

d
Len

gt
h

E
lf6

4
Lev

el

E
lf

Lev
el

Se
pa

ra
te

d

E
lf

Lev
el

Se
pa

ra
te

d
Len

gt
h0

2

4

6

·109

0.0402 0.0402
0.0402

0.0402
0.0402

0.0402

0.1581
0.1753 0.1581

0.1753

0.6049 0.6049 0.6451 0.6451

0.1581 0.1753 0.1581 0.1753

0.9598

0.0388 0.0474

0.9598

0.0388 0.0474

S
to

ra
g
e

co
n
su

m
p
ti

o
n

[B
y
te

]

ELF CHILD POINTERS MONOLISTS CUTOFF POINTERS TIDs

Figure 4.4: The storage consumption required for the data structure of all Elf vari-
ants when indexing a 10GB TPC-H table Lineitem (with cutoffs=2)

Elf Level Separated is 130698160. The difference between them is only 170 values.
This value is very insignificant compared to their base (108). However, the existence
of this value has a very important meaning. It means that there are still dimen-
sion columns in the third dimension. Since the size of Cutoffs only affects the size
of CUTOFF_POINTERS in the Elf variant constructed by the level order linearization
approach, we show in Figure 4.5 the size of CUTOFF_POINTERS from cutoffs=0 to
cutoffs=16 for all Elf variants.

From Figure 4.5, we can observe that after adding the cutoff-pointers for the fourth
dimension, the size of the CUTOFF_POINTER of Elf Level Separated and
Elf Level Separated Length is completely equal to that of Elf Separated and
Elf Separated Length. When cutoffs>4, the size of all data structures of all Elf vari-
ants is fixed. At the same time, this also means that from the fifth dimension there is
no DimensionList for this data file (Lineitem table with a size of 10GB). Because if
there are DimensionLists in the fifth dimension, we can add cutoff-pointers for them.
Then, the size of CUTOFF_POINTER will be changed. However, we observe from the
obtained evaluation data that this size no longer changes from the fourth dimension.
This confirms that there are only Monolists from the fifth dimension to the last di-
mension. In the first three dimensions, we can observe the positive impact of the
level order linearization approach on Cutoffs compared to the vertical linearization
approach. Especially when the cutoffs ∈ [0, 2], we can intuitively observe that the
level order linearization approach only reserves space for the specified dimensions
to add the cutoff-pointers. For vertical linearization, space must be reserved for all

78 4. Evaluation

0 1 2 3 4-16
0

0.5

1

·108

the value of Cutoffs

N
u
m

b
er

o
f

p
oi

n
te

rs
in

CU
TO

FF
_P

OI
NT

ER
S

Elf Separated Elf Separated Length Elf Level Separated Elf Level Separated Length

Figure 4.5: The size of CUTOFF_POINTERS from cutoffs=0 to cutoffs=16 for all Elf
variants

dimensions due to the limitation of the depth-first algorithm, so gaps are generated.
Level order linearization approach does not have this problem.

Therefore, when we add cutoff-pointers to data structure MONOLISTS, the Elf variant
constructed by the level order linearization approach does not reserve space for
cutoff-pointers of unselected dimensions in advance. In addition, when all the cutoff-
pointers are added, due to the addition of Lengths in MONOLISTS, the storage space
required for the Elf64 Level variant is slightly higher than that of the Elf64 variant,
but this size (size of Lengths) does not exceed the number of TIDs. If the Lengths
in MONOLISTS are not considered and after adding all the cutoff-pointers, the storage
consumption of all the data structures of the Elf variant constructed by the level
order linearization approach is exactly the same as that of the vertical linearization.

4.2.1.2 Construction Time

The construction time is the second evaluation indicator of the construction, and we
introduce it in this chapter. We first evaluate the construction time of Elf variants
without Cutoffs and then evaluate the construction time of Elf variants with Cutoffs.
Since we will index Lineitem tables with different sizes, and the data of each table
is not exactly the same, we cannot determine which dimension of each table is
the dimension that contains the last few DimensionLists (e.g., the 4th dimension
of the Lineitem table with a size of 10GB). In order to ensure the accuracy of
the experiment, when we perform the construction experiment of the Elf variant
with Cutoffs, we uniformly add the cutoff-pointers for all dimensions, that is, set
cutoffs=16.

1. Without Cutoffs

We use readTSV to read Lineitem tables with sizes of 1GB, 10GB and 100GB
respectively, and use the vertical linearization approach and the level order lin-

4.2. Experiment 79

1GB 10GB 100GB

101

102

the size of Lineitem table

co
n
st

ru
ct

io
n

ti
m

e
in

s

Elf64 Elf Separated Length Elf Level Separated

Elf Separated Elf64 Level Elf Level Separated Length

Figure 4.6: Construction time of all Elf variants without Cutoffs (readTSV)

earization approach to construct the Elf index structure for these tables in the same
experimental environment. We show the evaluation data in Figure 4.6 and Table 4.1.

Elf variants 1GB 10GB 100GB

Elf64 1.49 11.8% 16.57 10.8% 202.74 2.8%

Elf_Separated 1.51 15.6% 16.85 13.3% 339.51 -

Elf_Separated_Length 1.54 14.9% 17.26 12.2% 338.26 -

Elf64_Level 1.69 - 18.58 - 208.71 -

Elf_Level_Separate 1.79 - 19.43 - 220.85 34.9%

Elf_Level_Separated_Length 1.82 - 19.66 - 221.41 34.5%

Table 4.1: The construction time (s) of Elf and Elf variants for Lineitem tables
with different sizes (readTSV and without Cutoffs)

In Table 4.1, we also provide a percentage of speedup for variants that have a faster
build time under the same conditions. For example, in the same environment to
build Elf64 and Elf64 Level for a 1GB Lineitem table at the same time, building
Elf64 is 11.8% faster than building Elf64 Level. We can observe from Table 4.1
that when building an Elf index for a 1GB data table, the construction speed of
the vertical linearization approach is 14.1% faster than the level order linearization
approach on average. Then, when we construct Elf and Elf variants for the 10GB
Lineitem table, the vertical linearization approach is still better than the level
order linearization approach in terms of construction speed. The construction speed
of the vertical linearization approach is 12.1% faster than that of the level order
linearization approach on average. However, compared with its advantage of 14.1%
faster than the level order linearization approach when indexing 1GB Lineitem

80 4. Evaluation

tables, 12.1% indicates that its speedup trend is downward when indexing larger
data tables. When we built Elf and Elf variants for the 100GB Lineitem table,
we found interesting changes in the construction time. For Elf64 constructed by
vertical linearization approach, its construction speed is only 2.86% faster than the
construction speed of Elf64 Level constructed by level order linearization approach.
However, when constructing Elf variants for the same data table, the level order
linearization approach shows its great advantages. Its construction speed is 34.7%
faster than the vertical linearization approach to construct Elf variants on average.

Verify the authenticity of the evaluation data for the 100GB data file

From Figure 4.6, we can observe that the time for the vertical linearization approach
to construct the standard Elf (202.74s) and the time to construct the Elf variant
(average 338.88s) deviates too much, while the deviation of the construction time
between the different variants constructed by level order linearization is not large. In
order to verify the validity of the evaluation data of the level order linearization ap-
proach, we evaluated the storage consumption of the Elf and Elf variants constructed
by level order linearization approach. The storage consumption of the Elf64 and
Elf64 Level we constructed for the 100GB data table are both 47,831,355,824 Byte.
Both of their data structures contain 11,957,838,956 elements. In addition, the Elf
variant constructed by the level order linearization approach also satisfies the for-
mula mentioned in Section 4.2.1.1. We pass the sizes of ELF, TIDs, Child_Pointers,
Cutoff_Pointers and MonoLists in Elf Level Separated in Table 4.2 into the fol-
lowing formula: ELF+Child_Pointers+Cutoff_Pointers+MonoLists-TIDs. We
can get the value 11,957,838,955. This value is equal to the size of the data struc-
ture ELF in Elf64 Level. This also proves that construction evaluation for the 100GB
Lineitem table is effective. The ”-” in Table 4.2 means that this Elf variant does
not have this data structure. To facilitate calculations, we added the number of
cutoff-pointers. It is equal to the number of pointers in Child_Pointers.

Elf64 Level Level Separate Level Separated Length

ELF 11,957,838,956 578,616,305 707,194,708

TIDs 600,037,903 600,037,903 600,037,903

Child_Pointers - 1,178,616,306 1,307,194,710

Cutoff_Pointers - 1,178,616,306 1,307,194,710

MonoLists - 9,622,027,941 9,622,027,941

Table 4.2: The size of data structure in the Elf and Elf variants constructed by level
order linearization for 100GB Lineitem tables (readTSV and without Cutoffs)

Therefore, in the construction evaluation of Elf without Cutoffs, when the Elf index
is constructed for smaller data files, the vertical linearization approach is better than
the level order linearization approach in terms of construction time. However, as the
size of the data table grows, the advantage of vertical linearization in construction
time decreases, while the performance of the level order linearization approach be-
comes excellent. Especially for the data table with a size of 100GB, the level order

4.2. Experiment 81

linearization method is about 30% faster than the vertical linearization method in
terms of construction time.

Use readTBL

To ensure the accuracy and completeness of the experiment, we also used readTBL
to read data files of different sizes to construct Elf and Elf variants. We show
the evaluation data in Table 4.3. From Table 4.3, we can intuitively observe that
in the experimental environment where readTBL is used to read data files, the
construction performance of the level order linearization approach is not as good
as that of the vertical linearization approach. In Table 4.3, we can observe that
for the evaluation data with normal performance, regardless of the size of the data
file, the construction speed of the vertical linearization approach is always about
26.7% (average) faster than the construction speed of the level order linearization
approach. This is consistent with our evaluation results using readTSV.

Elf variants 1GB 50GB

Elf64 5.07 32% 583 26%

Elf_Separated 5.47 26% 572 27%

Elf_Separated_Length 5.50 27% 572 27%

Elf64_Level 7.49 - 785 -

Elf_Level_Separate 7.37 - 785 -

Elf_Level_Separated_Length 7.50 - 786 -

Table 4.3: The construction time (s) of Elf and Elf variants for Lineitem tables
with different sizes (readTBL and without Cutoffs)

2. With Cutoffs

1GB 10GB 100GB

101

102

the size of Lineitem table

co
n
st

ru
ct

io
n

ti
m

e
in

s

Elf64 Elf Separated Length Elf Level Separated

Elf Separated Elf64 Level Elf Level Separated Length

Figure 4.7: Construction time of all Elf variants with cutoffs=16 (readTSV)

82 4. Evaluation

We set Cutoffs to 16 to add cutoff-pointers for all dimensions. Then, we conduct
construction evaluation. We show the evaluation data in Figure 4.7 and Table 4.4.
By comparing with Figure 4.6 and Table 4.1, we can find that the time to construct
Elf and Elf variants with Cutoffs has not changed in the overall trend. The larger
the data file to be indexed, the better the performance of the level order linearization
approach in construction time. When the data file is large enough, such as a 100GB
data file, the construction speed of level order linearization approach is about 34.7%
faster than that of vertical linearization approach.

Elf variants 1GB 10GB 100GB

Elf64 1.59 10% 17.56 10% 210.16 1.3%

Elf_Separated 1.57 14.1% 17.43 11.6% 343.44 -

Elf_Separated_Length 1.60 16.4% 17.58 13% 344.68 -

Elf64_Level 1.77 - 19.53 - 212.98 -

Elf_Level_Separate 1.83 - 19.73 - 223.46 34.9%

Elf_Level_Separated_Length 1.86 - 20.21 - 225.16 34.6%

Table 4.4: The construction time [s] of Elf and Elf variants for Lineitem tables with
different sizes (readTSV and with cutoffs=16)

4.2.1.3 Evaluation Result and Summary

In this chapter, we have mainly introduced the construction evaluation. By eval-
uating the storage consumption and construction time of the Elf and Elf variants
constructed by the level order linearization, we found some advantages of the level
order linearization for the Elf approach. First, because the level order linearization
approach can save cutoff-pointers sequentially, it can indeed eliminate the gaps in
the data structure Cutoff_Pointers in the Elf variant. Then, the Elf variant will
not reserve space of cutoff-pointers for unselected dimensions. Finally, when we
construct Elf variants (Separated) for the data table read by readTSV, if the size
of the data table is large enough (100GB), the construction speed of the level order
linearization approach is about 30% faster than that of the vertical linearization
approach.

4.2.2 Query Evaluation

In this chapter, we introduce query evaluation. Because we only implemented the
new partial match query algorithm for level order linearization, we use the PM
algorithm to complete the query evaluation work. In addition, we evaluate the mono-
column selection predicate query (one-dimensional) and the multi-column selection
predicate query (multi-dimensional) respectively. For each type of query, we set
three different query statements according to different conditions. All statements
are adapted from the queries Q1, Q6, Q10 and Q19 defined in the TPC-H benchmark
test. The standard for designing query statements is to cover the features of Elf
constructed by level order linearization as much as possible, so as to verify whether
the Elf approach can benefit from the level order linearization strategy. For example,

4.2. Experiment 83

we evaluate a query whose selection predicate is not the first dimension, so that
we can not only test whether the new PM query algorithm we have implemented
can actually jump to the first selected predicate for the query, but also verify the
efficiency of this jump by comparing the performance of the vertical linearization
approach.

4.2.2.1 Query Statement used for Evaluation

Since the new PM algorithm is implemented based on the features of the level order
linearization approach, the design idea of the PM algorithm in the Section 3.3.3 can
be used as the condition for designing query statements. We summarize it into the
following three conditions:

1. The first dimension as the last selection predicate;

2. The first dimension as the first selection predicate;

3. Non-first dimension as the first selection predicate.

Mono-column Selection Predicate Query

We first introduce how to design specific SQL statements for mono-column select
predicate queries. Mono-column selection predicate query is also a one-dimensional
query. For one-dimensional queries, the three conditions enumerated above can be
regarded as two major conditions. Because there is only one selection predicate in a
one-dimensional query, condition 1 and condition 2 can be regarded as one condition.
Therefore, the first SQL statement we set for a one-dimensional query is a query with
the first dimension as the selection predicate.

The first dimension in the Lineitem table is L_ORDERKEY, which is often associated
with other tables (e.g. Order table) in the standard TPC-H Benchmark schema.
However, in order to directly evaluate the characteristics of the level order lineariza-
tion method, we do not consider associated queries with other tables in this evalua-
tion. Therefore, we can adapt Q1 to generate the SQL statements we need. We show
the adapted mono-column selection predicate query statement in Listing 4.1. In the
following, we use SQ1 to represent this query statement. SQ is an abbreviation for
Single(mono)-column selection predicate Query.

SELECT *

FROM Lineitem

WHERE l_orderkey >= 1 and l_orderkey <= 1000;

Listing 4.1: Mono-column selection predicate query statement SQ1 adapted from Q1

We will use Algorithm 3.8 firstDimAsLastSelected to process SQ1. Next, we
consider the second main condition. When the predicate is not the first dimension,
we can exploit the characteristics of the level order linearization approach to directly
jump to this predicate for the query. In the new PM algorithm, we divide this
situation into two independent scenarios. The first scenario is that the dimension
where the predicate is located contains a DimensionList. Because we always call

84 4. Evaluation

Algorithm 3.10 monoListsBeforeSelectedDim to process the MonoLists that
exists before this dimension, the MonoLists has no effect on this scenario. The second
scenario is that there are only MonoLists in the dimension where the predicate is
located. In this case, we call 3.11 monoListsInSelectedDim to traverse all the
MonoLists directly.

Because we analyzed the Lineitem table with a size of 10GB in the construction
evaluation, we know that in this table the fourth dimension is the last dimension that
contains the DimensionLists. Therefore, we only need to arbitrarily select a non-
first dimension before this dimension as a predicate to satisfy the first scenario. For
the other scene, we can choose any dimension after the fourth dimension. For this,
we have selected the third dimension L_SUPPKEY (SQ2) and the eleventh dimension
L_SHIPDATE (SQ3, Q1) to adapt the query statement respectively. In Listing 4.2 we
show the mono-column selection predicate query SQ2 adapted from Q1 for the first
scenario. We directly use Q1 as the query statement that meets the conditions of
the second scenario. In order to facilitate the presentation of the evaluation data,
we use SQ3 to represent Q1. In addition, Q10 also meets the second scenario.

SELECT *

FROM Lineitem

WHERE l_suppkey >= 100 and l_suppkey <= 500;

Listing 4.2: Mono-column selection predicate query statement SQ2 adapted from Q1

Multi-column Selection Predicate Query

Multi-column selection predicate queries are also multi-dimensional queries. It can
treat the above three conditions as two main conditions just like a one-dimensional
query. The reason is that a multi-dimensional query that satisfies the first condition
is also a one-dimensional query. A multi-dimensional query containing the first
dimension only meets condition 2. Because the start point of this query type must
be the first dimension, we can choose any other dimension and the first dimension
as the predicates of the query statement. For this, we chose the first dimension
L_ORDERKEY and the eleventh dimension L_SHIPDATE as the predicates of the new
query, and we show an example of this query in Listing 4.3. In the following, we
will use MQ1 to represent this query. MQ is an abbreviation for Multi-dimensional
selection predicate Query. These new query statements we designed are just to
meet our evaluation requirements. Because we only consider the dimensions they
represent, they have no practical significance.

SELECT *

FROM Lineitem

WHERE l_orderkey >= 100 AND l_orderkey <= 500;

AND l_shipdate >= [DATE]

AND l_shipdate < [DATE] + "1Year"

Listing 4.3: Multi-column selection predicate query statement MQ1

Then, we design the query statement for the non-first dimension as the first selection
predicate. It is also divided into two scenarios. The first scenario is that the dimen-
sion where the first selection predicate is located contains the DimensionLists. The

4.2. Experiment 85

second scenario is that there are only MonoLists in the dimension where the first
selection predicate is located. We adapted Q6 and Q19 to meet the requirements of
these two scenarios. We use MQ2 to represent a query statement that uses a non-first
dimension as the first selection predicate and this dimension contains the Dimen-
sionLists. We use MQ3 to represent a query statement that uses a non-first dimension
as the first selection predicate and there are only MonoLists in this dimension.

Query Adapted Predicate columns Dimension

SQ1 Q1 l_orderkey {0}

SQ2 Q10 l_suppkey {2}

SQ3 Q10 l_shipdate {10}

MQ1 Q6 l_orderkey, l_shipdate {0, 10}

MQ2 Q19 l_linenumber, l_shipinstruct, l_shipmode {3, 13, 14}

MQ3 Q6 l_quantity, l_discount, l_shipdate {4, 6, 10}

Table 4.5: Details of the TPC-H query used for evaluation

We summarize the new query mentioned above in Table 4.5, which contains the name
of the new query, the dimensions involved and the column names. SQ1, SQ2 and SQ3
are one-dimensional queries. MQ1, MQ2 and MQ3 are multi-dimensional queries. The
function of each query in the evaluation is as follows:

1. SQ1 and MQ1 evaluate the query performance of Elf and its variants constructed
by the level order linearization approach in the first dimension

2. SQ2 and MQ2 evaluate the query performance of Elf and its variants constructed
by the level order linearization approach in non-first dimensions. This dimen-
sion where the first selected predicate is located must contain DimensionLists
to ensure that the PM algorithm can scan the data structure Elf that stores
the DimensionLists in the Elf variants (e.g., Separated, Separated Length)

3. SQ3 and MQ3 are extensions of SQ2 and MQ2. They also evaluate the query
performance of Elf and its variants constructed by the level order linearization
approach in non-first dimensions. However, This dimension where the first
selected predicate is located only contain MonoLists, which ensures that the
Elf variant only scans the data structure MonoLists that stores MonoList.

Due to the structural limitations of the standard Elf, all data is stored in a data
structure ELF. The standard Elf constructed by level order linearization is only
different from the standard Elf constructed by vertical linearization in the data
storage order. In order to ensure the correctness of the query results, for any query,
we must start traversing from the first dimension of the standard Elf. We have
explained the reason in Section 3.3 through the analysis of Figure 3.16. Therefore,

86 4. Evaluation

the above conditions have no effect on the standard Elf constructed by level order
linearization. We only need to observe its performance for one-dimensional and
multi-dimensional queries.

4.2.2.2 Without Cutoffs

In this chapter, we perform query evaluation on the Elf variant without Cutoffs. We
use the six queries introduced in the previous chapter for partial match queries. In
addition, we generate 100 query cases for each query, and each case is repeated 10
times. Then, we count the query time to get the average query time. We show the
obtained evaluation data in Figure 4.8.

SQ1 SQ2 SQ3 MQ1 MQ2 MQ3

101

102

103

Query Type

A
ve

ra
g
e

Q
u
er

y
T

im
es

in
m

s

Elf64 Elf Separated Length Elf64 Level Elf Level Separated Length

Elf Separated Elf SIMD Elf Level Separated Elf Level SIMD

Figure 4.8: Average Query Times of all Elf variants for the Lineitem table with a
size of 10GB (without Cutoffs)

From Figure 4.8, we can observe that whether it is a one-dimensional query or a
multi-dimensional query, the query performance of Elf64 Level is almost the same
as that of Elf64. The other Elf variants constructed by the level order linearization
approach perform well in queries where the non-first dimension is used as the first
selection predicate (SQ2, SQ3, MQ2, MQ3). They all perform better than the corre-
sponding vertical linearized Elf variant. We show in Figure 4.9 the percentage of
speedup for the same query by the level order linearization Elf relative to the vertical
linearization Elf.

From Figure 4.9, we can intuitively observe that the level order linearization ap-
proach improves the query performance of Elf. However, this improvement still has
certain limitations. For example, for Elf64 Level, we cannot directly implement
predicate jumps in its data structure, so it does not benefit from level order lin-
earization. This also leads to its poor performance in all queries (compare to other
level order linearized Elf variants). From Figure 4.9, we can observe that the query

4.2. Experiment 87

SQ1 SQ2 SQ3 MQ1 MQ2 MQ3
0

10

20

30

40

Query Type

%

Elf64 Level Elf Level Separated Elf Level Separated Length Elf Level SIMD

Figure 4.9: The Speedup percentage of all level order linearized Elf variants for the
same query based on Figure 4.8 (without Cutoffs)

acceleration percentage of Elf64 Level fluctuates around 5%. This improvement is
meaningless.

For other Elf variants, such as Elf Level Separated, ELf Level Separated Length
and Elf SIMD, they do not have much speedup (less than 10%) in queries whose the
predicate contains the first dimension (SQ1, MQ1). This means that their query per-
formance in this scenario is similar to the vertical linearization approach. However,
since we can directly jump to the first predicates in these Elf variants for queries,
these Elf variants perform best in queries that use non-first-dimension as the first se-
lection predicate (SQ2, SQ3, MQ2, MQ3). These level-order linearized Elf variants have
an average speedup of 34.8% for the same query, 36.8% for one-dimensional queries,
and 32.7% for multi-dimensional queries. Next, we perform query evaluation on the
Elf variant with Cutoffs to observe if it has a higher improvement.

4.2.2.3 With Cutoffs

SQ1 SQ2 SQ3 MQ1 MQ2 MQ3

101
102

106
107

109
1010

Query Type

A
ve

ra
ge

Q
u
er

y
T

im
es

in
µ

s

Elf64 Elf Separated Length Elf64 Level Elf Level Separated Length

Elf Separated Elf SIMD Elf Level Separated Elf Level SIMD

Figure 4.10: Average Query Times of all Elf variants for the Lineitem table with a
size of 10GB (with cutoffs=16)

88 4. Evaluation

In this chapter, we introduce the query evaluation of Elf variant with cutoff. We
show the evaluation data in Figure 4.10. From this figure, we can clearly observe
that after using the cutoff-pointers, there is a huge performance improvement for
one-dimensional queries involving the first dimension (i.e., SQ1). To show the query
time of SQ1, we changed its unit from milliseconds to microseconds. Due to the order
of magnitude, we cannot intuitively observe the acceleration effect of level order
linearized Elf from the figure. Therefore, we still show its acceleration percentage in
a separate table (i.e., Figure 4.11).

SQ1 SQ2 SQ3 MQ1 MQ2 MQ3
0

10

20

30

40

50

Query Type

%

Elf64 Level (without Cutoffs) Elf64 Level (with Cutoffs)

Elf Level Separated (without Cutoffs) Elf Level Separated (with Cutoffs)

Elf Level Separated Length (without Cutoffs) Elf Level Separated Length (with Cutoffs)

Elf Level SIMD (without Cutoffs) Elf Level SIMD (with Cutoffs)

Figure 4.11: The Speedup percentage of all level order linearized Elf variants for the
same query based on Figure 4.9 and Figure 4.10 (with cutoffs=16)

For a more intuitive comparison, we have also added the data in Figure 4.10 to
Figure 4.11. The blue bars in Figure 412 represent that in case of without Cut-
offs the acceleration percentage of the level order linearized Elf variant for different
queries. The orange Bar is the acceleration percentage of the Elf variant with Cut-
offs for different queries. Through comparison, we can find that the reference of
the cutoff-pointers can make the level order linearization Elf variants (e.g., Sepa-
rated, Separated Length) further accelerate the query that does not involve the first
dimension (SQ2, SQ3, MQ2, MQ3). These level-order linearized Elf variants have an
average accelerate of 37.92% for the same query, 40.98% for one-dimensional queries
(SQ2, SQ3), and 34.85% for multi-dimensional queries (MQ2, MQ3). In addition, the
performance improvement of the level order linearization approach on the standard
Elf (Elf64 Level) and queries involving the first dimension is still limited.

4.3 Summary

In this chapter, we mainly introduce our evaluation work. The purpose of our evalu-
ation is to verify whether the Elf approach can benefit from level order linearization.
At the same time, the results of the evaluation can also answer the research ques-
tions (RQ 3) we put forward in Chapter 1. First, we introduced the experimental

4.3. Summary 89

framework. It provides all the basic information about the experiment, such as the
experimental environment, experimental data, the object to be evaluated and the
type of evaluation. Then, we conducted experiments based on the two evaluation
types.

1. Construction Evaluation

We evaluate the construction from two aspects, which are storage consumption and
build time. Below is an overview of our evaluation results:

1. Eliminate gaps in Cutoff_Pointers

Through the evaluation of storage consumption, we proved that the level or-
der linearization approach can indeed eliminate the gap problem in the data
structure Cutoff_Pointers. This problem is caused by the vertical linearized
Elf variant when the cutoff-pointers is added. However, the level order lin-
earization approach can only eliminate gaps for Elf variants other than the
standard Elf (e.g. Separated, Separated Length).

2. Elf variants does not reserve storage space for cutoff-pointers

The evaluation result is only applicable to all Elf variants except the standard
Elf, such as Separate, Separate Length. Due to the characteristics of the level
order linearization approach, it adds elements in a level-order manner based
on the order of dimensions. Then, when the cutoff-pointers is added for the
specified dimension, the cutoff-pointers is also added in a level-order manner.
Therefore, the Elf variants (e.g. Separated, Separated Length) does not have
to reserve space for dimensions that are not specified.

3. Accelerate the construction of Elf variants for large data files

After we analyzed the construction time of Elf variants constructed from dif-
ferent data files, we found that although the vertical linearization approach
is faster than the level order linearization approach when constructing ELf
variants for small and medium-sized data files. However, as the size of the
data file increases, the construction efficiency of vertical linearization decreases
compared to level order linearization. When the data file is large enough, the
level order linearization approach can construct ELf variants (e.g. Separated,
Separated Length) 30% faster than the vertical linearization approach.

Although we have summarized these advantages, there is also a disadvantage of
storage space for the level order linearization approach, that is, the data structure
MonoLists in the Elf variant (e.g. Separated, Separated Length) stores the length
of each MonoList. The number of these lengths does not exceed the number of TIDs,
that is, does not exceed the total number of rows in the data table. However, when
the data file is very large, the total number of rows may also reach a higher order
of magnitude. At this time, these storage spaces may have some negative effects.

2. Query Evaluation

We use the partial match algorithm for query evaluation. In order to reasonably
evaluate the query performance of the level linearization approach, we designed six

90 4. Evaluation

new TPC-H queries. These queries cover many conditions, such as one-dimensional
queries, multi-dimensional queries, the first dimension as a selection predicate, the
non-first dimension as a selection predicate, the first selection predicate contains
DimensionLists the first selection predicate only contains MonoLists. We perform
query evaluation on Elf variants with Cutoffs and without Cutoffs, and finally, we
can summarize the evaluation results as follows:

1. Level linearization approach can improve query efficiency

We analyzed the evaluation data and found that the Elf variant (e.g. Sepa-
rated, Separated Length) constructed by level order linearization can increase
the query speed by 35% on average for queries that do not involve the first
dimension in the predicate.

2. Jumps directly to the first selection predicate for queries

By analyzing the query statements involved in the previous evaluation result,
we found that the first selection predicate of these query statements is not the
first dimension. This means that the advantage of the level order linearization
approach in query performance comes from the jump.

3. Elf64 Level

Elf64 Level is the standard Elf constructed by level order linearization con-
struction. However, although we have listed so many advantages of level order
linearization, none of them is related to Elf64 Level. This is mainly because
of the limitation of the data structure used to store the elements. All data
are stored in a data structure, which makes it unable to benefit from the level
order linearization approach. Therefore, in the query evaluation, the query
performance of Elf64 Level is similar to that of the vertical linearized Elf.

4. Queries involving the first dimension

In query evaluation, for all queries involving the first dimension, the level order
linearization approach has not achieved obvious advantages. This is because
the start point of these queries is always the first dimension, and the predicate
jump is no longer applicable here. The normal traversal query makes the
performance of level order linearization and vertical linearization not much
different.

Combining the evaluation results of these two evaluations, we can confirm that the
Elf approach can benefit from level linearization. However, because the standard
Elf constructed by level order linearization cannot benefit from it, this benefit is
somewhat restrictive. For Elf variants such as Separated and Separated Length, the
level linearization approach can bring many positive effects on their performance.

5. Related Work

This chapter aims to provide an overview of related work. Since the level order
linearization approach is the core contribution of this thesis, we will introduce some
tree-based index structures that involve level-order manner to store data. Specifi-
cally, CSS-Tree and CSB+-tree should be considered. The reason why we introduce
these trees is that their generated intermediate nodes are stored in level order. This
is similar to the way of our level order linearization approach stores data. We can
get some inspiration from it. In addition, before we introduce the CSS-Tree and
CSB+-tree, we review several common index structures, such as B-tree, B+tree and
T-tree.

5.1 Common index structure

In this chapter, we review several common index structures. These index structures
are often mentioned in this thesis, but we did not systematically introduce them in
the previous chapters. In particular, the B-tree, B+tree are the basis of the CSS
tree, and we need to review them before introducing the CSS tree.

5.1.1 B-tree

B-tree is a self-balancing tree that can keep data in order. This data structure
enables the actions of searching data, sequential access, inserting data, and deleting
all in logarithmic time. B-tree, in summary, is a generalized binary search tree, and
a node can have more than 2 child nodes [Com79]. A B-tree of order m is a tree
which satisfies the following properties [Knu98]:

1. Every node has at most m children.

2. Every non-leaf node (except root) has at least [m/2] child nodes.

3. The root has at least two children if it is not a leaf node.

4. A non-leaf node with k children contains k - 1 keys.

92 5. Related Work

7 16

9 12 18 211 2 5 6

Figure 5.1: A B-tree of order 5 [BM72, Knu98]

5. All leaves appear at the same level and carry no information.

Combining the above properties, we can summarize the B-tree of order 5 in Fig-
ure 5.1. The number of keywords in root nodes n satisfies 1 ≤ n ≤ 4. The number
of keywords in non-root nodes n satisfies 2 ≤ n ≤ 4 (e.g., 1, 2, 5, 6 in the left
sub-tree), and each node contains up to 5 children (black solid dots). Except for the
root node and leaf nodes, other nodes have at least 3 children. Here we only give a
brief introduction to these properties, and we will not elaborate on how to search,
insert, and delete. As an index structure, B-tree is well suited for storage systems
that read and write relatively large blocks of data, such as disks. It is commonly
used in databases and file systems [BM72]. Therefore, many database systems use
B-tree as the standard index structure. It is a reasonable step to tuning B-tree to
obtain better cache performance in the main memory database system [Bro19].

5.1.2 B+-tree

A B+-tree is an n-ary tree. It consists of a root, internal nodes (index node) and
leaves [EN10]. In disk database systems and relational database management sys-
tems, B+ tree is the most widely used indexing technology [RJ00]. Its purpose is to
reduce the number of data disk Input/Output (I/O) operations. This is achieved by
passing in the disk page where the index is located and retrieving it to get the exact
number of pages where the entry is located, then read and write. The CSS-tree is
also based on this idea.

3 5

1 2 3 4 5 6 7

d1 d2 d3 d4 d5 d6 d7

Figure 5.2: A simple B+-tree example

A simple B+-tree example in Figure 5.2 linking the keys 1–7 to data values d1-d7.
The linked list (red rectangle) allows rapid in-order traversal. This particular tree’s
branching factor is b = 4 (order 4) [Wik20]. We can observe that the B+-tree is
similar to the B-tree. For example, their root node has at least one element, and

5.1. Common index structure 93

the range of their non-root node elements is [m/2] ≤ k ≤ [m − 1]. Compared with
B-trees, B+-tree also have many unique properties. B+-tree have two types of nodes:
internal nodes (non-leaf nodes) and leaf nodes. The internal node does not store
data but only stores the index, and the data is stored in the leaf nodes. The keys in
the internal nodes are sorted in ascending order. For a key in the internal node, all
keys in the left tree are less than it, and keys in the right sub-tree are greater than
or equal to it. The records in the leaf nodes are also arranged according to the size
of the key. Each leaf node stores pointers of adjacent leaf nodes and the leaf nodes
themselves are linked in order of the size of the key from small to large.

Because of these properties, the B+-tree has its own advantages. For example, a
single node stores more elements, which makes the number of query I/O operations
less. In addition, its query performance is stable because all queries must reach the
leaf nodes, and all leaf nodes form an ordered linked list, which is more convenient
for querying.

5.1.3 T-tree

A T-tree is an indexing technology optimized for main memory access. it is a
balanced index tree data structure containing many keywords in one node [CK96].
T-tree also inherits the characteristics of B-tree in update and memory aspect, but
in terms of size and algorithm, index items of T-tree are much more streamlined
than B-tree [Zhu11].

d1 d2 d3 ··· dn

Parent

Left	Child Right	Child

min max

Figure 5.3: T-tree node

Figure 5.3 shows T-node, a node of a T-tree. A T-node usually consists of pointers
to the parent node, the left and right child node, an ordered array of data pointers
([min, max]) and some extra control data [LNT00]. Multiple key values can be
stored in a storage node. Its leftmost and rightmost key values are the minima and
maximum key values of this node respectively (i.e., d1, dn). Its left subtree only
contains a record whose key value is less than or equal to the minimum key value.
Similarly, the right subtree only includes those records whose key value is greater
than or equal to the maximum key value. Nodes with left and right subtrees are
called internal nodes, nodes with only one subtree are called half-leaf nodes, and
nodes without subtrees are called leaves.

T-tree as an index can mainly complete three tasks: search, insert and delete. Insert
and delete are based on search. Therefore, to realize the T-tree index is to realize the
T-tree search. In addition, the T-tree is maintained by rotating the T-tree. When
the T-tree is unbalanced due to the insertion or deletion of key values, the T-tree
must be rotated to rebalance it. Although T-trees were once widely used for main

94 5. Related Work

memory databases due to their performance advantages, the latest trends in large
main memory databases have paid more attention to deployment costs.

5.2 Cache Sensitive Index Structure

The mainstream of today’s database is the main memory database, because the
data of the database is stored in memory, so the performance of the main memory
database does not need to consider the time of disk I/O operations. We are more
concerned about the mechanism of CPU access to memory. However, CPU does not
directly access the memory, but first searches in the cache. If the required data exists
in the cache (cache hit), it directly transfers the data to the CPU. If the required
data does not exist in the cache (cache miss), the data needs to be found from the
memory and written to the cache, then read to the CPU. The time for the CPU to
access the cache is much shorter than the time to access the memory. Therefore, in
a scene where the main memory database is very frequently read, the probability
of direct cache hit directly affects its performance. This is also the reason for the
emergence of cache sensitive technology.

5.2.1 CSS-tree

The full name of CSS-tree is cache sensitive search tree. Cache sensitive, that is,
try to consider the data in the cache to ensure that they can be accessed frequently
while reducing the number of times the CPU accesses the memory. Although for
database tables, there are many techniques to accelerate queries, such as from simple
sequential search, binary search to index structure B-tree, B+-tree and T tree, etc.,
but not every method considers caching problem. Although the T-tree seems to
be cache-sensitive, its utilization of the cache is actually very low [RR98]. Since
B-tree is the standard index structure of many database systems, in the beginning,
Rao and Ross used special linearization techniques to adjust the B-tree structure
[RR98, Bro19]. Thereby a CSS-tree is generated.

0

5

26-30

00

6-10

31-55 56-80

1 2

0

11-15

3

16-20 21-25

4

··· ···

Figure 5.4: Layout of a full CSS-tree (m=4) [RR98]

In general, the idea of implementing the CSS-tree is to generate an index array b
based on the existing ordered array a. This array b represents a complete m+1 binary
tree (just as a complete binary tree can be stored in a one-dimensional array), and
m is the number of index items in each non-leaf node. The m index items naturally
generate m + 1 gaps (including both sides). A full CSS-tree is shown in Figure 5.4

5.2. Cache Sensitive Index Structure 95

(the numbers in the boxes are node numbers and each node has four keys) [RR98].
In this figure, nodes 0-15 are called internal nodes, which store index items, and
nodes 16-80 are leaf nodes, which store data (that is, data in array a). So we can
observe that each node is numbered, and each internal node has m index items, and
each leaf node has m data items. After determining m, we can use this to calculate
the number of the child node of the node numbered n (if it exists) and the index of
the index item owned by the child node in the index array b. Take the above picture
as an example, the effective data (array a) that can be stored in such a CSS-tree is
(80-16+1)*4 = 260. In addition, the nodes of the CSS-tree can be stored in an array,
and the intermediate nodes of the generated CSS-Tree are stored as a continuous
array in level-order [RR98, Bro19]. In the end, after sorting the array, the order of
the array is arranged in the order of the leaf nodes. However, the CSS-tree performs
mediocre in the insertion and deletion of data, but it performs well in the case of
more query operations. This is because the CSS-tree is static. Whenever we insert
new data, we have to rebuild a CSS-tree. Although the construction time is not
long, it is already significantly longer than the query time. In order to eliminate
the reconstruction of CSS-Tree, while taking into account the efficiency of add and
delete operations, Rao and Ross proposed CSB+-tree [RR00].

5.2.2 CSB+-tree

Although CSS-Tree performs well in query performance, it is static. For this reason,
Rao and Ross proposed the CSB+-tree. It is a variant of the B+-tree that contin-
uously stores the child nodes of a given node, and only stores the address of the
first child node of the node. The addresses of other child nodes can be obtained by
calculating the offset relative to this child node. Since only the pointer of one child
node is stored, it has high utilization of the cache [RR00]. This can not only improve
the cache sensitivity but also perform incremental updates like the B+-tree [Bro19].

There are two variants of CSB+-tree, segmented CSB+-tree and full CSB+-tree.
Segmented CSB+-tree divides the child nodes into segments, and the child nodes in
the same segment are continuous Storage, in each node, only the starting address
of each segment will be stored. When there is a split, the segmented CSB+-tree can
reduce the replication overhead, because only one segment needs to be moved, and
the full CSB+-tree redistributes space for the entire node, thus reducing the splitting
overhead.

96 5. Related Work

6. Conclusion

In this chapter, we summarize the work and contributions of the entire thesis. Then,
we propose possible topics for future work based on the deficiencies mentioned in
the conceptual model and algorithm design of the level order linearization approach,
as well as the results of the evaluation.

6.1 Summary

In this section, we summarize the work of this thesis and answer the three research
questions raised in the first chapter. In this thesis, we first give a brief introduction
to the basic background. Besides, we also put forward three research questions based
on the contribution of this thesis. Then, we mainly introduce all the background
knowledge involved in this thesis. We explained the index structure and query, which
helps us understand the basis of our task. Then we explained the content related to
Elf. From its conceptual design, linearization method to query algorithm, we have
carried out a detailed analysis. In addition, we introduce the Elf variant that will
be used in our implementation. We also introduced the implementation of the level
order linearization approach. First, we introduced the conceptual model and the
conceptual design of the level order linearization approach in order to understand
what the level order linearization does. Then we give a detailed introduction to our
algorithm from design to implementation. Finally, we also introduced our partial
match query algorithm for level order linearization. we evaluate the Elf variant
constructed by the level order linearization approach. After implementation, we
evaluate the performance of level order linearization through two aspects. One is
construction evaluation and the other is query evaluation. We conducted a detailed
analysis of the evaluation data in the corresponding evaluation. Finally, we list
the evaluation results in the summary based on our analysis. After evaluation, we
introduce the related works involved in the paper. We mainly introduced the cache-
sensitive index structure. To be able to understand the relevant content, we first
gave a brief introduction to the common index structure. Finally, we summarize the
content of the paper and propose some future work.

98 6. Conclusion

Next, we answer the three research questions raised in Chapter 1 based on the
content of this thesis.

RQ 1: How to implement level order linearization for the Elf Approach?

We divide the process of implementing level order linearization for the Elf
approach into three stages, which are the analysis stage, the design stage,
and the realization stage. In the analysis stage, we first studied the con-
tent related to the multi-dimensional index structure, and on this basis, we
analyzed the conceptual design of Elf. This extends to the linearization of
Elf. In the design stage, we first analyze the structure of level order lin-
earization, which is the conceptual model. Then, we carry out a conceptual
design based on this model. By analyzing a sample data table, we list our
design step by step. In the realization phase, we complete the realization
of level order linearization based on these design steps.

RQ 2: What is the difference between the Partial Match algorithm adapted to
level order linearization and the standard Partial Match algorithm?

We also implemented a new PM algorithm in the realization stage of. In
this process, we analyzed their differences. They are all designed based on
the characteristics of their linearization. So the biggest difference is the idea
of the algorithm. The standard partial matching algorithm follows the idea
of the DFS algorithm, and the horizontal linearized matching algorithm
uses the idea of BFS. The order in which they traverse the data is vertical
and level-order manner respectively.

RQ 3: How will the level order linearization strategies affect Elf’s performance?

This research question is also the second goal of our thesis work, which is
to verify whether the Elf method can benefit from level order linearization.
In order to answer this question, we evaluated the level order linearization
approach we achieved. Through evaluation, we found that the level order
linearized Elf variant (e.g., Separated, Separated Length) saves the cutoffs
pointer space, improves the construction speed of massive data files and
query performance.

6.2 Future Work

In this chapter, we introduce possible topics for future work. They are the inspiration
we got at different stages of completing the thesis. At the same time, they are also
several topics that we have selected for further research after combining the results
of the evaluation. In addition, we propose some optimization work for the existing
level order linearization approach. Because these optimizations need to adjust the
overall structure of the existing code, we put them in the future work based on the
time of our task and personal factors.

6.2. Future Work 99

6.2.1 Adjust the data structure of the standard Elf

Based on our evaluation results, we found that the standard Elf constructed by
level order linearization only changed the data storage order. However, because
it is limited by the data structure of the standard Elf, it cannot benefit from the
level order linearization approach. Therefore, under the premise that all data is still
stored in one data structure, how to adjust this data structure so that the standard
Elf can benefit from the level linearization will be an interesting topic.

6.2.2 Queue as a New Implementation Method

The vertical linearization approach uses the standard DFS algorithm, which reason-
ably uses recursion. For the level order linearization approach, the standard idea of
the BFS algorithm is to use queues to achieve a breadth-first search. However, we
only did a quick screening in the initial design phase. The queue is restrictive, for
example, it can only be stored and retrieved sequentially and cannot be accessed
arbitrarily. Therefore, we did not choose to use the queue as the data structure for
storing data in the linearization approach.

We analyzed the conceptual model of the level order linearization method and de-
cided to use a general vector to store data about the number of rows. This avoids
the use of queues. However, our theoretical inferences indicate that the construction
time using this model will be slightly longer than the construction time of the ver-
tical linearization method. Our evaluation data on the construction for small and
medium-sized data files also confirmed this point. This does not conform to the
theory that DFS and BFS have the same time complexity. Although there might be
other factors that affect the construction time, we still attribute the main factor to
the insufficient structure of the algorithm. Therefore, the queue as the main imple-
mentation method for the level order linearization approach is worth considering. In
addition, if we choose a queue to achieve level order linearization, we must consider
a new model, because the existing level order linearization approach cannot provide
a valuable reference for it.

6.2.3 Further Optimization

In this chapter, we propose some optimization work. These works are based on
the evaluation results and the theoretical part of our Thesis. When we carry out
related work in the future, we can consider starting from these optimization work.
Although these optimization works are based on theoretical speculation, they should
still receive sufficient attention in future work.

6.2.3.1 First Visited MonoList

We discussed and analyzed the three methods of processing MonoLists in Sec-
tion 3.3.2. Then, we chose the same way as Elf store DimensionLists, that is, save
the size of a MonoList in the front of each MonoList. However, we found in the
evaluation results that this method does not have an advantage in storage space. At
the same time, if there are more MonoLists in the construction process, the time for
us to calculate the size of the MonoLists will increase, and the greater the impact on

100 6. Conclusion

the construction time. Among the remaining two methods, we focus on the second
method, which is First visited MonoList in Section 3.3.2.2. Although this method
lacks flexibility when we deal with MonoLists, it has a relatively large advantage in
terms of storage space. This is because this method only needs to add one more vec-
tor. We use this vector to save the start position of a MonoList in each dimension.
Therefore, the size of this vector will not exceed the number of dimensions. How-
ever, the most important part of achieving this optimization is to use a reasonable
method to obtain the necessary data.

6.2.3.2 Optimization for Partial Match Queries

Although we have implemented the function for the most important feature of the
level order linearization approach in the new PM algorithm, which jumps directly
to the first predicate for the partial match query, we still use depth-first match
when dealing with specific dimension values. Therefore, in future optimization work,
we can consider using the breadth-first feature when we use partial match query
algorithm processes DimensionLists.

6.2.4 Other Query Algorithms

In our contribution, we only implemented the PM algorithm based on the char-
acteristics of the level order linearization approach. In our contribution, we only
implemented the PM algorithm based on the characteristics of the level order lin-
earization approach. However, for the normal Elf method, it has many different
query types, such as column-column comparison query, parallel query. Therefore,
in future work, it is an important theme to design and implement algorithms for
multiple query types based on the characteristics of level order linearization.

Bibliography

[BG10] Matthias Beck and Ross Geoghegan. The art of proof: basic training
for deeper mathematics. Springer Science & Business Media, 2010.
(cited on Page 33)

[BKSS17] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler.
Accelerating multi-column selection predicates in main-memory-the
elf approach. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 647–658. IEEE, 2017. (cited on Page xi,

xv, 2, 10, 11, 16, 17, 19, 21, 22, 23, 24, and 25)

[BM72] R Beyer and EM McCreight. Organization and maintenance of large
ordered indices. Acta Informatica, 1(3):173–189, 1972. (cited on

Page xiii and 92)

[Bón02] Miklós Bóna. A walk through combinatorics: an introduction to enu-
meration and graph theory. World Scientific, 2002. ISBN-13: 978-
9813237452. (cited on Page 33)

[Bro19] David Broneske. Accelerating Mono and Multi-Column Selection
Predicates in Modern Main-Memory Database Systems. PhD thesis,
University of Magdeburg, Germany, 2019. (cited on Page xi, 1, 2, 23,

24, 31, 92, 94, and 95)

[Bur01] Donald K Burleson. Oracle high-performance SQL tuning, 1. Edition.
McGraw-Hill Education, Inc., 2001. ISBN-13 : 978-0072190588. (cited

on Page 6)

[Cha01] Lin Chao. Which is faster table scan or index access. Journal of
Chinese Computer Systems, 22(9):31, 2001. ISSN: 1000-1220. (cited

on Page xv, 6, and 7)

[CK96] Kong-Rim Choi and Kyung-Chang Kim. T*-tree: a main memory
database index structure for real time applications. In Proceedings
of 3rd International Workshop on Real-Time Computing Systems and
Applications, pages 81–88. IEEE, 1996. (cited on Page 93)

[CLRS01a] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clif-
ford Stein. Introduction to algorithms second edition. The Knuth-
Morris-Pratt Algorithm, year, 2001. (cited on Page 34 and 36)

102 Bibliography

[CLRS01b] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clif-
ford Stein. Section 22.2: Breadth-first search. Introduction to Algo-
rithms, pages 531–539, 2001. (cited on Page 35)

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clif-
ford Stein. Introduction to algorithms. MIT press, 2009. (cited on

Page 33 and 35)

[Com79] Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys
(CSUR), 11(2):121–137, 1979. (cited on Page 91)

[Dro12] Adam Drozdek. Data Structures and algorithms in C++, Fourth Edi-
tion. Cengage Learning, 2012. ISBN-13 : 978-1133608424. (cited on

Page 35)

[DYZ+15] Dinesh Das, Jiaqi Yan, Mohamed Zait, SR Valluri, Nirav Vyas, Rama-
rajan Krishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy
Mukherjee. Query optimization in oracle 12c database in-memory.
Proceedings of the VLDB Endowment, 8(12):1770–1781, 2015. (cited

on Page xi, 1, 6, 7, 8, 11, and 19)

[EN10] R. Elmasri and S. Navathe. Fundamentals of Database Systems, 6th
Edition. Pearson Education, 2010. ISBN-13: 978-0-136-08620-8.
(cited on Page 92)

[Epp10] Susanna S Epp. Discrete mathematics with applications, 5th Edition.
Cengage Learning, Inc, 2010. ISBN-13 : 978-0357114087. (cited on

Page 33)

[FCP+12] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,
Stefan Sigg, and Wolfgang Lehner. Sap hana database: data man-
agement for modern business applications. ACM Sigmod Record,
40(4):45–51, 2012. (cited on Page 1)

[GM08] Hector Garcia-Molina. Database systems: the complete book, Second
Edition. Pearson Education India, 2008. ISBN-13 : 978-0131873254.
(cited on Page 8)

[GT06] Michael T Goodrich and Roberto Tamassia. Algorithm design: foun-
dation, analysis and internet examples. John Wiley & Sons, 2006.
(cited on Page 34)

[HR13] Theo Härder and Erhard Rahm. Datenbanksysteme: Konzepte und
Techniken der Implementierung. Springer-Verlag, 2013. (cited on

Page 12)

[Jav17] Paul Javin. Difference between table scan, index scan, and index seek
in sql server database, November 2017. https://www.java67.com/
2017/12/difference-between-table-scan-index.html Accessed Juni 26,
2020. (cited on Page 9)

https://www.java67.com/2017/12/difference-between-table-scan-index.html
https://www.java67.com/2017/12/difference-between-table-scan-index.html

Bibliography 103

[KBSS15] Veit Köppen, David Broneske, Gunter Saake, and Martin Schäler.
Elf: A main-memory structure for efficient multi-dimensional range
and partial match queries. Otto-von-Guericke-University Magdeburg,
Tech. Rep., pages 002–2015, 2015. (cited on Page 2)

[Knu97] Donald Ervin Knuth. The art of computer programming, Subse-
quent Edition, volume 3. Pearson Education, 1997. ISBN-13 : 978-
0201896831. (cited on Page 35)

[Knu98] Donald E Knuth. The art of computer programming: Volume 3: Sort-
ing and Searching. Addison-Wesley Professional, 1998. (cited on

Page xiii, 91, and 92)

[KSS14] Veit Köppen, Gunter Saake, and Kai-Uwe Sattler. Data Warehouse
Technologien. mitp Verlags GmbH & Co. KG, 2014. ISBN-13 : 978-
3826694851. (cited on Page 16)

[KT07] Robert Kruse and CL Tondo. Data structures and program design
in C, 1st Edition. Pearson Education India, 2007. ISBN-13 : 978-
8177584233. (cited on Page 33)

[LC85] Tobin J Lehman and Michael J Carey. A study of index structures
for main memory database management systems. Technical report,
University of Wisconsin-Madison Department of Computer Sciences,
1985. (cited on Page 5)

[LNT00] Hongjun Lu, Yuet Yeung Ng, and Zengping Tian. T-tree or b-tree:
Main memory database index structure revisited. In Proceedings 11th
Australasian Database Conference. ADC 2000 (Cat. No. PR00528),
pages 65–73. IEEE, 2000. (cited on Page 93)

[LP13] Yinan Li and Jignesh M Patel. Bitweaving: fast scans for main mem-
ory data processing. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data, pages 289–300, 2013.
(cited on Page 11)

[LY10] Yong Liu and Xinquan Yang. Data retrieval performance analysis of
multidimensional indexes is stored in b+-tree and kd tree structures,
chinese edition. Science & Technology Information, 2010(19):86–87,
2010. ISSN:1001-9960. (cited on Page 14)

[Pow06] Gavin Powell. Beginning database design, 1st Edition. John Wiley &
Sons, 2006. ISBN-13 : 978-0764574900. (cited on Page 8)

[RJ00] Ramakrishnan Raghu and Gehrke Johannes. Database management
systems, 2nd edition, 2000. ISBN-13 : 978-0072322064. (cited on

Page 92)

[RR98] Jun Rao and Kenneth A Ross. Cache conscious indexing for decision-
support in main memory, 1998. (cited on Page xiii, 94, and 95)

104 Bibliography

[RR00] Jun Rao and Kenneth A Ross. Making b+-trees cache conscious in
main memory. In Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, pages 475–486, 2000. (cited

on Page 3 and 95)

[SDRK02] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and
Yannis Kotidis. Dwarf: Shrinking the petacube. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of
data, pages 464–475, 2002. (cited on Page xv, 16, 17, and 19)

[SK13] Lefteris Sidirourgos and Martin Kersten. Column imprints: a sec-
ondary index structure. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 893–904,
2013. (cited on Page 11)

[SSH18] Gunther Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken:
Konzepte und Sprachen. MITP-Verlags GmbH & Co. KG, 2018. (cited

on Page 5 and 8)

[VAQLMJ20] Leonardo V Arias, Christian Q López, Alexandra Mart́ınez, and
Marcelo Jenkins. Assessing two graph-based algorithms in a mod-
elbased testing platform for java applications. In 2020 15th Iberian
Conference on Information Systems and Technologies (CISTI), pages
1–6. IEEE, 2020. (cited on Page 32)

[Wik20] Wikipedia contributors. B+ tree. https://en.wikipedia.org/w/index.
php?title=B%2B tree&oldid=973377564, 2020. [Online; accessed 5-
November-2020]. (cited on Page 92)

[Wol19] Kai Wolf. Datenparallele Selektionen auf der multidimensionalen In-
dexstruktur Elf. Masterarbeit, University of Magdeburg, Germany,
December 2019. (cited on Page 1 and 6)

[Xu05] Yujin Xu. Optimize sql by analyzing the execution plan of sql state-
ments, chinese edition, November 2005. http://www.itpub.net/forum.
php?mod=viewthread&tid=478999, [Online; accessed 6-June-2020].
(cited on Page 6)

[YW02] Weimin Yan and Weimin Wu. Data structure (C language), Chi-
nese Edition. Tsinghua University Press, Beijing, 2002. ISBN: 978-
7302023685. (cited on Page 36)

[Zhu11] Zhi Lin Zhu. Optimization of t-tree index of main memory database in
critical application. In Applied Mechanics and Materials, volume 40,
pages 206–211. Trans Tech Publ, 2011. (cited on Page 93)

[ZR02] Jingren Zhou and Kenneth A Ross. Implementing database operations
using simd instructions. In Proceedings of the 2002 ACM SIGMOD in-
ternational conference on Management of data, pages 145–156, 2002.
(cited on Page 29)

https://en.wikipedia.org/w/index.php?title=B%2B_tree&oldid=973377564
https://en.wikipedia.org/w/index.php?title=B%2B_tree&oldid=973377564
http://www.itpub.net/forum.php?mod=viewthread&tid=478999
http://www.itpub.net/forum.php?mod=viewthread&tid=478999

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 20. November 2020

	Contents
	List of Figures
	List of Tables
	List of Algorithm
	List of Code Listings
	List of Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 Index Structure
	2.1.1 Ways to Access Data
	2.1.1.1 Full Table Scan
	2.1.1.2 Index Access

	2.1.2 Selection Predicate and Types of Query
	2.1.2.1 Query with the Selection Predicate
	2.1.2.2 Query Type

	2.1.3 One-Dimensional Index and Multi-Dimensional Index
	2.1.3.1 One-Dimensional Index
	2.1.3.2 Multi-Dimensional Index

	2.2 Elf as Multi-Dimensional Index Structure
	2.2.1 Conceptual Design of Elf
	2.2.1.1 Dwarf
	2.2.1.2 Elf

	2.2.2 Linearization of Elf
	2.2.2.1 Memory Layout based on Elf
	2.2.2.2 Optimization Methods

	2.2.3 Partial Match Algorithm of Elf

	2.3 Elf Variants
	2.3.1 Elf64
	2.3.2 Elf_Separated
	2.3.3 Elf_Separated_Length
	2.3.4 Elf_SIMD

	2.4 Summary

	3 Implementation
	3.1 Conceptual Model
	3.1.1 Depth First Search and Breadth First Search
	3.1.1.1 Depth First Search
	3.1.1.2 Breadth First Search
	3.1.1.3 Comparison and Summary

	3.1.2 Concept Design
	3.1.3 Elf Variants
	3.1.3.1 Elf64_Level
	3.1.3.2 Elf_Level_Separated
	3.1.3.3 Elf_Level_Separated_Length

	3.1.4 Theoretical Advantages and Disadvantages

	3.2 Algorithm of Level Order Linearization
	3.2.1 Implementation
	3.2.1.1 Algorithm Design
	3.2.1.2 Algorithms related to Cutoffs
	3.2.1.3 Examples of extreme scenarios

	3.2.2 Introduction of Pseudo-Code
	3.2.2.1 Linearize the First Dimension
	3.2.2.2 Linearize the Remaining Dimensions
	3.2.2.3 Linearize the DimensionList
	3.2.2.4 Construction Algorithm in Elf Variant

	3.3 Partial Match Query Algorithm
	3.3.1 Partial Match Query Algorithm Design
	3.3.2 MonoLists in Elf_level_separated
	3.3.2.1 Completely Traverse
	3.3.2.2 First visited MonoList
	3.3.2.3 MonoList with Length
	3.3.2.4 Compare and Summary

	3.3.3 Introduction of Pseudo-Code
	3.3.3.1 The First Dimension as Last Selected Predicate
	3.3.3.2 The First Dimension as First Selected Predicate
	3.3.3.3 MonoLists before the First Selected Dimension
	3.3.3.4 Algorithm for MonoLists only
	3.3.3.5 Non-first Dimension as the First Selected Predicate

	3.4 Summary

	4 Evaluation
	4.1 Framework of the Experiment
	4.1.1 Experimental Environment
	4.1.2 Data for Evaluation
	4.1.3 Evaluation Objects
	4.1.4 Evaluation Type
	4.1.4.1 Construction Evaluation
	4.1.4.2 Query Evaluation

	4.2 Experiment
	4.2.1 Construction Evaluation
	4.2.1.1 Storage Consumption
	4.2.1.2 Construction Time
	4.2.1.3 Evaluation Result and Summary

	4.2.2 Query Evaluation
	4.2.2.1 Query Statement used for Evaluation
	4.2.2.2 Without Cutoffs
	4.2.2.3 With Cutoffs

	4.3 Summary

	5 Related Work
	5.1 Common index structure
	5.1.1 B-tree
	5.1.2 B–tree
	5.1.3 T-tree

	5.2 Cache Sensitive Index Structure
	5.2.1 CSS-tree
	5.2.2 CSB–tree

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Adjust the data structure of the standard Elf
	6.2.2 Queue as a New Implementation Method
	6.2.3 Further Optimization
	6.2.3.1 First Visited MonoList
	6.2.3.2 Optimization for Partial Match Queries

	6.2.4 Other Query Algorithms

	Bibliography

