University of Magdeburg

School of Computer Science

OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

Bachelor Thesis

Searching in Sorted Lists on
Modern Processors

Author:

Lars-Christian Schulz
July 26, 2017

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

Department of Technical & Business Information Systems

M.Sc. David Broneske

Department of Technical & Business Information Systems

Schulz, Lars-Christian:
Searching in Sorted Lists on Modern Processors
Bachelor Thesis, University of Magdeburg, 2017.

Abstract

Sorted lists are one of the simplest, but also one of the most commonly used, data
structures. An important operation on sorted lists is searching for a specific element or
a range of elements. This work revisits the basic sequential, binary and k-ary (k > 2)
search algorithms in the context of modern CPU architectures. To this end, we provide
multiple implementation variants, including vectorized search functions using the x86
SIMD instruction set extensions SSE, AVX and AVX2, and apply software optimization
techniques to them. The optimizations include branch elimination, loop unrolling and
software controlled prefetching. We have evaluated the implementations on a modern
x86 CPU and identified the implementation variants and optimizations preferred by
the processor. In doing so, we found three different list size ranges favoring different
algorithms. In particular sequential searching is suited to very small lists and binary
searching to larger datasets still fitting in the processor cache. If cache misses are
common, we found k-ary searching to offer the best performance.

Acknowledgments

[would like to thank my advisors Prof. Dr. Gunter Saake and David Broneske for giving
me the opportunity to write this thesis at the Department of Technical & Business
Information Systems. I especially thank David Broneske, whose feedback was very
valuable.

I am grateful to Prof. Dr. Thomas Leich for giving me the opportunity of an internship
at the METOP GmbH.

Finally, I thank my family for their support and encouragement.

Contents

List of Figures

List of Tables

List of Algorithms

List of Code Listings

1 Introduction

2 Background

2.1

2.2

3.1

3.2

3.3

Processor Architecture
2.1.1 Memory Hierarchy and Caches
2.1.2 Branch Prediction and Predication
2.1.3 SIMD Instruction Sets
Search Algorithms
2.2.1 Sequential Search oo
2.2.2 Dichotomic Search

2221 Binary Search00

2.2.2.2 Fibonaccian Search
223 k-arySearch
2.2.4 Linearized k-ary Search Trees

2.2.4.1 Searching in Linearized Trees

2.2.4.2 Range Scans

3 Sequential Search

Implementation
3.1.1 Scalar Sequential Search
3.1.2 Vectorized Sequential Search
Optimizations
3.2.1 Branch Elimination
3.2.2 Loop Unrolling
Evaluation e
3.3.1 Evaluation Environment

3.3.2 Branch Elimination

xiii

XV

xVvil

XX

Viil Contents
3.3.3 Loop Unrolling 33
3.3.4 Vectorization 36

34 Summary 36
4 Binary Search 37
4.1 Implementationo 37
4.1.1 Scalar Binary Search 37
4.1.2 Scalar Uniform Binary Search 39
4.1.3 Vectorized Binary Search 41
4.1.4 Vectorized Uniform Binary Search 44
4.1.5 Offset Binary Search 45
4.1.6 Fibonaccian Search 0L 46

4.2 Optimizations 49
4.2.1 Branch Elimination o000 49
4.2.2 Prefetching 50
4.2.3 Loop Unrolling 54

4.3 Evaluation 55
4.3.1 Evaluation Setup Lo 55
4.3.2 Branch Elimination 56
4.3.3 Prefetching oL 57
4.34 Loop Unrolling 60
4.3.5 Vectorization 60
4.3.6 Exact Match Search 61
4.3.7 Offset Binary and Fibonaccian Search 62
4.3.8 Cache Utilization 64

4.4 Summaryo e 65
5 k-ary Search 67
5.1 Implementation 67
5.1.1 Scalar k-ary Search L. 67
5.1.2 Scalar Uniform k-ary Search 68
5.1.3 Vectorized k-ary Search 70
5.1.4 Linearized k-ary Search Trees 74

5.2 Optimizations 78
5.3 Evaluationo 80
5.3.1 Scalar k-ary Searcho 80
5.3.2 Scalar Uniform k-ary Search 81
5.3.3 Branch Elimination 82
5.3.4 Vectorized k-ary Searcho 82
5.3.5 Exact Match 84
5.3.6 Linearized k-ary Search Trees 85

5.4 Summary 86

6 Comparison of Sequential, Binary and k-ary Searching 87

Contents Ix
7 Related Work 91
8 Conclusion and Future Work 93
A Helper Functions 97
A1 Bit Scans 97
A.2 Mathematical Functions 98
A3 SSE/AVX Intrinsic Wrappers 99
A3.1 SSE/AVX Comparisons 101

A.3.2 Mask Evaluation 106

A3.3 SSE/AVX Arithmetic. oo 0oL 108

A3.4 AVX2 Gather Loads 109

A.3.5 Constants 110
Bibliography 113

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

2-way Set Associative Cache 5
Multibanked Cache 6
SSE comparison example Lo oo 12
Example of lowerBoundBinarySearch 15
Example of Fibonaccian search 18
Perfect k-ary search tree oL 20
Complete k-ary search tree 21
Scalar and vectorized (SSE4.1) sequential search with and without a

branch in the search loop 0L 33
Unrolled sequential search 34
Unrolled branchless sequential search 34
Unrolled branchless sequential search with independent search steps . . 35

Comparison of scalar and vectorized (SSE4.1) sequential search imple-

mentatlons 35
Perfect binary search tree 40
Example of lowerBoundUniformBinarySearch. 41
Example of lowerBoundUniformBinarySearch. 41
Example of lowerBoundBinarySearchSIMD 43
Example of lowerBoundFibonacciSearch 48

Indices used by lowerBoundUniformBinarySearchBranchlessPrefetch4d 54
Lower Bound Binary Search Branch Elimination 56

Stalled clock cycles and L2 hardware prefetcher requests Y

xii List of Figures
4.9 Retired Branch Mispredictions o7
4.10 Software prefetching applied to the (lower bound) non-uniform binary

search Lo 58
4.11 Software prefetching applied to the (lower bound) uniform binary search 58
4.12 Cache hits and bytes loaded from main memory for the scalar binary search 59
4.13 Loop Unrolling 59
4.14 Lower Bound Vectorized Binary Search 60
4.15 Comparison of scalar and vectorized binary search implementations . . 61
4.16 Exact match binary search and an exact match search implemented in

terms of a lower bound search o000 62
4.17 Lower Bound Offset Binary Search 63
4.18 Lower Bound Offset Binary Search 1:2 Optimizations 63
4.19 Comparison of (lower bound) Fibonaccian and Offset Binary Search.. . 63
4.20 Lower Bound Fibonaccian Search Overhead 63
4.21 Comparison of non-offset (1:1) and offset binary search 64
4.22 Number of unique memory accesses falling into each L1 cacheset . .. 65
5.1 Branching and branchless non-uniform k-ary search 80
5.2 Branching and branchless uniform k-ary search 81
5.3 Comparison of the non-uniform and uniform k-ary search 81
5.4 Branching and branchless scalar lower bound k-ary search 82
5.5 Comparison of the vectorized (SSE4.1) k-ary search and the scalar branch-

less uniform k-ary searcho 83
5.6 Instructions retired and instructions per clock of the vectorized (SSE4.1)

and scalar k-ary search with 32-bit keys. 83
5.7 Comparison of the vectorized (AVX2) k-ary search and the scalar branch-

less uniform k-ary searcho 83
5.8 Average number of additional iterations needed by the lower bound based

exact match k-ary search oo o L 84
5.9 Relative speedup of the direct exact match k-ary search compared to the

lower bound based search o000 85
5.10 Lower bound and exact match search on a linearized tree compared with

searching on a sorted array Lo 86

List of Figures xiii
6.1 Fastest lower bound search algorithms for less than 32 keys 88
6.2 Fastest lower bound search algorithms for arrays of 32 to 26 keys 88
6.3 Fastest lower bound search algorithms for more than 2'¢ keys. 89
6.4 Average number of bytes loaded from main memory per search 89
6.5 Fastest lower bound search algorithms with search keys are generated by

Algorithm 3 90
6.6 Relative performance of optimized search algorithms compared to the
general purpose std: :lower_bound 90

X1V

List of Figures

List of Tables

2.1 Data type and corresponding k for the SIMD k-ary search

XVi List of Tables

List of Algorithms

= © 00 ~J O Ui W N -

Exact Match Sequential Search 11
Lower Bound Sequential Search 11
Lower Bound Sequential Search using SIMD 12
Binary Search 13
Lower Bound Binary Search 14
Binary Search using SIMD oL 16
Fibonaccian Search L 17
k-ary Search 19
Exact Match Search on a Linearized k-ary Search Tree using SIMD . . 22

Advance to the next element in sorted order when iterating over a lin-
earized tree oL 23

List of Code Listings

2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Scan loopin C
Scan loop in x86-64 assembler (MASM syntax)
Branchless scan loopin C L
Branchless scan loop in x86-64 assembler (MASM syntax)
Lower Bound Sequential Search
Sequential Search L oo
Prolog of the SIMD sequential search
Lower Bound Sequential Search SIMD
Equality test for an exact match vectorized sequential search
Branchless Lower Bound Sequential Search
Branchless Vectorized Lower Bound Sequential Search
Loop body of the branchless vectorized search
Unrolled Lower Bound Sequential Search
Branchless Unrolled Lower Bound Sequential Search
Branchless Unrolled Lower Bound Sequential Search with independent
search steps L
Unrolled Vecorized Lower Bound Sequential Search
Branchless Unrolled Vectorized Lower Bound Sequential Search .
Branchless Unrolled Vectorized Lower Bound Sequential Search SIMD
with independent search steps 0L
Binary Search
Lower Bound Binary Search
Exact match binary search implemented in terms of a lower bound binary
search
Lower Bound Uniform Binary Search
Vectorized Binary Search oo
Alternative mask evaluation for binarySearchSIMD
Vectorized Lower Bound Binary Search
Vectorized Lower Bound Uniform Binary Search
Lower Bound Offset Binary Search
Helper functions for the Fibonaccian search
Fibonaccian Search
Lower Bound Fibonaccian Search
Branchless Lower Bound Binary Search

o0 0o Co o

25
26
27
27
27
28
28
29
29
30

30
31
31

XX List of Code Listings
4.14 Branchless Binary Search 0L 50
4.15 Branchless Vectorized Binary Search 50
4.16 Branchless Vectorized Lower Bound Binary Search 50
4.17 Branchless Vectorized Lower Bound Uniform Binary Search 51
4.18 Branchless Lower Bound Binary Search with Prefetching 51
4.19 Lower Bound Uniform Binary Search Prefetch2 52
4.20 Lower Bound Uniform Binary Search Prefetch4 53
4.21 Unrolled Branchless Lower Bound Binary Search 54
5.1 Lower Bound k-ary Search, 68
5.2 getTreeHeighto 68
5.3 Lower Bound Uniform k-ary Search 69
5.4 Vectorized Lower Bound k-ary Search (1) 71
5.5 kArySearchVectorTypes 72
5.6 kArySearchIndexType 72
5.7 Vectorized Lower Bound k-ary Search (2) 73
5.8 Vectorized Lower Bound k-ary Search (3) 74
5.9 Key equality test for vectorized exact match uniform k-ary search . . . 75
5.10 Searching in Linearized k-ary Search Trees 75
5.11 LinearizedTreelterator 76
5.12 LinearizedTreelterator::operator++() 77
5.13 LinearizedTreelterator::traverseUp() 78
5.14 Branchless Lower Bound Ternary Search 79
5.15 Branchless Lower Bound Uniform k-ary Search (1) 79
5.16 Branchless Lower Bound Uniform k-ary Search (2) 79
Al Bitscans 97
A.2 Definition of ceillog2 98
A.3 Definition of pow_const_baseo 98
A.4 Definition of Vector 99
A.5 Definition of keys_per_simd_word 99
A.6 Loding, storing and setting SSE/AVX registers 100
A7 SIMD comparison 102
A.8 Definition of adjustForSignedComparison 104
A9 Mask Evaluation 106
A.10 Definition of _mm_testz and _mm_testc 107
A11 SSE/AVX Arithmetic 108
A12 AVX2 gather 109

A.13 Definition of generateLaneFactors 110

1. Introduction

Sorted list are one of the simplest ways to store sets of elements. Nevertheless, they
allow for efficient element retrieval, while being more compact than search trees storing
explicit pointers or hash tables. They work especially well, if iteration over sorted
ranges of elements is required, since the elements are already continuously stored in the
correct order.

This thesis deals with searching as one of the most common operations on sorted lists.
Specifically, we are concerned with arrays of tightly packed elements of basic types.
With basic types we refer to the elementary integral and floating point types a 64-bit
processor can store in its registers. The task of searching in such arrays arises in the
common case of a program working with sets of pointers, IDs or keys. Since arrays
are often sorted especially to facilitate efficient repeated searching, the employed search
algorithm will run many times and can have a significant impact on overall execution
time. Therefore it is worthwhile to investigate optimized search algorithms as an alter-
native to standard library search functions that must maintain generality and thus are
probably not optimal for every case. This is especially true, if we consider the complex
behavior of modern superscalar processors and the ever increasing gap between proces-
sor speed and memory latency, that make selecting the right optimizations difficult and
machine dependent.

In this work, we compare variants and optimizations of sequential, binary and, as a
generalization of binary searching, k-ary search algorithms. We pay close attention to
the superscalar, out-of-order and speculative nature of modern high-performance CPUs
and employ single instruction multiple data (SIMD) precessing.

If one gives up the simplicity and convenience of a simple sorted array, implicit search
trees embedded in an array are an interesting and still very compact alternative. We
examine one possible search tree linearization scheme to determine the possible gains
in search speed.

2 1. Introduction

Since searching in sorted arrays is a sub-algorithm in many more complex operations,
understanding the behavior of these elementary search algorithms is necessary to opti-
mize more complex programs. An important example are database operations, where
recent research aims at automatically tuning high level operations to the underlying
hardware [BBHS14].

Goal of this Thesis

The goal of this thesis is to examine the performance characteristics and hardware
utilization of elementary search algorithms operating on sorted arrays and to some
extent on linearized k-ary search trees. To this end, we:

1. Implement classical sequential, binary and k-ary searching in C++, as well as
advanced variants including single instruction multiple data (SIMD) enabled al-
gorithms.

2. Apply hardware sensitive optimizations like branch elimination, loop unrolling
and software controlled prefetching to the implementations.

3. Evaluate and compare the run-time and system resource usage of the various
search algorithms and the differences introduced by different implementation vari-
ants and optimizations.

Structure of the Thesis

This thesis begins with a background chapter, giving a summary of the characteristics
of modern CPUs relevant to searching and introducing the examined search algorithms.
The bulk of the thesis is divided in three chapters, each presenting our implementations,
optimizations and evaluation of sequential, binary and general k-ary searching. In
Chapter 6, we compare the fastest implementations from the previous chapters with
each other to determine the overall best algorithms. The thesis is completed by a
chapter on related work and the conclusion.

2. Background

In this chapter we discuss selected characteristics of modern processors relevant to
program optimization and introduce various search algorithms operating on ordered
lists.

2.1 Processor Architecture

In the following sections, we briefly introduce the concepts of a CPU cache, branch
prediction, ‘single instruction, multiple data’ (SIMD) processing and some related im-
plementation techniques relevant to the search algorithms treated in Section 2.2.

2.1.1 Memory Hierarchy and Caches

Over the past decades, processor performance grew exponentially, while memory tech-
nology gradually fell behind. A modern CPU like the Intel Core i7-7700 has a theoretical
maximum memory bandwidth of 37.5 GB/s when both memory channels are used with
DDR4-2400 memory.! The same processor can fetch 16 bytes of instructions each clock
cycle [Int16a], yielding a theoretical bandwidth requirement of 57.6 GB/s at a the rated
clock speed of 3.6 GHz for instructions alone on a single core. Clearly the main mem-
ory is not fast enough to support even a single core. An even more important limit of
DRAM main memory is its latency. A modern processor with a clock rate of 3 GHz
can access memory approximately every 300 ps, whereas the CAS latency? of a typical
DDR4-2400 module is 14.2 ns®. This is worse than older DDR2-800 memory with a
CAS latency of 12.5 ns*, indicating the physical limits to main memory latency. In
short, the DRAM based main memory can not directly be connected to the processor
if it should run with speeds in the GHz range.

!Datasheet, Vol. 1: 7th Gen Intel Processor Family for S Platforms

2The time until the transfer of the requested data starts after issuing a READ command
3 Assuming timings of 17-17-17 (CL-tRCD-tRP)

4 Assuming timings of 5-5-5 (CL-tRCD-tRP)

4 2. Background

The solution to this problem lies in faster but much smaller memories embedded into
the processors. These memories are called caches and their effectiveness depends on
two locality properties of typical memory accesses [SSH11]:

Temporal Locality Recently used data will probably be referenced again in the near
future.

Spatial Locality If a particular storage location is referenced, adjacent storage loca-
tions are likely to be referenced soon.

From a software optimization standpoint, this means the memory access pattern of a
program should be designed to exhibit these properties as much as possible.

Cache Organization

Recent CPUs typically have three general data caches, called the L1, L2 and L3 cache.
The last cache level is also refereed to as LLC (last level cache). On x86 processors the
L1 cache is most often divided in an instruction and a data cache. We will mostly be
concerned with the data cache (L1D).

Each cache level can either be strictly inclusive, exclusive or neither of those. A strictly
inclusive cache contains everything the caches further up the hierarchy contain, e.g. if
the L3 cache is inclusive, everything in the L1 and L2 cache is also in the L3 cache.
Inclusiveness has the advantage of simplifying cache coherence. Its main disadvantage
is the eviction of cache lines from multiple caches when a new line is loaded into the
higher cache levels [JBBT10]. A strictly exclusive cache contains nothing that is already
present in a higher cache, thus increasing the effective cache capacity [ZDJ04]. The last
possibility is a cache guaranteeing neither inclusiveness nor exclusiveness [ZAF07]. Note
that the inclusive/exclusive property can be different for each cache level. Recent Intel
processors since the Sandy Bridge microarchitecture have an inclusive L3 cache and
non-inclusive L1 and L2 caches [Int16a].

Caches deal with data in units of cache lines. Cache lines are always loaded as complete
blocks aligned to their size. A typical cache line size is 64 bytes. The question where
in the cache a cache line should be placed leads to three different possible mapping
schemes from main memory addresses to positions in the cache. The first option is
to allow any memory block to be stored at any location in the cache. This is called a
fully associative cache. The second option is to define a function mapping each memory
block to exactly one possible location in the cache. This is called a direct mapped cache.
Since modern computers are binary, functions of the form block address mod 2", where
n is an integer and 2" is the size of the cache in lines, are preferred. However, other
mapping functions are also possible. The general data caches in modern CPUs use a
scheme in between the first two called a set associative cache: Each cache line can be
placed in one of a small set of possible locations. [HP11]

To access a set associative cache the address of a memory location is broken up in three
parts [HP11]:

2.1. Processor Architecture 5

line address

i >|
F >|

memory address: tag | set index | offset

‘ |

byte 0, 1, ..., 64 byte 0, 1, ..., 64

0x0000
0x0040
0x0080
0x00CO
0x0100
0x0140
0x0180

set tag status data tag status data

Figure 2.1: 2-way Set Associative Cache

1. The offset of the specific memory location in the cache line.
2. The set index identifying the set that the cache line can reside in.

3. The tag used to check whether a cache line is present in its set.

In Figure 2.1 we show how these fields are used to access a 2-way set associative cache.
An entry in a set associative cache contains the tag and the actual data. Additionally
the status of the cache location is stored, indicating among other things whether the
data is valid.

To simplify programming and isolate different applications running simultaneously, pro-
grams access memory using virtual addresses. Concerning caches, this raises the ques-
tion whether to use physical or virtual addressing. Using virtual addresses has the
advantage of lower latency, since the cache lookup can begin before the address transla-
tion is complete. If virtual addresses are used for the index, care must be taken to keep
the cache consistent, usually by using physical addresses for the tags. Note that some
of the least significant bits of physical and virtual addresses are equal. For example,
if the page size is 4 KiB, the least significant 12 bits are shared between physical and
virtual addresses. Thus, if a cache with a line size of 64 bytes has at most 64 sets,
no address translation is necessary to find the set index. This is often the case for L1
caches. Lower cache levels do not profit as much from virtual indexing and might be
physically indexed. [CD97]

For programs this means both the position of data in virtual and in physical memory
can influence how an algorithm utilizes the caches.

The L1D cache is directly connected to the processor core, this means it has to support
not only line sized accesses, but also word sized and smaller ones. Since the processor

6 2. Background

set index offset
| 116 [53]|20]

Bank 0 Bank1l Bank2 Bank3 Bank4 Bank5 Bank6 Bank?7
000D 001b 010b 011b 100D 101b 110b 111b

0x000

0x040

0x080

0x0CO

0x100

0x140

0x180

0x1CO

0x200

e————>
8 bytes

| 64 bytes
Figure 2.2: A 4 KiB cache with eight interleaved memory banks and a cache line size
of 64 bytes. Each bank has a width of 8 bytes, so bits 5-3 of the memory address select
the bank and bits 2-0 are the offset within a bank.

can execute multiple instructions simultaneously, the L1D cache should support multiple
non-consecutive accesses in parallel. For these reasons the L1D cache is often organized
in banks and/or has multiple ports. Consider the Intel Sandy Bridge microarchitecture
as an example: It has a 32 KiB 8-way set associative L1D cache per core organized in
eight banks. It supports two 16-byte loads, together accessing up to six banks per clock
cycle. If two loads access the same bank and are not targeting the same cache line, a
bank conflict occurs, delaying the second load. Figure 2.2 shows a possible organization
for a single way in the L1D cache of a Sandy Bridge processor. The memory addresses
are interleaved across eight banks. Two 16-byte loads from addresses 0x040 and 0x058
(red) can occur in the same clock cycle. Also two 16-byte loads from addresses 0x0CC
and 0xOE4 can be served simultaneously (green), together accessing 6 banks. Parallel
16-byte loads from addresses 0x14C and 0x15C are not possible (blue), since they both
access bank 3 on different cache lines.

Prefetching

A processor may start loading cache lines not yet accessed by the program, expect-
ing them to be accessed soon due to the principle of locality. This optimization is
called prefetching. Prefetching can be triggered by the hardware itself, or by using spe-
cial instructions in software. The Intel Core microarchitecture employs two automatic
prefetching methods for the L1D and L2 cache: First, ascending accesses to recently
loaded data automatically fetch the next cache line. Second, loads with a regular
stride are assumed to continue with this stride and the corresponding cache lines are
prefetched. Such prefetching strategies are common in modern processors.

2.1. Processor Architecture 7

A different way to use prefetching is to allow the software to explicitly request moving
data to the caches. The SSE instruction set extension contains the four instructions
prefetchnta, prefetchtO, prefetchtl and prefetcht2 to facilitate this. All of these
instructions load at least 32 bytes from memory into a cache. prefetchtO loads into
all cache levels, prefetchtl loads into level 2 and 3, and prefetcht?2 loads into level
3. prefetchnta is used to prefetch data while minimizing cache evictions, for example
by only loading into the L1D cache. Note that these instructions are only hints and
may be ignored by the processor [Int16b].

Sometimes the programmer knows that temporal locality does not apply to a a specific
memory access. The x86 ISA provides load and store instructions with a ‘non-temporal’
hint to communicate this to the processor.

2.1.2 Branch Prediction and Predication

Processing an instruction generally takes multiple clock cycles. To achieve a throughput
of one instruction per cycle processors employ pipelining, i.e. various stages of instruc-
tion execution are processed in parallel for multiple instructions. For example, the next
instruction can already be fetched and decoded while the preceding instruction is still
being executed by an ALU. To keep all pipeline stages utilized, new instructions are
fetched each clock cycle. Now consider what happens if a conditional branch is in the
instruction stream. When the processor has decoded the branch instruction, instruc-
tions immediately following it might already be in the pipeline, regardless of whether
the branch will be taken or not. Even worse, the processor does not yet know if the
branch will be taken and whether it should start fetching new instructions from the
branches destination. A simple processor might now stop putting new instructions into
the pipeline and abort all instructions already in the pipeline after the branching one,
creating what is know as a pipeline bubble. More advanced processors apply a heuristic
to predict whether the branch will be taken and speculatively execute the instructions
that are most likely needed next. As soon as the processor knows the actual outcome
of the branch instruction it either keeps or discards the effects of the speculatively
executed instructions. This means software should avoid hard to predict conditional
jumps. [Tan05]

A powerful technique to avoid conditional jumps altogether is branch predication. Here
the processor provides instructions that are always executed, but only take effect if
their corresponding predicate is true. x86 processors provide the cmovcc instructions
for this, where cc is the condition. The cmovcc instructions perform a move between
two registers or from memory to a register. Another set of instructions useful to avoid
branches have the mnemonic setcc, where again cc defines a condition. They set a
byte in a register or in memory to zero or one, depending on the bits in the processor
status register. The available condition codes specify a combination of the processor
flags zero, carry, overflow, parity and sign.

An example of branch removal applied to database scans can be found in Broneske
et al. [BBS15]. A simple scan loop using a branch is implemented in Listing 2.1,

=W N

0O Ui Wi

—=
W= OO

T W N

00 O Uik W N

— =
N = O O

8 2. Background

an alternative using no branch is shown in Listing 2.3. Listing 2.2 shows a possible
implementation of the branching loop in x86 assembler. The if-statement was translated
to a conditional jump. In contrast, the assembler implementation of the branchless
search loop (Listing 2.4) does not contain a conditional jump, but a setl (set byte if
less) instruction retrieving information from the status register.

Listing 2.1: Scan loop in C

for (int i = 0; i < N; 4++i) {
if (array[i] < value)
result [pos++] = i;
}
Listing 2.2: Scan loop in x86-64 assembler (MASM syntax)
; rex = &array , rdx = &result and r8d = value
continue:
cmp dword ptr [rcx], r8d
jge short branch
mov dword ptr [rdx], eax
add rdx, 4
branch:
inc eax
add rcx, 4
cmp eax, N
jl short continue
Listing 2.3: Branchless scan loop in C
for (int i = 0; i < N; 4++i) {
result [pos] = i;
pos += (array[i] < value);
}
Listing 2.4: Branchless scan loop in x86-64 assembler (MASM syntax)
; rex = &array , rdi = &result and r8d = value
continue:
mov dword ptr [rdi + edxx4], eax
cmp dword ptr [rcx], r8d
setl r9b
add edx, r9d
inc eax
add rcx, 4
cmp eax, N
jl short continue

2.1. Processor Architecture 9

2.1.3 SIMD Instruction Sets

Many programs exhibit data parallelism. Take for example a program adding two
vectors. Traditionally it would loop over all element pairs, add them and store the
result. To increase execution speed of such programs one can let multiple loop passes
overlap, e.g. already load the next values while the addition of the current values is
not yet complete. This is what modern superscalar processors do and can be viewed as
an extension to pipelining. Another way to approach the problem is with a processor
that has multiple execution units working on different data, but all executing the same
instructions every clock cycle. Such an execution model is called ‘single instruction,
multiple data’ (SIMD). On general purpose processors SIMD is typically achieved by
using special instructions operating on separate registers. The SIMD instruction sets of
x86 processors are called MMX, SSE and AVX [Int16b]. For this work we made use of
SSE extensions up to SSE4.1, AVX and AVX2. A 64-bit processor supporting SSE has
16 architectural registers with a width of 128-bit. If it additionally supports AVX these
registers are extended to 256-bit. When using SSE or AVX instructions, it is important
to be aware of the data alignment in memory, because there are different instructions
to load data from aligned and from unaligned locations. The aligned load instructions
are faster, so data should be aligned to SIMD words whenever possible.

SIMD Comparisons

Integer comparisons in SSE and AVX are always signed. To compare unsigned integers
the operands have to be biased by subtracting the smallest signed integer of the same
length from them. This operation transforms the smallest possible unsigned integer
zero to the smallest possible signed integer. Since singed integers are stored in two’s
complement the same effect can be achieved by using an addition, because the smallest
signed integer is its own negation. Yet a different option is to use the XOR operation,
in other words a carry-less addition. It behaves identically to a regular addition since a
carry can only be generated in the most significant bit. A different view is to see that
all these operations toggle the most significant bit, which is set for negative numbers in
two’s complement. [Giel6]

The results of an SSE or AVX comparison is a full vector containing ones in all bits for
the lanes where the comparison evaluated to true and zero in all bits for the lanes where
the result was false. For example, when comparing the 128-bit vectors (1, 2, 3, 4) and
(2, 2, 2, 2) using the greater-than predicate, the result is (0x00000000, 0x00000000,
OxFFFFFFFF, OxFFFFFFFF). There are several options to branch depending on such
a mask. The first is the ptest instruction (since SSE4.1). It computes the bitwise AND
of its vector operands and sets the zero flag according to the result. Additionally the
carry flag is set, if all bits in the bitwise AND of the first operand with the bitwise NOT
of the second operand are zero. The second option is the pmovmskb instruction. It takes
the most significant bit of each byte from a vector register and packs them into a general
purpose register. In our example pmovmskb would create the 16-bit result 0xO0FF. We
can then evaluate this results using the usual test instruction. Additionally there

10 2. Background

are the slightly different movmskps and movmskpd instructions to operate on single and
double precision floating point numbers, respectively. These instructions extract the
most significant bit of each floating-point element. It is advisable to use the correct
instructions for integer and floating-point data, since mixing them can lead to additional
latency [Int16a].

When comparing sorted values, we are often interested in the number of lanes with
positive or negative results. The popcnt instruction counts the number of bits set
to one in a general purpose register. Combined with pmovmskb this gives the desired
result [ZHF14]. Since pmovmskb is only available on more recent processors, it is worth
considering bsf and bsr as alternatives. bsf returns the index of the least significant
set bit and bsr returns the index of the most significant set bit. Because the result of
comparing two sorted vectors is a possibly empty sequence of zeros followed by a possibly
empty sequence of ones, or first ones and then zeros depending on the predicate, these
instructions can be used instead of a population count [SGL09]. Additionally knowing
the lane index of the first positive result will be useful. This can be accomplished with
bsf or with the much newer tzcnt instruction. tzcnt counts the number of trailing
zeros. bsf and tzcnt compute the same result in all but one case: If the input is zero,
bsf is undefined whereas tzcnt returns the width in bits of its operand.

2.2 Search Algorithms

In this section we will introduce several search algorithms operating on sorted lists. We
assume the lists contain either integer or floating-point data supported directly on a
64-bit x86 processor (see table Table 2.1 on page 19 for all possible types). As such, the
elements of the lists will often be used as keys to identify bigger datasets. To search
efficiently, the keys are stored in consecutive memory locations and are tightly packed.
The sorted order is given by the less-than relation. Floating-point numbers must not
have the value Not-a-Number (NaN), because NaN is not ordered with respect to other
floating-points values. Additionally we assume proper alignment for SIMD loads.

If the list does not contain the key being search for, the search terminates unsuccessfully.
For an exact match search it is enough to simply report the absence of the search key
in this case. In other situations it is useful to know either the index of the first element
not smaller then the search key or the index of the first key greater than the search
key. These indices are commonly called the lower and upper bound. The lower and
upper bound delimit the range of keys comparing equal to the search key. If keys are
unique and the search key is not in the list, the lower and upper bound are identical.
Lower and upper bound search algorithms are available in the C++ standard library®
as std::lower_bound and std::upper_bound. In this work we will focus on search
algorithms for a simple exact match and search algorithms for the lower bound.

5ISO/IEC 14882:2014

2.2. Search Algorithms 11

2.2.1 Sequential Search

A sequential search operates by visiting each element in turn. Algorithm 1 shows a
sequential search for an exact match. It loops over all elements in the list until the first
element not smaller than the search key is found. If this element is equal to the search
key, its index is returned in line 5. Otherwise all remaining elements must be greater
than the search key and the search terminates in line 7. The only remaining case is a
search key greater than all elements in the list. In this case the loop continues until the
list is exhausted and the search ends unsuccessfully in line 11.

Algorithm 1 Exact Match Sequential Search

1: function SEQUENTIALSEARCH(list, size, searchKey)

2 fori=0,1,...,size — 1 do

3 if list[i] > searchKey then

4 if list[i] == searchKey then

5: return i

6 else

7 return size > search key is not in list
8 end if

9 end if

10: end for

11: return size > search key is not in list
12: end function

The lower bound search (Algorithm 2) is even simpler. It is a direct application of the
definition of the lower bound. The index of the first element greater than or equal to
the search key is returned in line 4. If no such element exists, the lower bound is one
past the last element of the list (line 7).

Algorithm 2 Lower Bound Sequential Search

1: function LOWERBOUNDSEQUENTIALSEARCH(list, size, searchKey)
2 fori=0,1,...,size — 1 do

3 if list[i] > searchKey then

4: return i

5: end if

6 end for

7 return size

8: end function

The worst case run time of Algorithm 1 is O(size), because all elements of the list
have to be visited if the search key is greater than all elements of the list. The same
argument holds for Algorithm 2, so its worst case run time is also O(size).

12 2. Background

lane | 0 1 2 3
search key 2 2 2 2
block to compare 1 2 3 4

result of greater-than | OxFFFFFFFEF 0x00000000 0x00000000 0x00000000

Figure 2.3: Result of comparing the search key 2 with the vector (1, 2, 3, 4) as 32-bit
integers in a 128-bit SSE register. The lane index of the lower bound is 1.

SIMD Sequential Search

It is possible to improve the performance of the sequential search by utilizing SIMD
instructions. Algorithm 3 works by iterating over the list in blocks of complete SIMD
words. These words are loaded together and compared to the search key in parallel
(line 3). The function CREATEMASK refers to the usage of an appropriate instruction
to create a mask in a general purpose register (see Section 2.1.3). This mask will contain
a possibly zero length string of one bits followed by a possibly zero length string of zero
bits. If the mask contains any zero bits, the lower bound is in the current block and its
offset from the beginning of the block is obtained by counting the number of leading
one bits divided by the bit-width of a lane (see Figure 2.3). Line 9 handles the case
where the search key is greater than all elements in the list.

Algorithm 3 Lower Bound Sequential Search using SIMD

Require: size is a multiple of the SIMD register width in lanes
1: function LOWERBOUNDSEQUENTIALSEARCHSIMD (list, size, searchKey)
2 for all SIMD word sized element blocks in list do
3 vector compResult = BROADCAST(searchKey) > LOAD(block)
4 if vecCompResults contains at least one zero then
5: int mask = CREATEMASK (compResult)
6 return start index of current block + COUNTPOSITIVERESULTS(mask)
7 end if
8 end for
9: return size
10: end function

Algorithm 3 has the same asymptotic time complexity as the scalar variants, but will
need less iterations by a constant factor. This factor is one over the number of SIMD
lanes used. An exact match search algorithm with the same time complexity can be
constructed by checking if the list element at the index found by Algorithm 3 is the
search key. If so, we have an exact match, otherwise the search key is not in the list.

2.2.2 Dichotomic Search

To improve over the linear time complexity of the previous algorithms we will use
the Divide-and-Conquer principle. More specifically the algorithms in this section re-
cursively divide the list in two disjunct partitions and use an element at the border

2.2. Search Algorithms 13

separating the partitions to decide in which of them the search should continue. Search
algorithms that decide between two distinct alternatives are called dichotomic. The
main question is now how to decide where to split the search range. In the following,
we review the binary search as a prominent example of dichotomic searching and the
lesser know Fibonaccian search.

2.2.2.1 Binary Search

A binary search operates by recursively checking the middle element of the search range
and then continuing either with the left or right sub-range. We start with the exact
match search in Algorithm 4. The current sub-range is represented by the variables
left and right. They form the closed interval [left, right]. The middle of the interval is
computed in line 4. Note the formula used: While (left + right)/2 would be equivalent
when computed using real numbers, the formula used in the algorithm avoids an integer
overflow that could happen in the sub-expression left + right. We will call the element
at index mid the separator element. In each iteration the separator element is checked
against the searched key. If they are equal the search terminates successfully (line 6).
Otherwise the search continues with the partition that still can contain the key. The
separator is not part of any partition, because the check in line 5 has already ruled
it out. If the search interval becomes empty, i.e. left > right, the search terminates
unsuccessfully in line 13.

Algorithm 4 Binary Search

1: function BINARYSEARCH(list, size, searchKey)

2 int left = 0, right = size — 1 > both inclusive
3 while left < right do

4 int mid = left + (right — left)/2

5: if searchKey == list[mid| then

6: return mid

7 else if searchKey < list[mid] then

8

9

right = mid — 1 > go to left partition
else
10: left = mid + 1 > go to right partition
11: end if
12: end while
13: return size > search key is not in list

14: end function

Algorithm 5 is a lower bound binary search. Here the search range represented by left
and right is the half-open interval [left, right). Accordingly the loop is exited when
left > right. Note that for the loop invariant left < mid < right to hold, the division
in line 4 has to be truncating. Algorithm 5 excludes the separator element from both
partitions, just like the exact match search. For the algorithm to work it is import to
favor the left partition if the separator is equal to the search key. This is because the

14 2. Background

search loop is terminated by setting left to mid + 1 in line 8 when mid is right — 1.
Then we have left = right, i.e. the search interval is empty. Left now points to a
separator element from an earlier iteration that has been disregarded by choosing the
left partition. Consider the example in Figure 2.4. In iteration 4 left is 4 and right
is 5, leaving just the 8 in the search range. The final iteration will then set left to 5,
because the search key 9 is greater than the last separator 8 (line 8). Now the search
terminates and both left and right hold the correct answer. There are two cases that
the above argument did not cover:

1. The search key is smaller than all elements in the list: In this case line 6 is
executed in every iteration, eventually reducing right to zero. Then left and right
hold the correct lower bound.

2. The search key is greater than all elements in the list: In this case line 8 is executed
in every iteration, until left = right = size. Again left and right hold the correct
lower bound.

Algorithm 5 Lower Bound Binary Search

1: function LOWERBOUNDBINARYSEARCH(list, size, searchKey)

2 uint left = 0, right = size > left is inclusive, right is exclusive
3 while left < right do

4: uint mid = left + (right — left)/2 > left < mid < right
5: if searchKey < list|mid] then

6: right = mid > go to left partition
7 else

8 left = mid + 1 > go to right partition
9 end if

10: end while

11: return left > left = right

12: end function

Algorithms 4 and 5 both need [log,(size)| + 1 iterations in the worst case, yielding an
asymptotic run time of O(log(size)). This can be seen by constructing a binary tree
corresponding to the search and analyzing its height [Knu98|. A simple way to think
about the above formula is to consider the number of possible outcomes of the search. If
there are n elements in the list, the result is an index in [0, n], so there are n+1 outcomes
the search has to distinguish. With m binary decisions one can at best distinguish 2™
cases. So we need at least [log,(n + 1)] = [logy(n)| + 1 binary decisions. Note that
the asymptotic run time of binary search is optimal for all comparison based search
algorithms [Knu98|. It is possible to create an alternative exact match search algorithm
that works like a lower or upper bound search and performs the comparison for equality
after the search loop. Such an algorithm was first published by H. Bottenbruch [Bot62].
This has the advantage of eliminating a branch from the search loop, but has the

2.2. Search Algorithms 15

Index o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration 1| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30
Iteration2| 0 | 2 | 4 | 6 | 8 |10 12|14 |16 |18 20|22 24|26 | 28|30
Iteration3| 0 | 2 | 4 | 6 | 8 |10|12 |14 |16 |18 20|22 24|26 28|30
Iteration4| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30

Result 0] 2(4]6]8 1211411618 120222426 28|30

Figure 2.4: Example of lowerBoundBinarySearch searching for the key 9. The interval
[left, right) is shaded and the separator elements are printed in boldface.

drawback that the loop will always run until the search interval is narrowed down to a
single element.

Other variants of the binary search, called uniform binary search, do not store the
upper boundary right of the search interval explicitly. Instead, they only use the start
of the search interval, left, and its current length. This can lead to simpler index
calculations, but care must be taken for the algorithm to work on list with arbitrary
lengths [Knu98|[Les83]. We have implemented an algorithm of this kind in Section 4.1.2
on page 39.

SIMD Binary Search

A straightforward usage of SIMD in a binary search is to examine a complete SIMD
word of separator elements in each iteration [ZR02][SGL09]. So for example, instead of
loading a separator element from index 8, we might load four elements from indices 8,
9, 10 and 11 into a SIMD register and parallelly compare them to the search key.

Algorithm 6 is a binary search using SIMD loads and comparisons. The list indices
left, right and mid refer to SIMD word sized blocks instead of individual elements,
leaving the loop condition and the calculation of the middle the same as in the scalar
search. In line 6 a complete block of separator elements is loaded, it is then compared
for equality in line 7. If we have a match, indicated by set bits in the result mask,
the search terminates successfully. Otherwise the search branches to the left or right
partition. If the loop is exited, because the search interval became empty, the search
terminates unsuccessfully in line 21. There is one additional branch compared the the
scalar search: The search can terminate early if a word of separators contains keys both
smaller and larger than the element searched for in line 18, because we have already
checked for equality.

16 2. Background

Algorithm 6 Binary Search using SIMD

Require: size is a multiple of the SIMD register width in lanes
1: function BINARYSEARCHSIMD (list, size, searchKey)

2: int simdWords = number of SIMD words in list

3: int left = 0, right = simdWords — 1 > both inclusive
4: while left < right do

5: int mid = left + (right — left)/2

6: vector separators = LOAD(block of elements starting at index mid)

7 vector eqCompResult = BROADCAST(searchKey) == separators

8: if any bit in eqCompResult is set then

9: int i = GETFIRSTPOSITIVERESULT(CREATEMASK (eqCompResult))

10: return start index of current block + i

11: end if

12: int mask = CREATEMASK(BROADCAST(searchKey) > separators)

13: if all bits in mask are clear then

14: right = mid — 1 > all separators are larger than the search key
15: else if all bits in mask are set then

16: left = mid + 1 > all separators are smaller than the search key
17: else

18: return size > search key is not in list
19: end if

20: end while

21: return size > search key is not in list

22: end function

The SIMD binary search algorithm we have discussed loops over blocks as if they were
single elements and retains the loop structure of its scalar counterpart. Therefore we
can analyze its run time by substituting the number of blocks for size in the equations
for the scalar algorithms [SGLO09]. A list of size elements is broken into size/n blocks,
where n is the number of SIMD lanes used. So the worst case number of iterations is
|logy(size/n)| + 1. Since log,(size/n) = log,(size) — logy(n), we expect a speedup of
about loga(n) iterations. Of course the asymptotic time complexity is still O(log(size)).

2.2.2.2 Fibonaccian Search

Instead of splitting the search range in equally sized halves, other ratios are possible.
This section deals with an algorithm approximately partitioning the range in the golden
ratio ¢ =~ 1.618. Since indices are discrete, the Fibonacci numbers, defined as F,, =
F, 1+ F, > with F, =0 and F; = 1, are used as an approximation.

The Fibonaccian search technique was inspired by a numerical algorithm for finding
the extremum of a unimodal function, called Fibonacci search [Knu98]. This algorithm
was discovered by J. Kiefer [Kie53].

In Algorithm 7 we present an iterative version of the Fibonaccian search. The vari-
able left is used to keep track of the start of the current search range, while the size

2.2. Search Algorithms 17

of the range is given by the Fibonacci numbers. The Fibonacci numbers can either
come from a static list or be computed during the search. To do this efficiently, it is
advisable to maintain two variables containing consecutive Fibonacci numbers, allowing
easy computation of the preceding numbers in the series. The check for i > size in
line 6 is necessary when operating on lists with a size not equal to F,, — 1, where F},
is a Fibonacci number. It lets the search continue in the left partition if the separator
element is out of bounds. This is effectively the same as extending the list with sentinel
values greater than all keys in the list.

Algorithm 7 Fibonaccian Search

1: function FIBONACCIANSEARCH(list, size, searchKey)

2 Set n, so that F), is the greatest Fibonacci number still smaller then size.
3 uint i = F;,

4: uint left =0

5: whilen > 0 do

6 if 1 > size or searchKey < list[i] then

7
8
9

i=left + F,_1 > go to left partition
n=n-—1
else if searchKey > list[i] then
10: left =1
11: i=i4+ F, o > go to right partition
12: n=n-—2
13: else
14: return i
15: end if
16: end while
17: return size > search key is not in list

18: end function

To see how the search operates, consider Figure 2.5. In the first iteration, the element
at index 13 (F7) is examined, since 13 is the greatest Fibonacci number still in the index
range of the list. Since we are looking for the key 12, we continue to the left. Now the
key at index 8 (Fp) is checked. There are 8 keys in the range from index 0 to index 7
and 5 keys in the range from index 8 to 12, forming a ratio of 8/5 = 1.6 ~ . Note
how the separators selected by the Fibonaccian search are always closer to the previous
separator than in a binary search.

The Fibonaccian search has an asymptotic time complexity of O(log(size)), just like
the binary search [Knu98].

2.2.3 k-ary Search

A logical extension of the binary search is the k-ary search, not just dividing the search
range in two partitions, but in £ — 1 partitions for a £ > 2. This requires probing
k separator elements in each iteration. The separator elements are chosen to divide

18 2. Background

Index o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration 1| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30
Iteration2| 0 | 2 | 4 | 6 | 8 |10 12|14 |16 | 18 | 20 | 22 | 24 | 26 | 28 | 30
Iteration 3| 0 | 2 | 4 | 6 | 8 |10|12 |14 |16 |18 20|22 24|26 |28 |30
Iteration4| 0 | 2 | 4 | 6 | 8 |10 12|14 |16 |18 20|22 24|26 28|30
Iteration 5| 0 | 2 | 4 | 6 | 8 | 10 . 141161820 (22|24 |26 |28 |30

Figure 2.5: Example of a Fibonaccian search searching for the key 12. The interval still
considered by the search is shaded and the separator elements are printed in boldface.

the search range evenly. Algorithm 8 does this in line 4. The for-loop then checks
each separator element first for equality with the search key. The search is terminated
successfully, if the search key has been found. Otherwise the search continues with the
segment to the left of the smallest separator larger then the search key (lines 9 to 12).
If the search key is larger than all separator elements, the rightmost segment is selected
in line 14.

A lower bound variant can be constructed, by removing the equality test in lines 6 to 8
and performing a less-equal comparison in line 9 to decide whether the lower bound
is in the current segment. The behavior and termination of the while-loop in line 3 is
then identical to the lower bound binary search and the algorithm can return left as
the lower bound after the search loop.

Algorithm 8 and its lower bound counterpart correspond to multi-way search trees in
the same way the binary search corresponds to binary search trees, so the only difference
in run-time comes from a different base for the logarithm. Since a k-ary search reduces
the search space by a factor of k in each iteration, the worst case number of iterations
is [logy(size +1)] = |logy(size)| + 1. This yields the same asymptotic time complexity
as for a binary search, namely O(log(size)). The speedup gained from k-ary searching
over binary searching is approximately igi—iz = log, k [SGL09].

SIMD k-ary Search

Schlegel et al. propose using SIMD to parallelize the index computations and key com-
parisons of a k-ary search [SGL09]. This should lower the time needed for each iteration
of the search, while the number of iterations stays the same as in a scalar implementa-
tion. An exact match SIMD k-ary search has the following steps:

1. Calculate the indices of k — 1 separator elements.

2. Load the separators into a SIMD register.

2.2. Search Algorithms

19

Algorithm 8 k-ary Search

> left is inclusive, right is exclusive

1: function KARYSEARCH(list, size, searchKey)

2 uint left = 0, right = size

3 while left < right do

4 Divide [left, right) in k segements, separated by k — 1 separator elements.
5: for each separator element s do

6 if searchKey == s then

7 return index of s

8 end if

9: if searchKey < s then

10: Set left, right to the segment left of s.

11: Continue with the next iteration of the while loop.
12: end if

13: end for

14: Set left, right to the last segment.

15: end while

16: return size

17: end function

> search key is not in list

Data Type

k in 128-bit register

k in 256-bit register

signed /unsigned 8-bit integer

signed /unsigned 16-bit integer
signed /unsigned 32-bit integer
signed /unsigned 64-bit integer

single-precision floating-point number
double-precision floating-point number

17

33
1

Ot © Ot ©

Table 2.1: Data type and corresponding k for the SIMD k-ary search

3. Compare the separators to the search key. If the search key is present, terminate
successfully.

4. Continue the search in the partition the search key belongs to. If the next partition

is empty, terminate unsuccessfully.

The separator element’s offsets from the start of a search range with length p are given
by i[(p + 1)/k] with 1 < i < k. Schlegel et al. suggest precomputing the separators’
distance to avoid the division in this formula. Selecting the next partition in step 4
can be implemented using the popcnt instruction as in the other algorithms. Step 2
requires a loop or a load instruction targeting multiple non-continuous memory loca-
tions. Such an instruction is available in the AVX2 instructions set, but not on earlier
x86 processors. Table 2.1 shows the available key data types on a x86 64-bit processor
and the resulting k when using SSE (128-bit) or AVX (256-bit) registers.

20 2. Background

L 01 | 34 || 67 | 910 |[1213] 1516 | 1819 || 2122 | 24 25 |

lo1]2][3]4]5]6]7[8]9]10]11]12][13]14]15]16[17]18[19]20]21[22]23]24]25]

18]17]2]5]11]14]20]23]0[1]3]4|6|7|9]10]12]13]15]16]18|19]21 | 22]24]25]

Figure 2.6: Perfect k-ary search tree for k = 3 containing 26 keys, the corresponding
ordered list (upper row) and the linearized tree (lower row)

2.2.4 Linearized k-ary Search Trees

The SIMD k-ary search has the disadvantage of loading the separator elements from
far scattered memory locations. If we allow a transformation reordering the sorted list
before the search, this is avoidable.

Following Schlegel et al., we will first restrict our considerations to list with a size of
k" — 1 elements, where h > 0 is an integer. From the elements of such a list, a perfect
k-ary search tree can be constructed. The nodes of a k-ary search tree contain up to
k — 1 keys and accordingly have up to k child-nodes. The tree is perfect if “every
node—including the root node—has precisely k& — 1 entries, every internal node has
k successors, and every leaf node has the same depth” [SGL09]. Figure 2.6 shows an
example with £ = 3 and the corresponding ordered list (upper row). By performing a
level-order traversal of the search tree, a linearized form of it is constructed (lower row).
In this linearized tree, the separator elements needed in the same iteration are located
in adjacent memory cells. The linearized search tree corresponding to the example is
shown in the lower row of Figure 2.6.

Support for lists with a length not corresponding to a perfect k-ary search tree is ac-
complished by constructing complete trees. A k-ary search tree of height h is complete,
if “(1) removing the leafs at depth h — 1 yields a perfect tree of height h — 1 and (2)
the leafs at depth h — 1 grow from left to right” [SGL09]. Figure 2.7 shows an example
with 11 keys.

It is not necessary to explicitly construct the search tree to compute the linearized
tree representation, since a formula giving the permutation from the ordered list to the
linearized tree exists. For the derivation of this formula, the rightmost entry in the last
level of the search tree has a special significance. It is referred to as the fringe entry
and is always the last element in the linearized tree. The fringe entry in Figure 2.7 is
10. All elements smaller than or equal to the fringe entry have the same position in the
linearized tree as they had if the tree was perfect. In the example these are the keys
0 to 10. They have the same indices in the perfect linearized tree of Figure 2.6 and in
the complete linearized tree of Figure 2.7. All elements larger then the fringe entry are

2.2. Search Algorithms 21

813

25 | 1112][1415 |

01 | 34 || 67 || 910 |

lo[1]2][3]4]5]6][7[8]9]10]11]12]13]14]15]

18]13]2]5]11]12]14]15]0[1]3]4]6|7]9]10]

Figure 2.7: Complete k-ary search tree for k = 3 containing 16 keys, the corresponding
ordered list (upper row) and the linearized tree (lower row)

at the same positions they would have if the tree would be made perfect by omitting
all leafs from the last—incomplete—level. If the keys 0 to 10 would be removed from
the tree in Figure 2.7, it would be a perfect k-ary search tree with 8 keys. The formula
yielding the one-based index j of a key in the linearized tree given its one-base index ¢
in the sorted list is [SGLO09]:
jzgn(i)z {fH(Z) ZSfH(n) (2.1)

fa—1(i — o5 (n) — 1) otherwise

Where n is this number of keys in the sorted list and H = [log,(n + 1)] is the height
of the search tree. f};(n) is the index of the fringe entry in the sorted list and fy yields
the index of a key in the linearized tree given its index in the sorted array. of;(n) is
the zero-based offset of the fringe element in its level of the search tree. The functions
f, f* and o* can all assume the conceptual search tree to be perfect, because of the
arguments given above. They are defined as:

fh(l) — kdn(D)+on(i) (2‘2)

* —A* S\ k: * .
fi = K01 {moh(‘y) + 1J (2.3)
0h(j) = j — K%V (2.4)

Furthermore, the functions dj, o5, and dj, are defined as:

dp (i) = i sign(i mod k") (2.5)
, k—1 i
on(i) = { E kh—dh(i)—lJ (2.6)

dy,(7) = [log,(5)] (2.7)

22 2. Background

2.2.4.1 Searching in Linearized Trees

An exact match search algorithm using zero-based indices is show in Algorithm 9. It
uses the variable left to mark the current node in the search tree. Observe, how the
load of the separators in line 5 is from one continuous block of memory. Determining
the next node to search in line 14 does not require conditional branching, since the
mask evaluation in line 13 already yields the index of the tree branch to take. The start
index of the corresponding child node is then easily computed. (left + 1) -k — 1 gives
the start index of the next level of the tree, and branch - (k — 1) yields the offset of
the next node in the level. The search terminates unsuccessfully when next would lie
beyond the bounds of the linearized tree.

Algorithm 9 Exact Match Search on a Linearized k-ary Search Tree using SIMD

1: function KARYSEARCHLINEARIZED TREE(linTree, size, searchKey)

2 uint left = 0, next = 0

3 while next < size do

4: left = next

5: vector separators = LOAD(linTree + left)

6 vector eqCompResult = BROADCAST(searchKey) == separators

7 if any bit in eqCompResult is set then

8 > searchKey is equal to one of the separators
9: int i = GETFIRSTPOSITIVERESULT(CREATEM ASK (compResult))

10: return left + 1

11: end if

12: vector gtCompResult = BROADCAST(searchKey) > separators

13: int branch = COUNTPOSITIVERESULTS(CREATEMASK (gtCompResult))

14: next = (left + 1) - k + branch - (k — 1) — 1 >0 < branch < k
15: end while

16: return size > search key is not in list

17: end function

2.2.4.2 Range Scans

To process range queries, it is necessary to iterate over the keys in sorted order. Fortu-
nately, it is possible to efficiently iterate over the keys in a k-ary search tree with only
O(logy(size)) extra space. To do so, we first need to localize the start of the range in
the tree. During this search the index of the child node the search continues in is stored.
The first child has index 0, the second 1, and so on. For example, if we search for the
key 7 in the tree depicted in Figure 2.7, we would store the sequence B = [0, 2, 1], since
6 is less than 8 and greater than 5. The last 1 is stored, because we would continue with
the middle child of the node containing 6 and 7 if the tree would extend further down.
Additionally the offset from the beginning of the linearized tree to the next separator
element to look at in each tree level is stored. In the example of searching for the key 7,
this would mean storing the sequence O = [1,4, 14], since the next element to compare

2.2. Search Algorithms 23

in the root is 13 at index 1, the next element to compare in the next level is 11 at index
4, and so on. To advance to the next element in the sequence Algorithm 10 is used

[SGL09].

Algorithm 10 Advance to the next element in sorted order when iterating over a
linearized tree
1: d = depth of the tree
while B[d] ==k — 1 do
Bld] =0
d=d-1
end while
Now O[d] is the next index of the next key.
B[d] = B[d] + 1
Old] =0[d] + 1

For the example, this means we start with:
B=10,2,1] O=[1,4,14] d=2

The while-loop is not entered, because B[2] < 2. Now we find the next key in sorted
order at index O[2] = 15. After B[2] and O[2] have been incremented, we have:

B=10,22] O=][1,4,15] d=2

To locate the next key in sorted order, the while-loop traverses the tree up, resulting
in:

B=1[0,000 O=][1,4,15 d=0

This means, the next key is at index O[0] = 1. Then B[0] and O[0] are incremented,
yielding:
B=[1,0,0] O=[24,15 d=0

Algorithm 10 is applied until the last element of the query range has been reached.

24

2. Background

—_

O © 00O Uk Wi+

3. Sequential Search

In the following, we present basic implementations of the sequential search algorithms
and apply software optimization techniques such as branch elimination and loop un-
rolling. Then, the performance of the various implementations is evaluated.

3.1 Implementation

In this section, we present implementations of the sequential search algorithms from
Section 2.2.1. All search functions in this and in later chapters are C++ templates.
They all have the type of the keys to search in, T, as a common parameter. Unless noted
otherwise, T can be any built-in signed or unsigned 8, 16, 32, or 64-bit integral type, or
one of the floating-point types float and double. The type IndexType is assumed to be
unsigned.

3.1.1 Scalar Sequential Search

The scalar algorithms in Listing 3.1 and Listing 3.2 are literal transcriptions of Algo-
rithms 1 and 2. The only difference between the exact match and lower bound search is
an additional if-statement to check for an exact match after the lower bound has been
found (lines 6 and 7 in Listing 3.2).

Listing 3.1: Lower Bound Sequential Search

template <typename T>
IndexType lowerBoundSequentialSearch (
const T xkeys, IndexType size, T searchKey) {
for (IndexType i = 0; i < size; ++i) {
if (keys[i] >= searchKey) {
return i;
}
}

return size;

}

0O Ui Wi+

— =
W N~ OO

26 3. Sequential Search

Listing 3.2: Sequential Search

template <typename T>
IndexType sequentialSearch (
const T xkeys, IndexType size, T searchKey) {
for (IndexType i = 0; i < size; ++i) {
if (keys[i] >= searchKey) {
if (keys[i] = searchKey)
return i;
else
return size; // not found
}
}

return size; // not found

}

3.1.2 Vectorized Sequential Search

To allow for different key data types and to support both 128-bit and 256-bit registers,
the SIMD implementations make use of template functions that are defined as an ap-
propriate intrinsic for the given types. All these functions are listed in Section A.3 in
the appendix. The type Vector is defined as __m128i, when compiling for SSE, and as
__m2561 when compiling for AVX (see Listing A.4).

The sequential search algorithms using SIMD share a common prolog shown in List-
ing 3.3. It gets the number keys fitting in one SIMD word using the template function
keys_per_simd_word (Listing A.5) and calculates the length of the array in SIMD
words (line 4). We assume the length of the array is a multiple of KEYS_PER_WORD.
Line 7 loads the search key into a SIMD register, replicating it over all lanes. As
noted in Section 2.1.3, we need a key transformation to supported unsigned types.
This transformation is provided by the template function adjustForSignedCompari-
son (Listing A.8). Additionally a vector containing all ones is prepared by comparing
a vector register for equality to itself in line 6 (see getAllOnesVector in Listing A.6).
This vector is used as the second operand for the ptest instruction to test whether a
comparison result contains at least one zero. ptest flips the bits of its first operand, in
our case the comparison’s result mask, and then calculates the bitwise AND with the
second operand, in our case all ones. If the result of this operation is zero, the carry flag
is set to one, otherwise to zero. This means, the mask contains at lest one zero, if the
carry flag is not set. In the source code, this is expressed with the template function
_mm_testc (Listing A.10) calling the appropriate intrinsic function.

When the vector containing the lower bound has been found, its location in the SIMD
word is found by creating a mask with the template function createMask (Listing A.9)
and evaluating it with countPositiveResults (Listing A.9) in lines 12 and 13 of List-
ing 3.4. countPositiveResults will yield a value in the range [1,KEYS_PER_WORD].
If the comparison evaluated to true for one key, the search key is still smaller than
the first key in values, i.e. the second key in values is the lower bound. The same
reasoning holds for the other possible outcomes of countPositiveResults. To get the

0~ O U W N

0~ O U W N -

el e el e
O UL W N~ O O

© 00~ O U Wi+

3.1. Implementation 27

Listing 3.3: Prolog of the SIMD sequential search

#define PROLOG() \
assert ((intptr_t)keys % sizeof(Vector) = 0); \
constexpr IndexType KEYSPERWORD = keys_per_simd_word<Vector, T>(); \
const IndexType simdWords = size / KEYSPER WORD; \
assert (size % KEYSPER-WORD == 0); \
const Vector vecOnes = getAllOnesVector<Vector >(); \
const Vector vecSearchKey = \
adjustForSignedComparison<T>(_mm_setl<Vector >(searchKey));

array index of the lower bound, we add KEYS_PER_WORD times i, the array index of the
first key in values, in line 13.

Listing 3.4: Lower Bound Sequential Search SIMD

template <typename T>
IndexType lowerBoundSequentialSearchSIMD (
const T xkeys, IndexType size, T searchKey) {

PROLOG () ;
for (IndexType i = 0; i < simdWords; ++i) {
Vector values = loadVector (reinterpret_cast<const Vectors>(

keys + KEYSPERWORD x i));
Vector compResult = _mm_cmpgt<T>(vecSearchKey ,
adjustForSignedComparison<T>(values));
if (!_mm_testc<T>(compResult, vecOnes)) {
// compResult contains at least one zero
int mask = createMask<T>(compResult);
return KEYSPERWORD * i + countPositiveResults<I>(mask);

}
}

return size;

}

An exact match search is constructed from the lower bound variant by replacing lines 10
to 14 with the code in Listing 3.5. Again, the only difference to the exact match search
is an additional if-statement at the end.

Listing 3.5: Equality test for an exact match vectorized sequential search

if (!_mm_testc<I>(compResult, vecOnes)) {
// compResult contains at least one zero
int mask = createMask<T>(compResult);
IndexType result = KEYSPERWORD # i + countPositiveResults<T>(mask);
if (keys[result] = searchKey)
return result;
else
return size; // not found

—_

© 00~ O U Wi+

O © 00O ULk WN -

28 3. Sequential Search

3.2 Optimizations

We will present the elimination of branches and loop unrolling as possible optimiza-
tions to the functions introduced in the previous section. We will only show these
optimizations applied to the lower bound search, since an exact match search can be
constructed from a lower bound search by adding an if-statement after the search loop.
This if-statement simply has to check if the lower bound is the search key and return
the appropriate result (like in Listing 4.3). The last if-statement outside the loop of an
exact match search implemented this way can be replaced by a conditional move just
as the branch in the search loop. Furthermore, loop unrolling does not change anything
for this last if-statement, since it is outside of the loop.

3.2.1 Branch Elimination

We eliminate the if-statement in the for-loop of the scalar search (Listing 3.1) by letting
the algorithm always run through the complete array, even when the lower bound
has already been found. Instead of possibly exiting the loop, the function shown in
Listing 3.6 records the index of the last seen array element still smaller than the search
key plus one in the variable j. Equivalently this is the number of elements that are
smaller than the search key. The conditional operator replacing the if-statement is
compiled to a cmov instruction, therefore there is no conditional jump left in the loop
body.

Listing 3.6: Branchless Lower Bound Sequential Search

template <typename T>
IndexType lowerBoundSequentialSearchBranchless (
const T xkeys, IndexType size, T searchKey) {
IndexType j = 0;
for (IndexType i = 0; i < size; ++i) {
j = keys[i] < searchKey 7 (i + 1) : j;

return j;

For the SIMD sequential search we simply drop the if-statement and accumulate the
number of keys smaller than the search key in the variable j (line 7 in Listing 3.8).

Listing 3.7: Branchless Vectorized Lower Bound Sequential Search

template <typename T>

IndexType lowerBoundSequentialSearchSIMD_Branchless(
const T xkeys, IndexType size, T searchKey) {
PROLOG () ;
IndexType j = 0;
for (IndexType i = 0; i < simdWords; ++i) {

SEARCHSTEP (); // defined in Listing 3.8

¥

return j;

0~ O U W N

0O Ui Wi+

el e e e el
0 O Ul W OO

3.2. Optimizations 29

Listing 3.8: Loop body of the branchless vectorized search

#define SEARCH.STEP() do{ \
Vector values = loadVector (reinterpret_cast<const Vectorx>(\
keys + KEYSPERWORD x i)); \
Vector compResult = _mm_cmpgt<T>(vecSearchKey, \
adjustForSignedComparison<I'>(values)); \
int mask = createMask<T>(compResult); \
j += countPositiveResults <I>(mask); \
} while (0)

3.2.2 Loop Unrolling

In Listing 3.9 the search loop of the scalar search has been unrolled four times. The
switch-statement in lines 5 to 10 handles the remainder for arrays with a length not
divisible by 4. After the switch, size — ¢ is a multiple of four, so the for-loop does not
access memory locations beyond the end of the array.

Listing 3.9: Unrolled Lower Bound Sequential Search

template <typename T>

IndexType lowerBoundSequentialSearchUnrolled4 (
const T xkeys, IndexType size, T searchKey) {
IndexType i = 0;

switch (size % 4) {
case 3: if (keys[i] >= searchKey) return i; -++i;
case 2: if (keys[i] >= searchKey) return i; ++i;
case 1: if (keys[i] >= searchKey) return i; ++i;
case (: break;

}

for (; 1 < size; i 4= 4) {
if (keys[i] >= searchKey) return i;
if (keys[i + 1] >= searchKey) return i + 1;
if (keys[i 4+ 2] >= searchKey) return i + 2;
if (keys[i + 3] >= searchKey) return i + 3;

}

return 1i;

}

Furthermore we have unrolled the branchless search in Listing 3.10. This implementa-
tion combines the switch and the loop in a way known as “Duft’s device” [Duf88].

In the previous function, all search steps depend on the same variables i and j. It
might be possible to increase performance by removing this dependency and thus mak-
ing better use of instruction level parallelism. The function in Listing 3.11 utilizes a
dedicated variable for each unrolled iteration. The variables jO to j3 accumulate the
number of elements smaller than the search key, each for a fourth of the array. Thus,
the lower bound for the whole array is their sum.

We have unrolled the SIMD search analogously to the scalar search functions in List-
ing 3.12, Listing 3.13 and Listing 3.14.

O~ O UL W N+

e el N el
DU W~ OO

0 O Ui Wi

el e el e
O Ul W N~ OO

30 3. Sequential Search

Listing 3.10: Branchless Unrolled Lower Bound Sequential Search

template <typename T>

IndexType lowerBoundSequentialSearchBranchlessUnrolled4 (
const T xkeys, IndexType size, T searchKey) {
IndexType j = 0, i = 0;

if (size = 0) return 0;
switch (size % 4) {
do {
case 0: j = keys[i] < searchKey 7 i iy i
case 3: j = keys[i] < searchKey 7 i iy i
case 2: j = keys[i] < searchKey 7 i ji i
case 1: j = keys[i] < searchKey 7 i ji i
}
while (i < size);
}
return j;

Listing 3.11: Branchless Unrolled Lower Bound Sequential Search with independent

search steps

template <typename T>

IndexType lowerBoundSequentialSearchBranchlessUnrolledIndependent4 (
const T xkeys, IndexType size, T searchKey) {
IndexType jO = 0, jl =0, j2 =0, j3 = 0;
IndexType i0 = 3, il = 2, i2 =1, i3 = 0;

if (size = 0) return 0;

switch (size % 4) {
do {
case 0: jO = keys[i0] < searchKey ? (jO + 1) : jO; i0 += 4;
case 3: jl = keys[il] < searchKey ? (j1 + 1) : jl; il += 4;
case 2: j2 = keys[i2] < searchKey ? (j2 + 1) : j2; i2 += 4;
case 1: j3 = keys[i3] < searchKey ? (j3 + 1) : j3; i3 += 4;
}
while (i0 < size);

¥

return jO + j1 + j2 + j3;

0~ O U W N

I I I R N B e R e e e S e S S S S S Gy
=W N OO0 Utk W~ OO

0O Ui Wi+

DO R N = = e = e e e
N — O O 00O T W~ OO

3.2. Optimizations

31

Listing 3.12: Unrolled Vecorized Lower Bound Sequential Search

#define SEARCHSTEP(offset) do { \
Vector values = loadVector (reinterpret_cast<const Vectorx>(\
keys + KEYSPERWORD x (i + offset))); \
Vector compResult = _mm_cmpgt<T>(vecSearchKey, \
adjustForSignedComparison<I'>(values)); \
if (!_mm_testc<I>(compResult, vecOmnes)) { \
int mask = createMask<T>(compResult); \
return KEYSPERWORD * (i + offset) + countPositiveResults<I>(mask);
A
} while (0)
template <typename T>
IndexType lowerBoundSequentialSearchSIMD_Unrolled4 (
const T xkeys, IndexType size, T searchKey) {
PROLOG () ;
IndexType i = 0;
switch (simdWords % 4) {
case 3: SEARCHSTEP(0); ++i; case 2: SEARCHSTEP(0); ++i;
case 1: SEARCHSTEP(0); ++i; case 0: break;
)
for (; i < simdWords; i += 4) {
SEARCH.STEP (0); SEARCHSTEP(1); SEARCHSTEP(2); SEARCH.STEP (3);
¥

return size;

Listing 3.13: Branchless Unrolled Vectorized Lower Bound Sequential Search

#define SEARCHSTEP() do{ \
Vector values = loadVector (reinterpret_cast<const Vectorx>(\
keys + KEYSPERWORD x i)); \
Vector compResult = _mm_cmpgt<T>(vecSearchKey, \
adjustForSignedComparison<I>(values)); \
int mask = createMask<TI>(compResult); \
j += countPositiveResults <I>(mask); \
} while (0)
template <typename T>
IndexType lowerBoundSequentialSearchSIMD_BranchlessUnrolled4 (
const T xkeys, IndexType size, T searchKey) {
if (size = 0) return O0;
PROLOG () ;
IndexType j = 0, i = 0;
switch (simdWords % 4) {
do {
case 0: SEARCHSTEP(); ++i; case 3: SEARCHSTEP(); ++i;
case 2: SEARCHSTEP(); ++i; case 1: SEARCHSTEP(); ++i;
} while (i < simdWords);

}

return j;

0O Ui Wi+

I I I I N N I N N R O e T e e el o T e Tl
N OO U WD O OO0 Uk W~ OO

32 3. Sequential Search

Listing 3.14: Branchless Unrolled Vectorized Lower Bound Sequential Search SIMD
with independent search steps

#define SEARCHSTEP (i, j) do{ \
Vector values = loadVector(\
reinterpret_cast<const Vectorx>(keys + KEYSPERWORD * i)); \
Vector compResult = _mm_cmpgt<T>(vecSearchKey, \
adjustForSignedComparison<I'>(values)); \
int mask = createMask<I>(compResult); \
j += countPositiveResults <T>(mask); \
} while (0)
template <typename T>
IndexType
lowerBoundSequentialSearchSIMD_BranchlessUnrolledIndependent4
(const T xkeys, IndexType size, T searchKey)
{
if (size = 0) return O0;
PROLOG () ;
IndexType jO = 0, j1 =0, j2 =0, j3 = 0;

IndexType i0 = 3, il = 2, i2 =1, i3 = 0;
switch (simdWords % 4) {
do {
case 0: SEARCHSTEP(i0, jO); i0 += 4;
case 3: SEARCHSTEP(il, jl); il 4= 4;
case 2: SEARCHSTEP(i2, j2); i2 4= 4;
case 1: SEARCHSTEP(i3, j3); i3 += 4;

} while (i0 < simdWords);
}

return jO + jl1 + j2 + j3;

3.3 Evaluation

To evaluate the proposed optimizations, we executed the functions on randomly gen-
erated arrays and measured the average time for one search over 10,000 runs. The
test data is of a signed integral type with 32-bits and is uniformly distributed over the
complete range of the data type. The search keys were randomly drawn from the same
distribution as the test data.

3.3.1 Evaluation Environment

We used the Microsoft C++ compiler version 19.00.24215.1 for x64 with full optimiza-
tions enabled (/0x) to compile the evaluation program. The test system was equipped
with an Intel Core i7 3610QM processor, with a clock rate fixed at 2.3 GHz. This
processor has 32 KiB of L1 instruction cache, 32 KiB of L1 data cache and 256 KiB L2
cache per core. Additionally it has 6 MiB of shared L3 cache. The L1I, L1D and L2
caches are 8-way set associative, and the L3 cache is 12-way associative. The cache line
size of all these caches is 64 bytes. Two 4 GiB DDR3-1600 memory modules in a dual

3.3. Evaluation 33

channel configuration were used as main memory. The memory timing were 9-9-9-24

(CL-tRCD-tRP-tRAS).

3.3.2 Branch Elimination

We compared the average search time for the basic, branching, search implementa-
tion with their branchless counterparts, for scalar and SIMD searches. The results in
Figure 3.1 show the linear graphs expected for sequential search algorithms. The dif-
ferent slope of the branching and branchless graphs is the most noticeable difference.
The average run-time of the branching functions increases slower than the run-time
of the branchless implementations. This is, because the branchless implementations
always search trough the whole array, whereas the branching versions can terminate
earlier. Since the search keys in our experiment are uniformly distributed, the branch-
ing search on average only goes trough half the array. The advantage of the branchless
search becomes apparent for small arrays. Here, the branchless search is superior to
the branching one, since no branch misprediction can occur in the search loop. How-
ever, the branchless search becomes slower than the branching one when the array size
surpassed a certain threshold. After this threshold, the cost of always iterating over
the complete array outweighs the gains made by eliminating a hard to predict branch.
For the scalar search the threshold is at about 20 keys, and for the vectorized search at
about 50.

160 ' Scalar Sequgntial Syearch ' ' Vectorized Sequential Search (SSE4.1)

— branching
|| — branchless

— branching
— branchless

140

-
o
o

120+

=

N

o
T

o
o
o

T
=

o

o

time in ns
time in ns

©
o
T

80

(o))
o

60

40 . . . L L L L . . .
0 10 20 30 40 50 60 70 80 0 50 100 150 200
size in elements size in elements

Figure 3.1: Scalar and vectorized (SSE4.1) sequential search with and without a branch
in the search loop

3.3.3 Loop Unrolling

Loop unrolling tries to improve the performance of an algorithm by reducing the time
spend executing loop control code, since multiple iterations are executed for each check
of the loop condition. The results of unrolling the search loop 2, 4, 8, and in case of the
scalar search 16 times, are shown in Figure 3.2. As can be derived from all graphs in
both the left and the right plot starting at approximately the same point, all variants

34 3. Sequential Search

retain their base cost for very small arrays. The slope of the graphs corresponding
to unrolled implementations generally is shallower, indicating the effectiveness of loop
unrolling. The gains are more noticeable in the scalar plot. The scalar search function
is significantly improved by unrolling the loop up to 8 times. Unrolling 16 times does
not yield a clear benefit for array sizes suitable to a sequential search. The situation
is similar for the vectorized search, where the improvements diminish after 4 unrolled
iterations.

i Vectorized Sequential Search (SSE4.1)
2000 ' ' Scalayr Sequyentlal 'Searchy ' ' 800 : ‘ : ‘ ‘ ‘ ‘ ‘
— not unrolled — not unrolled
— unrolled 2 times 700r| — unrolled 2 times
I i — unrolled 4 times
1500} unrolled 4 times 6001 :
—— unrolled 8 times unrolled 8 times
unrolled 16 times ., 500
w
f= f=
c
< 1000 "5 400
£ £
- ~ 300
500 200
100
0 L L L L L L L L 0 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
size in elements size in elements

Figure 3.2: Unrolled sequential search

Additionally, we have unrolled the loops in the branchless sequential search functions
(Figure 3.3). Here the results are much less clear. The SIMD search functions do not
noticeably profit from loop unrolling, and the scalar functions only show improvements
at element counts where a branching search is already better.

Scalar Sequential Search

180 ‘ Vectorized Sequential Search (SSE4.1)

— not unrolled 140l — not unrolled
160+ — wunrolled 2 times — unrolled 2 times
— unrolled 4 times — unrolled 4 times
140+ — unrolled 8 times 120 unrolled 8 times
unrolled 16 times
2 120 1 2
£ c
° ° 100
£ 100 { £
= =
80 1 80
60 1
60
40
0 10 20 30 40 50 60 70 80 0 50 100 150 200
size in elements size in elements

Figure 3.3: Unrolled branchless sequential search

A useful feature of loop unrolling is that it can improve instruction level parallelism,
simply by providing more adjacent instructions, that can overlap in execution. To fa-
cilitate this we created unrolled search algorithms with no data dependencies between

3.3. Evaluation 35

160 _Scalar Sequential Search Vectorized Sequential Search (SSE4.1)

— not unrolled 140l| — not unrolled

140l| —— unrolled 4 times - - unrolled 2 times

120 1201
2 2
£ c
° 100 - 100}
£ £
= =

80

80+
unrolled 4 times (independent) unrolled 2 times (independent)
50 - - unrolled 8 times] - - unrolled 4 times
— unrolled 8 times (independent) 60 — unrolled 4 times (independent) ||
40 L L L L L L L L i i
0 10 20 30 40 50 60 70 80 0 50 100 150 200
size in elements size in elements

Figure 3.4: Unrolled branchless sequential search with independent search steps

the unrolled iterations. Figure 3.4 shows the result of our evaluation of this technique.
Removing data dependencies is effective for both the scalar and vectorized search func-
tions. For arrays with more than approximately 20 keys, the 4 times unrolled scalar
search with independent iterations is faster than the simple 4 times unrolled version,
making it the fastest algorithm in the plot. Something similar happens in the plot
of the vectorized searches, where the 2 and 4 times unrolled versions clearly are the
best for arrays with more than about 130 keys. However, for less then 20 keys the
simple unrolled versions are still the faster scalar searches, with the basic branchless
implementation with no loop unrolling at all being the fastest. Since the branching
implementation gets faster than the branchless version at about the same point the
unrolled search with independent search steps sets itself apart, we do not recommend
it. The same is true in the SIMD case, so we do not see any advantages in unrolling
the loop in the branchless implementation.

Run-Time 30 ‘ Vec‘torlzatl‘on Spgedup ‘
140 ; ; ; : 1
— scalar branching (unrolled 8 times)
130})
- - scalar branchless (unrolled 4 times) 25
120} — SSE branching (unrolled 4 times) '
1oll=" SSE branchless (unrolled 2 times, independent)
" S0
< o
£ o
=]
Q °
£ o 15
o
2]
1.0
— branching
— branchless
50 L L L L 05 L L L L L L L L
20 40 60 80 100 0 500 1000 1500 2000 2500 3000 3500 4000
size in elements size in elements

Figure 3.5: Comparison of scalar and vectorized (SSE4.1) sequential search implemen-
tations

36 3. Sequential Search

3.3.4 Vectorization

In Figure 3.5 we are comparing the best scalar and vectorized search functions. From
the left graph we conclude, that the branchless SSE implementation offers the best
performance for arrays with up to about 50 elements. For arrays with more elements,
the branching vectorized search is better. The right graph shows the speedup obtained
by vectorization. At an array size of 100 elements, the branching vectorized search pro-
cesses about 10% more keys per second than the scalar implementation. The difference
is greater in the branchless search, where vectorization gives a speed-up of about 75%
for 100 elements. At an array size of 4096 keys, the speedup factor has converged to
about 1.9 for the branching and 3 for the branchless search.

3.4 Summary

We have implemented the sequential search algorithm both to search for an exact match
and to search for the lower bound. To utilize the SIMD capabilities of current CPUs,
we have not only implemented a traditional scalar search function, but also a vectorized
variant using the SSE instruction set extensions. Then we introduced optimized versions
of these functions, applying the principles of branch elimination and loop unrolling to
them. Finally, we evaluated the implementation variants with randomly generated
test data. In doing so, we found the functions using SSE to be always faster than
the scalar implementations. Branch elimination provides an additional speed-up for
small arrays. How small an array needs to be for the branchless functions is likely
dependent on the machine and needs to be evaluated from case to case. Loop unrolling
proved to be valuable for the branching search functions, but the branchless versions
were only significantly improved for array sizes where the branching implementations
already performed better.

4. Binary Search

The binary search is generally considered the default choice for searching in sorted lists.
In this chapter, we analyze the behavior of different scalar and vectorized implementa-
tions and experiment with branch elimination, loop unrolling and software-controlled
prefetching.

4.1 Implementation

In the following, we present implementations of the binary search algorithms from
Section 2.2.2.1. Additionally we show an implementation of the so called uniform binary
search. We adapted both of these variants of binary searching to SIMD processing using
the idea outlined in Section 2.2.2.1. While binary searching normally divides in two
equally sized partitions, we have also implemented functions using other split ratios.
We will refer to this as offset binary search. Finally we discuss an implementation of
the Fibonaccian search, that itself is a dichotomic search using a split ratio other than
1:1.

4.1.1 Scalar Binary Search

We start with the basic binary search in Listing 4.1. The implementation is nearly
identical to the pseudocode presented in Algorithm 4 on page 13. Refer to Section 2.2.2.1
on page 13 for an explanation of its operation. In the same section we have described
a binary search algorithm to search for the lower bound (Algorithm 5 on page 14), its
implementation is shown in Listing 4.2.

0~ O U W N

= e e
B wN = O o

0 O Ui Wi

—=
W= OO

38 4. Binary Search

Listing 4.1: Binary Search

template <typename T>
IndexType binarySearch(const T xkeys, IndexType size, T searchKey) {
int left = 0, right = (int)size — 1; // both inclusive
while (left <= right) {
int mid = left + (right — left) / 2;
if (searchKey = keys|[mid])
return (IndexType)mid;
else if (searchKey < keys[mid])
right = mid — 1;
else
left = mid + 1;
}

return size; // not found

}

Listing 4.2: Lower Bound Binary Search

template <typename T>
IndexType lowerBoundBinarySearch (
const T xkeys, IndexType size, T searchKey) {
IndexType left = 0, right = size; // left inclusive, right ezclusive
while (left < right) {
IndexType mid = left + (right — left) / 2;
if (searchKey <= keys|[mid])

right = mid;
else
left = mid + 1;
}
return left; // left == right

Note that the lower bound search is more general than the exact match search. The
result of a lower bound search just has to be checked against the array one last time
to create the behavior of an exact match search. We have implemented a binary exact
match search in Listing 4.3 using the lower bound search to demonstrate this. binary-
SearchByLowerBoundSearch has the advantage of only needing a single if-statement in
the loop body, therefore reducing the potential for branch mispredictions. On the other
hand, it always loops until the search interval becomes empty, even when an examined
separator element already is the key being searched for. In contrast, the function bi-
narySearch terminates as soon as the search key has been tested. If we assume all
searches to be successful and the keys to be chosen with equal probability, we can on
average expect about one iteration less than the worst case of binarySearchByLower-
BoundSearch. This is, because the number of potential nodes in a binary tree doubles
with each level. Note that the if-statement in line 5 could be implemented as a condi-
tional move, if the array is augmented with a sentinel key not equal to the search key,
thus elimination the lowerBound < size test.

© 00 ~J O U Wi+

0O Ui Wi+

el e e e e e
OO UL WK~ OO

4.1. Implementation 39

Listing 4.3: Exact match binary search implemented in terms of a lower bound binary
search

template <typename T>
IndexType binarySearchByLowerBoundSearch (
const T xkeys, IndexType size, T searchKey) {
IndexType lowerBound = lowerBoundBinarySearch (keys, size, searchKey);
if (lowerBound < size && keys[lowerBound| = searchKey)
return lowerBound;
else
return size; // not found

4.1.2 Scalar Uniform Binary Search

Listing 4.4 shows an alternative binary search implementation using the variables left
and dist to keep track of the search interval instead of left and right. left is the
index of the first key in the interval, and dist is used to compute the offset of the
separator element from the beginning of the search interval. The function in Listing 4.4
performs a lower bound search, an exact match variant is obtained by replacing line 10
with the commented out if-statements.

Listing 4.4: Lower Bound Uniform Binary Search

template <typename T>
IndexType lowerBoundUniformBinarySearch (
const T xkeys, IndexType size, T searchKey) {
IndexType height = ceilLog2(size + 1);
IndexType dist = 1 << (height — 1);
IndexType left = 0;
IndexType mid = size — dist; // avoid out—of—bounds access
dist = dist >> 1;
while (height— > 0) {
if (searchKey > keys[mid]) left = mid + 1;
// For an exaclt match search:
// if (searchKey == keys[mid]) return mid;
// else if (searchKey > keys[mid]) left = mid + 1;
mid = left + dist — 1;
dist = dist >> 1;
}

return left ;

Arrays with perfect length

The search effectively assumes the arrays to correspond to perfect binary search trees,
i.e. to have a length of 2" — 1 with an integer n. This simplifies the index computations,
since the search sub-intervals themselves have a length of 2" — 1 with decreasing n,
and dist is always a power of two. In line 4 we use the function ceilLog2, defined in
the appendix (Listing A.2), to compute the height [log,(size + 1)] of the conceptual

40 4. Binary Search

(o246 8 rofr2]1a)]

(o1 J2[8T4a]s e s[oJw[m]i2]13]14]

Figure 4.1: Perfect binary search tree containing 15 keys and the corresponding ordered
list.

search tree corresponding to the array. Figure 4.1 shows a perfect binary tree with
15 keys and the corresponding flat array. If we define the height A of a node in the
tree as the number of levels below it, the separator elements are at indices of the form
left + 2" — 1, where left is the start index of a sub-interval. This means we need two
variables to describe the current position in the conceptual search tree: The current
start offset from the beginning of the array left, and the current height height. Instead
of using height in the index computations, we use dist = 2he1ght,

Generalization to arbitrary array lengths

The generalization to array with arbitrary lengths is achieved by letting the first two
partitions overlap. The following iterations can then assume both the left and right
partition to be equally sized and correspond to perfect binary search trees, i.e. to have
a length of dist — 1. Since the right partition begins with the key to the right of the
separator element, the overlapping is achieved by setting the index of the first separator
element to size—dist in line 7. The number of keys in both the left and right partition
is 2height _ <i76 — 1. Note that the initial overlap means the search can perform a
redundant comparison after the first iteration. Figure 4.2 shows an example of a search
on an array with 10 keys. After the key 2 has been examined in the first iteration, the
search proceeds with the right partition of perfect size. Figure 4.3 shows an example,
where the search continues with the left partition after the first iteration. Since the
initial array size was not perfect, the search interval considered in iteration 2 includes
the keys 3, 4, 5 and 6, that already could have been eliminated in the first iteration.
Nevertheless, the search still terminates after four iterations.

The important advantage of lowerBoundUniformBinarySearch over lowerBoundBi-
narySearch is that the former always needs exactly [log,(size + 1)] iterations, re-
gardless of the search key. This will allow us to unroll the loop in Section 4.2.

4.1. Implementation 41

Iteration1f O | 1 | 2 [3 |4 |5 [6 | 7|89
Iteration2| 0 | 1 |2 [3 |4 |5 [6 | 7|89
Iteration3| O | 1 | 2 [3 |4 |5 |6 | 7|89
Iteration4| 0 | 1 | 2 | 3 | 4 . 6 | 7]181]9

Figure 4.2: Example of lowerBoundUniformBinarySearch searching for the key 5. The
search interval is shaded and the separator elements are printed in boldface.

Tteration 1| 0 | 1

Iteration 2| 0 | 1

Iteration 3| 0 | 1

Iteration 4 . 1

Figure 4.3: Example of lowerBoundUniformBinarySearch searching for the key 0. The
search interval is shaded and the separator elements are printed in boldface.

NN NN

3
3
3
3

O SO SO S
ot | ov] on | on
olo|lo | o
ES T EN B ES B BN
o | oo | oo | oo
©o|w|wv|®©

4.1.3 Vectorized Binary Search

Our SIMD implementations of the binary search technique use the same prolog as the
sequential searches. Its definition is in Listing 3.3.

Listing 4.5 shows a binary search using SIMD loads and comparisons. The array indices
left, right and mid refer to SIMD word sized blocks instead of individual elements,
leaving the loop condition and the calculation of the middle the same as in the scalar
search. In lines 9 to 11 a complete block of separator elements is loaded. It is then
compared for equality in lines 14 to 20. The resulting mask is evaluated using the
function getFirstPositiveResult defined in Section A.3.2 of the appendix. It returns
true and sets i to the index of the first positive result in the mask, if at least one bit
in the mask is set. Consider the 128-bit SSE mask 0x0000 0000 0000 0000 FFFF FFFF
0000 0000. If we are working with 32-bit keys, getFirstPositiveResult would set i
to 2, since the first set bit lies in the second 32-bit word (counted starting from the
least significant bit). Therefore, the search terminates successfully, if the body of the
if-statement in line 17 is entered. The index of the found key is computed from the
separator word position mid in the array and the offset i in the current separator array.
If the equality test fails, a greater-than comparison is performed in line 22. Its result
mask is evaluated using the ptest instruction. If no bit in the mask is set, all separators
are greater than the search key and the search continues to the left. If all bits are set,
all separators are smaller than the search key and the search continues with the right
partition. There is one additional branch compared the scalar search: The search can

0O Ui Wi+

O W W WWWRNNDNNDNDDNDNDNNDNDDLN = = = =
G W N R OO Uk WNHFR OOWoIOD Uk WwNhHRO©

42 4. Binary Search

terminate early if a word of separators contains keys both smaller and greater than
the search key in line 31, because we have already checked for equality. If the loop is
exited because the search interval became empty, the search terminates unsuccessfully
in line 34.

Listing 4.5: Vectorized Binary Search

template <typename T>
IndexType binarySearchSIMD (
const T xkeys, IndexType size, T searchKey) {
PROLOG () ;
// indices correspond to SIMD words, mot to individual keys
int left = 0, right = simdWords — 1; // both inclusive
while (left <= right) {
int mid = left + (right — left) / 2;
Vector separators = adjustForSignedComparison<T>(
loadVector (reinterpret_cast<const Vectors>(
keys + KEYSPERWORD x mid)));

// compare for equality

Vector compResult = _mm_cmpeq<T>(vecSearchKey, separators);
int mask = createMask<T>(compResult);
unsigned long i = 0;

if (getFirstPositiveResult <I>(&i, mask)) {
// search key is equal to one of the separators
return KEYSPER WORD *x mid + 1i;

}

compResult = _mm_cmpgt<T>(vecSearchKey , separators);
if (_mm_testz<I>(compResult, vecOnes)) {
// no bit in compResult is set
right = mid — 1; // all keys are greater than the search key
}
else if (_mm_testc<I>(compResult, vecOnes)) {
// all bits in compResult are set
left = mid + 1; // all keys are smaller than the search key
} else {
return size; // the search key is in not in the array
}
}

return size; // not found

}

Alternatively the SIMD mask generated in line 22 can be evaluated using the instruc-
tions pmovmskb and test. Listing 4.6 shows the alternative code. First, the mask
is transferred to a general purpose register in line 2 using the function createMask,
which in turn compiles to a pmovmskb. Then regular if-statements operating on int
values are used for the evaluation. The constants NONE and ALL are defined as 0 and
0xFFFFFFFF, respectively (see Listing A.9). This implementation has the advantage
of not requiring the ptest instruction, which is only available since SSE4.1. Addition-
ally the combination of pmovmskb and test might execute faster on some processors.

0O Ui Wi+

4.1. Implementation 43

Listing 4.6: Alternative mask evaluation for binarySearchSIMD

compResult = _mm_cmpgt<T>(vecSearchKey, separators);
mask = createMask<T>(compResult);
if (mask = MASK<Vector, T>::NONE)
right = mid — 1;
else if (mask = MASK<Vector, T>::ALL)
left = mid + 1;
else
return size;

The SIMD lower bound search is listed in Listing 4.7. First note the loop condition,
together with both indices—1left and right—being inclusive it terminates the loop
when a single block is left in the search range. This is important, because the last iter-
ation requires special handling. The decision between the left and right partition is the
same as in the previous algorithm (lines 15 to 22), but the case where the mask contains
both ones and zeros is different (lines 23 to 28). If the algorithm reaches line 26, the
mask contains a switch from one bits, indicating elements not smaller than searchKey,
to zero bits, indicating elements smaller than searchKey, i.e. the lower bound is in the
current block. The search then terminates using the countPositiveResults function
to obtain the correct index. This means, that the function can terminate before the
last iteration, in contrast the the scalar lower bound search (Listing 4.2).

Lines 35 to 40 deal with the last iteration, if the algorithm has not exited earlier.
countPositiveResults is used to obtain the index of the first element not smaller
than the search key, i.e. the lower bound. If all bits in the mask are set, this index
is outside of the current block. This allows the lower bound to be one past the last
valid index and is similar to how the scalar lower bound search operates in its last
iteration. Like the scalar algorithm, the SIMD algorithm favors the left partition in
case of equality: Line 18 is executed when all separators in a block are equal to the key
being searched for.

Figure 4.4 depicts an example of the algorithm’s operation. Note how the correct lower
bound is not part of the search range any more in the second iteration. This is the case
where the special handling of the last iteration in lines 35 to 40 becomes important.
Since the search key is greater than all the separator elements, it is correct to return
the index after the last separator, i.e. 4.

Index o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[teration 1| 0 | 2 | 4 | 6 | 8 |10|12|14 16|18 20|22 24|26 28|30
Iteration2| 0 [2 | 4 | 6 | 8 |10[12]14 16|18 |20 |22 |24 |26 |28 |30
Iteration 3| 0 | 2 | 4 | 6 1011214 |16 | 18|20 | 22|24 |26 | 28 | 30

Figure 4.4: Example of lowerBoundBinarySearchSIMD searching for the key 7. The
interval [Left, right]| is shaded and the separator elements are printed in boldface.

0O Ui Wi+

S 0 W W W W W W W W WERNNDNDDNDNDNDDNDNDNDLN = = s e e e e
— O O 00D Ui WNHFE OOk WD O OO Uik WwNnHF—O©

44 4. Binary Search

Listing 4.7: Vectorized Lower Bound Binary Search

template <typename T>
IndexType lowerBoundBinarySearchSIMD (
const T xkeys, IndexType size, T searchKey) {
if (size = 0) return O0;
PROLOG () ;
// indices correspond to SIMD words, mot to individual keys
int left = 0, right = (int)simdWords — 1; // both inclusive
while (left < right) {
int mid = left + (right — left) / 2;
Vector separators = loadVector(reinterpret_cast<const Vectors>(
keys + KEYSPERWORD * mid));
Vector compResult = _mm_cmpgt<T>(
vecSearchKey , adjustForSignedComparison<T>(separators));

if (_mm_testz<T>(compResult, vecOnes)) {
// all keys are greater than the search key or separators
// contains the first key equal to the search key
right = mid — 1;
}
else if (_mm_testc<T>(compResult, vecOnes)) {
// all keys are smaller than the search key
left = mid + 1;
1 else {
// the search key is in separators
// or mot in the array at all
int mask = createMask<T>(compResult);
return KEYSPER WORD # mid + countPositiveResults <I'>(mask);

}
}

// If mask is 0, the first key in the current word is

// the first key equal or greater than the search key.

// If mask is 0zFFFF, the first key not smaller than

// the search key is to the right of the current word.

Vector values = loadVector (reinterpret_cast<const Vectors>(
keys + KEYSPERWORD x left));

Vector compResult = _mm_cmpgt<T>(
vecSearchKey , adjustForSignedComparison<T>(values));

int mask = createMask<T>(compResult);

return KEYSPER WORD # left + countPositiveResults<I'>(mask);

4.1.4 Vectorized Uniform Binary Search

In the same way we constructed the vectorized search in the last section, a SIMD uniform
binary search can be derived from the scalar uniform search. Listing 4.8 shows how we
do this for the lower bound algorithm. An exact match variant can be constructed

analogously.

0~ O U W N

e O I R R I I I N T R N S iy Sy Wy gy gt
K—OO©W T NEWNR, D O©W-IOU R W~ O ©

4.1. Implementation 45

Listing 4.8: Vectorized Lower Bound Uniform Binary Search

template <typename T>

IndexType lowerBoundUniformBinarySearchSIMD (
const T xkeys, IndexType size, T searchKey) {
if (size = 0) return O0;
PROLOG () ;
IndexType height = ceilLog2 (simdWords + 1);
IndexType dist = 1 << (height — 1);
IndexType left = 0;
IndexType mid = simdWords — dist;
dist = dist >> 1;

while (height— > 1) {
Vector separators = loadVector (
reinterpret_cast<const Vectors>(
keys + KEYSPER WORD % mid));
Vector compResult = _mm_cmpgt<T>(
vecSearchKey , adjustForSignedComparison<I>(separators));

if (_mm_testc<T>(compResult, vecOnes)) {
// all bits in mask are set
left = mid + 1; // all keys are smaller than the search key
}
else if (!_mm_testz<T>(compResult, vecOnes)) {
// any bit in mask is set
int mask = createMask<T>(compResult);
return KEYSPER WORD * mid + countPositiveResults <I'>(mask);
}
mid = left + dist — 1;
dist = dist >> 1;
}
// handle last SIMD word, see lowerBoundBinarySearchSIMD

}

4.1.5 Offset Binary Search

Normally a binary search splits the search interval in equally sized halves, but other
division ratios are also possible. In Listing 4.9 we present a binary search partitioning
the search range in the ratio a : b. The only difference to Listing 4.2 is the modified
calculation of the separator element’s location in line 7. Note that the multiplication in
that calculation can overflow the index type, so care must be taken to choose a suitable
type. Note that the division in line 7 can be implemented with a single shift if a 4+ b is
a power of two, so such parameters might be preferable.

Uncommenting lines 10 and 13 yields a slightly different offset binary search partitioning
in the ratio b : a if the search key is to the left of the current separator element, and
in the ratio a : b, if it is to the right. If we choose a < b, this guarantees that the next
separator element has the same distance to the current separator, regardless of the side

0O Ui Wi

el e el e
OO UL W N~ OO

46 4. Binary Search

the search continues in. The Fibonaccian search discussed in the next section has the
same property.

Listing 4.9: Lower Bound Offset Binary Search

template <typename T, IndexType a = 1, IndexType b = 2>
IndexType lowerBoundOffsetBinarySearch (
const T xkeys, IndexType size, T searchKey) {
IndexType left = 0, right = size;
IndexType numerator = a;
while (left < right) {
IndexType mid = left + (numerator % (right — left)) / (a + b);
if (searchKey <= keys[mid]) {

right = mid;
// numerator = b; (optional)
1 else {

left = mid + 1;
// numerator = a; (optional)
}
}

return left ;

}

Note that lowerBoundOffsetBinarySearch needs more iterations than the non-offset
binary search if the larger partition is chosen often. However, since the search range
is reduced by a constant factor smaller than one in each iteration, the asymptotic
complexity stays logarithmic.

4.1.6 Fibonaccian Search

While the term binary search most often refers to a dichotomic search splitting the
search interval in the middle, the Fibonaccian search is still very similar to the classical
binary search. Therefore, its implementation will be useful for our evaluation, especially
concerning the different memory access patterns. Additionally the Fibonaccian search
is related to the offset binary search presented above. If we try to construct an offset
binary search with precalculated subdivisions, we see that we need a sequence of integers
with a,, = a,,_1 + a,,_2 to locate the separator elements, since we want to evenly split a
range of a, keys into two sub-ranges, that themselves can be split evenly in the same
way. In that sense, the Fibonaccian search is to the offset binary search what the
uniform binary search is to the (non-uniform) binary search.

First we define some helper functions related to the Fibonacci numbers. The func-
tions prevFib and prevPrevFib in Listing 4.10 both take pointers to two consecutive
Fibonacci numbers p and ¢ with p > ¢. prevFib calculates the previous pair of Fi-
bonacci numbers (p',¢') as (¢,p — ¢), and prevPrevFib calculates the previous pair of
the previous par of Fibonacci numbers (p”, ¢”) as (p—q,q— (p—q)), as such it performs
the same operation as two applications of prevFib. The third helper function find-
FibonacciNumbers, calculates three consecutive Fibonacci numbers a < b < ¢ with ¢
being the greatest Fibonacci numbers still smaller than the parameter size. Addition-
ally it sets n to the index of ¢ in the Fibonacci sequence as defined in Section 2.2.2.2.

0O Ui Wi+

I I I I N R e e e e S e e e
W NP O OO0 Utk WNh4F—HOO

4.1. Implementation 47

Listing 4.10: Helper functions for the Fibonaccian search

inline void prevFib(IndexType #p, IndexType *q) {

auto temp = xq;
*q = *p — *(;
*p = temp;

}

inline void prevPrevFib(IndexType *p, IndexType xq) {
*p = *p — *q;
*q = *q — *p;

}

inline std::tuple<IndexType, IndexType, IndexType>
findFibonacciNumbers (IndexType size, int xn) {
IndexType a =0, b=1, ¢ =1, d = 2;

xn = 2; // ¢ is the n—th Fibonacci number
while (d < size) {

a =b;

b = c;

c = d;

d=Db+ c;

*n 4= 1;
}

return std::make_tuple(a, b, c);

The exact match search in Listing 4.11 is an implementation of Algorithm 7 on page 17
using the variables p, q and the functions defined above to efficiently generate the
Fibonacci numbers. Note, how the search needs to obtain suitable start values using
findFibonacciNumbers in line 7. If repeated searches on arrays with the same length
are needed, this computation is only necessary once, and the results could be passed in
as arguments to the search function.

We have constructed a lower bound Fibonaccian search in Listing 4.12 by omitting the
last branch for the case of equality and by replacing the last return-statement. Note
that our implementation has the property of sometimes checking the last separator
element twice. For an example see Figure 4.5, where the key 8 is tested in both the
fifth and sixth iteration. At the end of the loop, the lower bound can actually lie to the
left of the last separator element. We can detect this by examining the variable n. If
n is —1 the first branch in lines 11 to 13 was the last executed. In this case the search
key is smaller than or equal to the last separator. If n is —2 the second branch was
executed last, meaning that the search key is greater than the last separator element,
so we have to add one the get the correct lower bound. We use the expression —n — 1
for this adjustment. For n = —1 it evaluates to 0, and for n = —2 to 1.

0O Ui Wi+

I I I N I N R N e R e e e S e
QU W N O OO0 Uk W~ OO

48 4. Binary Search

Listing 4.11: Fibonaccian Search

template <typename T>
IndexType fibonaccianSearch (
const T xkeys, IndexType size, T searchKey) {
IndexType 1i;
IndexType p, q; // two consecutive Fibonacci numbers (p > q)
int n;
std::tie(q, p, i) = findFibonacciNumbers(size, &n);
IndexType left = 0;
while (n >= 0) {
if (i >= size || searchKey < keys[i]) {
i = left + p;
prevFib(&p, &q);
n—= 1;

b

}

else if (searchKey > keys[i]) {
left = i;
I += q;
prevPrevFib(&p, &q);
n —= 2;

else // searchKey == keys/[i]
return i;
}

return size; // not found

}

Index o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration 1| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 120222426 28|30
Iteration2| 0 | 2 [4 | 6 | 8 |10 12|14 |16 | 18 [20| 22 | 24 | 26 | 28 | 30
Iteration 3| 0 | 2 | 4 | 6 | 8 |10|12 |14 |16 |18 20|22 24|26 | 28|30
Iteration4| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30
Iterationb| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30
Iteration 6| 0 | 2 | 4 | 6 | 8 |10 12|14 16|18 20|22 24|26 28|30

Result 0]2(4]6]8 1211411618 1202224262830

Figure 4.5: Example of lowerBoundFibonacciSearch searching for the key 9. The
interval still considered by the search is shaded and the separator elements are printed
in boldface. The key 8 is tested in two iterations.

0~ O U W N

I I R e N e el e el e
D= O OO0 T WNRFEOO

[\)

4.2. Optimizations 49

Listing 4.12: Lower Bound Fibonaccian Search

template <typename T>
IndexType lowerBoundFibonaccianSearch (
const T xkeys, IndexType size, T searchKey) {
IndexType i;
IndexType p, q; // two consecutive Fibonacci numbers (p > q)
int n;
std:: tie(q, p, i) = findFibonacciNumbers(size , &n);
IndexType left = 0;
while (n >= 0) {
if (i >= size || searchKey <= keys[i]) {
i = left + p;
prevFib(&p, &q);
n — 1;
} else {
left = i;
1 4= q;
prevPrevFib(&p, &q);
n —= 2;
}
}
return left + (IndexType)(—n — 1);

}

4.2 Optimizations

Like for the sequential search, we have applied branch elimination and loop unrolling
to the binary search. Additionally we derived implementation variants using explicit
software-controlled prefetching.

4.2.1 Branch Elimination

We replaced the if-else construct in the lower bound binary search (Listing 4.2) with
two conditional moves. The conditional moves are represented as conditional operators
in Listing 4.13. We did the same with the exact match variant, but here the branch for
the equality test remains (Listing 4.14).

The statement if (searchKey > keys[mid]) left = mid + 1 in the uniform binary
search (Listing 4.4) already gets compiled to a conditional move, so no changes to the
source code are required. Of course, the branch exiting the search loop in the exact
match search must remain.

Listing 4.13: A branchless lower bound binary search is constructed by replacing lines 7
to 10 of Listing 4.2 with this code.

const IndexType midPlusOne = mid + 1;
right = searchKey <= keys[mid] ? mid : right;
left = searchKey <= keys[mid] ? left : midPlusOne;

T W N~

O © 00O Uk Wi+

—_

0O Ui Wi

—_ =
o= OO

50 4. Binary Search

Listing 4.14: Two branches in the binary search (Listing 4.1) are eliminated by replacing
lines 6 to 11 with this code.

if (searchKey =— keys[mid]) return (IndexType)mid;
const IndexType midMinusOne = mid — 1;

const IndexType midPlusOne mid + 1;

right = searchKey <= keys[mid] ? midMinusOne : right;
left = searchKey <= keys[mid] ? left : midPlusOne;

The two branches selecting the left or right partition in the SIMD binary search algo-
rithms in Listing 4.5 and Listing 4.7 are replaceable by conditional operators, yielding
conditional move instructions, in the same way as for the scalar algorithms. Listing 4.15
and Listing 4.16 show the necessary modifications to the earlier listings. The final else-
case terminating the algorithm has been replaced by a simple if-statement using ptest
to test for a mix of zero and one bits. Listing 4.17 shows how we replaced one branch
in the lower bound uniform binary search (Listing 4.4) using the same idea.

Listing 4.15: Two branches in the vectorized binary search (Listing 4.5) are eliminated
by replacing lines 23 to 33 with this code.

const int midMinusOne = mid — 1;

const int midPlusOne = mid + 1;

right = _mm_testz<T>(compResult, vecOnes) ?
midMinusOne : right; // all zeros

left = _mm_testc<I>(compResult, vecOnes) 7
midPlusOne : left; // all ones

if (!_mm_testz<T>(compResult, vecOnes)
&& ! _mm_testc<T>(compResult, vecOnes)) {
return size; // mized zeros and ones

}

Listing 4.16: Two branches in the vectorized lower bound binary search (Listing 4.7)
are eliminated by replacing lines 14 to 28 with this code.

const int midMinusOne = mid — 1;

const int midPlusOne = mid + 1;

right = _mm_testz<T>(compResult, vecOnes) ?
midMinusOne : right; // all zeros

left = _mm_testc<I>(compResult, vecOnes) 7
midPlusOne : left; // all ones

if (!_mm_testz<T>(compResult, vecOnes)
&& ! _mm_testc<T>(compResult, vecOnes)) {
// mized zeros and ones
int mask = createMask<T>(compResult);
return KEYSPER WORD * mid + countPositiveResults <I'>(mask);

4.2.2 Prefetching

The access pattern of a binary search is essentially random to a typical hardware
prefetcher, so it might be possible to improve performance by using explicit prefetch in-

~N O U W N

0O Ui Wi+

T N N R N R N e e e e e e e G
W NP OO0 Utk WNhHFHOO

4.2. Optimizations 51

Listing 4.17: A branch in the vectorized lower bound uniform binary search (Listing 4.7)
is eliminated by replacing lines 18 to 29 with this code.

const int midPlusOne = mid + 1;
left = _mm_testc<I>(compResult, vecOnes) ? midPlusOne : left;
if (!_mm_testz<T>(compResult, vecOnes)

&& ! _mm_testc<T>(compResult, vecOnes)) {

int mask = createMask<T>(compResult);

return KEYSPER WORD * mid + countPositiveResults <I'>(mask);

}

structions. In the source code, the _mm_prefetch intrinsic function is used for prefetch-
ing. It takes the memory address to load from and a hint specifying which of the four
versions of the prefetch instruction to use (see Section 2.1.1).

Listing 4.18 shows a branchless lower bound binary search prefetching the next two
possible separator elements one iteration ahead. In line 10 the index of the next sepa-
rator element, if the left partition is chosen, is calculated. The location of the separator
element of the right partition is calculated in line 15. The cache lines containing these
keys are prefetched in lines 11 and 16, respectively. A third conditional move has been
added in line 21 to reuse the already calculated separator index in the next iteration.

Listing 4.18: Branchless Lower Bound Binary Search with Prefetching

template <typename T, int PREFETCH LOCALITY_HINT = _MM_HINT_T0>
IndexType lowerBoundBinarySearchBranchlessPrefetch (
const T xkeys, IndexType size, T searchKey) {
IndexType left = 0, right = size;
IndexType mid = left + (right — left) / 2;
while (left < right) {
IndexType midPlusOne = mid + 1;

// new mid if left partition is selected

IndexType midl = left + (mid — left) / 2;

_mm_prefetch (reinterpret_cast<const charx>(&keys|[midl]),
PREFETCH LOCALITY_HINT) ;

// new mid if right partition is selected

IndexType mid2 = midPlusOne + (right — midPlusOne) / 2;

_mm_prefetch (reinterpret_cast<const charx>(&keys|[mid2]),
PREFETCH LOCALITY_HINT) ;

right = searchKey <= keys[mid] ? mid : right;
left = searchKey <= keys|[mid] ? left : midPlusOne;
mid = searchKey <= keys[mid] ? midl : mid2;

return left; // left == right

}

0O Uik Wi

RN RN RN KN N DN o s e e e e e
DU WD O OO0 Uk W~ OO

52 4. Binary Search

Prefetching is also possible in the uniform binary search. Listing 4.19 shows a lower
bound uniform binary search prefetching the next two possible separator elements one
iterations in advance. To do this, it not only maintains the offset of the current search
range in the variable 1left1, but also the offsets of the two partitions the current range
is divided in. The starting index of the left partition is the same as for the current
range, namely leftl. The offset of the right partition is stored in 1left2. If the search
continues in the left partition, left1l remains unchanged. Otherwise the statement
leftl = left2 in line 20 is executed, selecting the right partition. In any case, the
new right partition starts at leftl + dist, directly to the right of the next separator
element (line 21). The actual prefetching is done in lines 14 to 17, with the two possible
next separator elements at leftl + dist - 1 and left2 + dist - 1.

Listing 4.19: Uniform Binary Search prefetching the next two possible separator ele-
ments one iterations in advance

template <typename T, int PREFETCH LOCALITY_HINT = _MM_HINT_T0>
IndexType lowerBoundUniformBinarySearchBranchlessPrefetch2 (
const T xkeys, IndexType size, T searchKey) {
IndexType height = ceilLog2(size + 1);
IndexType dist = 1 << (height — 1);

IndexType mid = size — dist;
dist = dist >> 1;

IndexType leftl = 0;
IndexType left2 = mid + 1;

while (height— > 0)
if (dist >= CACHE_LINE SIZE / sizeof(T)) {
_mm_prefetch (reinterpret_cast<const charx>(
&keys[leftl + dist — 1]), PREFETCH_LOCALITY _HINT);
_mm_prefetch (reinterpret_cast<const charx>(
&keys[left2 + dist — 1]), PREFETCH LOCALITY HINT);
}

if (searchKey > keys[mid]) leftl = left2;
left2 = leftl + dist;
mid = leftl 4+ dist — 1;
dist = dist >> 1;
}

return leftl;

}

The function in Listing 4.20 looks even further ahead and prefetches the next four
possible separator elements two iterations in advance. We use the four variable left1,
left2, left3 and left4 to keep track of the possible partitions in the next two search
steps. leftl is the beginning of the current search range, its left sub-range, and the left
sub-range of this sub-range. left3 is the right sub-range of the current search interval,
and the left sub-range of this right sub-range. 1left2 and left4 store the corresponding
right sub-ranges of the two possible partitions of the current search range. Figure 4.6
illustrates this for a search range of length 15. Note that the spacing between left1,

0O Uik Wi

O W W WWWNNNDINDNDDNDNNDNDDN F == =
U W N OO0 Uk WNRFE O OO Uk WwNhFR OO

4.2. Optimizations 53

left2, left3 and left4 is regular when the length of the current search range is 2" — 1
for some integer n, so a single variable left would be sufficient. An implementation
with only a single left would free up registers and might lower the instruction count.
However, this would require more code to handle the first iteration if the array size
is not perfect. Because of this and for more compact source code we decided to use
multiple variables.

The prefetches in Listing 4.19 and Listing 4.20 are skipped, if the distance between the
elements to load is smaller than a cache line, because prefetching the same cache line
multiple times would be redundant. The additional branch introduced by this is not
problematic, since it is easily predictable.

Listing 4.20: Uniform Binary Search prefetching four possible separator elements two
iterations in advance

template <typename T, int PREFETCH LOCALITY_HINT = _MM_HINT_TO>
IndexType lowerBoundUniformBinarySearchBranchlessPrefetch4 (
const T xkeys, IndexType size, T searchKey) {
IndexType height = ceilLog2(size + 1);
IndexType dist = 1 << (height — 1);

IndexType mid = size — dist;
dist = dist >> 1;

IndexType leftl = 0;

IndexType left2 = leftl + dist;
IndexType left3 = mid + 1;
IndexType leftd = left3 + dist;

while (height— > 0)
if (dist >= CACHE_LINE_SIZE / sizeof(T)) {

IndexType midOffset = (dist >> 1) — 1;

_mm_prefetch (reinterpret_cast<const charx>(
&keys[leftl + midOffset]), PREFETCH LOCALITY HINT);

_mm_prefetch (reinterpret_cast<const charx>(
&keys[left2 + midOffset]), PREFETCH LOCALITY_HINT);

_mm_prefetch (reinterpret_cast<const char>(
&keys|[left3 + midOffset]), PREFETCH.LOCALITY_HINT);

_mm_prefetch (reinterpret_cast<const charx>(
&keys[left4 + midOffset]), PREFETCH.LOCALITY HINT);

}

left1 = searchKey <= keys[mid] ? leftl : left3;
left3 = searchKey <= keys[mid] 7 left2 : leftd4;
left2 = leftl 4+ (dist >> 1);
left4d = left3 + (dist >> 1);
mid = leftl 4+ dist — 1;
dist = dist >> 1;

}

return leftl;

}

54 4. Binary Search

mid mid mid

|

o [1 T 283745]c N s[9Jw[m]m2[13]14]

0O Uik Wi

I I R N R R N R e e R i
U W N O OO Utk WO o

leftl left2 left3 left4

Figure 4.6: Indices used by lowerBoundUniformBinarySearchBranchlessPrefetch4.
The current search range are the keys 0 to 14. 7 is the current separator element, 3
and 11 are the next two possible separator elements. leftl, left2, left3 and left4 mark
the four possible sub-ranges the search can continue with after two search steps. The
cache lines holding the keys 1, 5, 9 and 13 are prefetched.

We also added explicit prefetching to the vectorized binary search and the vectorized
uniform binary search. In case of the non-uniform search the necessary changes are anal-
ogous to Listing 4.18. For the vectorized uniform binary search we have implemented
prefetching one iteration ahead analogously to Listing 4.19.

Listing 4.21: Unrolled Branchless Lower Bound Binary Search

#define SEARCHSTEP \
left = searchKey <= keys[mid] ? left : mid + 1; \
mid = left + dist — 1; \
dist = dist >> 1;

template <typename T>

IndexType lowerBoundUniformBinarySearchUnrolled (
const T xkeys, IndexType size, T searchKey) {
IndexType height = ceilLog2(size + 1);
IndexType dist = 1 << (height — 1);

IndexType left = 0;
IndexType mid = size — dist; // avoid out—of—bounds access
dist = dist >> 1;

switch (height) {
case 31: SEARCH.STEP
case 30: SEARCH.STEP
case 2: SEARCH_STEP
case 1: SEARCH.STEP
case (: break;

}

return left;

4.2.3 Loop Unrolling

The while-loops in Listing 4.1 and Listing 4.2 are difficult to unroll, since the loop
condition is not determined by a simple counter variable. Instead, we have unrolled the
loop of the uniform binary search. Listing 4.21 shows the result of completely unrolling
the uniform binary search’s loop for arrays with up to 23! keys. This is possible, because

4.3. FEvaluation 55

of the logarithmic complexity of the binary search and the regularity of our uniform
implementation. The source code of the vectorized uniform binary search, we have
unrolled in the same way as the scalar variant, is not shown here.

4.3 Evaluation

Our evaluation first deals with the lower bound scalar binary search, the lower bound
scalar uniform binary search and the effects of branch elimination, software prefetching
and loop unrolling on them. In Section 4.3.5 we analyze the vectorized search func-
tions and in Section 4.3.6 we compare exact match search functions implemented either
directly or based on the lower bound. The offset binary search and the Fibonaccian
search are evaluated in Section 4.3.7. Finally we compare the algorithms concerning
their effectiveness in utilizing the CPU caches in Section 4.3.8.

4.3.1 Evaluation Setup

We used the same compiler and hardware to evaluate the binary search, as we have used
for the sequential search. See Section 3.3.1 for a description. Like in Section 3.3 we
used randomly generated datasets for the evaluation. All keys are of a signed integral
type with 32-bits. Our measurements are averages over 10,000 search runs. We have
three different algorithms to generate the search keys:

Algorithm 1 The search keys are drawn from the same distribution as the array ele-
ments. This is the same as in Section 3.3.

Algorithm 2 The search keys are randomly selected from the array with equal prob-
ability.

Algorithm 3 5 sets of 128 keys are randomly selected from the array. Each set is used
for 2000 consecutive searches, randomly sampling from the set.

Algorithm 1 was used in the sequential search chapter. We introduce Algorithm 2
in addition to Algorithm 1 to compare different exact match implementations in Sec-
tion 4.3.6, because Algorithm 1 has a very small chance of producing a key actually
present in the array. Since we concentrated on lower bound searching in the previous
chapter, Algorithm 2 was not needed there. Algorithm 3 allows us to compare the
caching behavior of different algorithms, since it generates search keys with better lo-
cality. For the sequential search this was not needed, since its access pattern always
has a high degree of spatial and temporal locality. Unless noted otherwise, Algorithm 1
was used to generate the search keys in this chapter.

56 4. Binary Search

4.3.2 Branch Elimination

The run-time of lowerBoundBinarySearch, its branchless version and lowerBound-
UniformBinarySearch, which is also branchless, are plotted in Figure 4.7. As can be
seen, the branchless algorithms are faster then lowerBoundBinarySearch for arrays up
to a size of 2!7 elements. For larger arrays, their performance declines. In all cases, the
uniform binary search is faster than the branching non-uniform implementation.

1600

— branching

1400F — pranchless

— uniform (branchless)

1200+

1000

=
o
o
o]
o
o

time in ns
time in ns

ok

(=)}
o
o

80 1
— branching 4007

— branchless 200
60 . . r
— uniform (branchless)

0 500 1000 1500 2000 2500 3000 3500 4000 22 2% 26 28 Q10 p12 pl4 16 518 520 322 324 26
size in elements size in elements

Figure 4.7: Lower Bound Binary Search Branch Elimination

The increased run-time of the branchless implementations can be explained with sig-
nificantly more stalled clock cycles! than in the branching implementation for arrays of
more than 27 keys (left side of Figure 4.8). The branching search has less stalled clock
cycles, because the processor speculates on the outcome of the conditional branches
and can continue with the next iteration before the necessary separator elements are
actually loaded. Such speculation is not possible in the branchless implementation. Ad-
ditionally, the branching binary search makes use of hardware prefetching. The right
side of Figure 4.8 shows the number of L2 hardware prefetcher requests®. As we can see,
for more than 2'7 keys the prefetcher is only active in the branching implementation.

The linearly scaled graph on the left side of Figure 4.7 shows very differently shaped
curves for the three algorithms on smaller arrays. The branching, non-uniform search
closely follows the logarithmic curve we expect. The uniform binary search performs
exactly one additional iteration for each doubling of the array size, resulting in the steps
at powers of two we see in the plot. Interestingly, the branchless non-uniform search
behaves very differently from the branching one. It oscillates, and has minimums at
power of two element counts. Maximums occur about one third of the way to the next
power of two. The origin of this behavior becomes clear, if we look at the number
of retired branch mispredictions®* in Figure 4.9. While the branching binary search

'Measured using performance counter event unit 0xA2 with unit mask 0x01, see [Int16b]

2Measured using performance counter event unit 0x24 with unit mask 0xC0, see [Int16b]

3Branch instructions whose outcome was mispredicted, but that were not executed due to false
speculation themselves.

4Measured using performance counter event unit 0xC5 with unit mask 0x00, see [Int16b]

4.3. FEvaluation 57

L2 HW Prefetcher Requests

-
IS

3000

Stalled Cycles (Allocation Stalled) : :
— — branching

— branchin
s 12| — branchless
2500f| — branchless — uniform (branchless)
— uniform (branchless)
w 101
2000 3
3 g
o g 8f
g b
- 1500+ 13
2 g 6f
2
1000 - 2,0
500 | ol
022 24 26 28 210 212 214 216 218 2‘20 2‘22 2‘24 2 6 022 2‘4 2‘6 2‘8 2i0 212 2‘14 2‘16 218 220 222 224 226
size in elements size in elements

Figure 4.8: Stalled clock cycles and L2 hardware prefetcher requests

follows a logarithmic curve, and the uniform binary search sits at a constant number of
2 mispredictions, the branchless non-uniform algorithm oscillates with an amplitude of
0.5 mispredictions, reaching the level of the uniform search at powers of two. It is now
clear, where the oscillations come from: At power of two array sizes the non-uniform
binary search runs for exactly log,(array size) + 1 iterations, independently from which
key is searched for. If the array size is not a power of two, either log,(array size) or
log, (array size) 4 1 iterations are needed. This makes the jump at the end of the search
loop harder to predict.

6l — branching
— branchless
— uniform (branchless) |]

branch misses retired

2rWV\/\\/_
0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

Figure 4.9: Retired Branch Mispredictions

4.3.3 Prefetching

For the evaluation of the software prefetching algorithms, we used the TO locality hint,
i.e. the prefetchtO instruction, loading into all cache levels. We found this generally
gives the best performance.

Because hardware prefetching did not work for larger arrays in the branchless imple-
mentations, software controlled prefetching might yield an improvement. Figure 4.10

58 4. Binary Search
160 i i i i i i i i 1600 ‘ ‘ : : : : : : : ‘ ‘
— branching
140 1400F| — pranchless
1200l — prefetch |
120 —— branchless + prefetch
o o 1000
[=4
g 100 < 800
£ £
= =]
80 : 600
— branching
— branchless 400
60| o i
prefetch 200
—— branchless + prefetch
40 L L L L L L L L 0 L L L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 22 2% 26 28 210 12 3If 516 518 520 322 724 526

size in elements

Figure 4.10: Software prefetching applied

size in elements

to the (lower bound) non-uniform binary

search

shows our results for the non-uniform binary search. As we can see, additional software
prefetching alone worsens the performance of the branching implementation. However,
the branchless function is significantly improved and is now not only faster than the
original branchless binary search, but is the fastest algorithm in this test.

1600 T T T T T T T T T T

— no prefetching
1400 — prefetch 2 keys
1200l — prefetch 4 keys
@ o 1000 |
C
< < o0t
£ £
“ 600}
— no prefetching 400
601 — prefetch 2 keys |] 2001
— prefetch 4 keys
50 . . ‘ ‘ ‘ ‘ ‘ ‘ 0 ; ‘ ‘ ‘ ; ;
0 500 1000 1500 2000 2500 3000 3500 4000 22 2% 26 28 210 Iz 3lf 516 518 520 322 H24 526

size in elements size in elements

Figure 4.11: Software prefetching applied to the (lower bound) uniform binary search

Remember, that the uniform binary search algorithms conditionally call the prefetch
intrinsic, to avoid redundant instructions. We found, that this slightly reduces the
execution time by a small constant amount, which is especially noticeable for smaller
arrays. Figure 4.11 shows, that prefetching one iteration in advance (prefetch 2 keys)
increases the performance of lowerBoundUniformBinarySearch if the array has more
than about 26 keys. For smaller arrays however, prefetching adds a few nanoseconds
to the run-time. Prefetching two iterations in advance (prefetch 4 keys) delays the
performance drop of the uniform binary search to about 2! elements, but then falls back
to the run-time of the implementation with no software prefetching at all. Additionally,
the overhead for small arrays is much higher as when only two keys per iteration are
prefetched. Clearly this function wastes too many cycles executing prefetch instructions.

4.3. FEvaluation 59
L1, L2 and L3 cache hits)
80 . . : " : . T T T T T 4000 Bytes loaded from main memory
— branching non-uniform — b‘ranc‘:hiné no‘n un‘iforr‘n — |
70+ — branchless non-uniform 1 3500} .
b hi it — branchless non-uniform
— branchless uniform)
— branchless uniform
w60 — -uni /J\/\// 3000 .
z branchless noln uniform prefetch —— branchless non-uniform prefetch
2 —— branchless uniform prefetch - 2500 — branchless uniform prefetch
: |
< £ 2000+
© %]
g 1 £
£ & 1500}
3
2 J
1000 -
500 |
1020 2‘4 2‘6 2‘8 zio ziz 2i4 zie zis 2‘20 2‘22 2‘24 526 020 27 28 2"6A 28 2i6 2‘12 217 316 18 20 537 578 526

size in elements

size in elements

Figure 4.12: Cache hits and bytes loaded from main memory for the scalar binary search

In Figure 4.12 we show the number of L1, L2 and L3 cache hits® on the left and
the number of bytes loaded from main memory® on the right. Interestingly, the non-
uniform branching binary search using only hardware prefetching has about the same
number of cache hits as the branchless binary and (branchless) uniform binary search
for that L2 hardware prefetching is not working well. Both software prefetching search
algorithms have much more cache hits. On the right side of Figure 4.12 we see, that
explicit prefetching reduces the number of bytes loaded from main memory compared
to the hardware prefetcher. Still, the fewest main memory accesses are performed by
the branchless non-uniform and unoptimized uniform search. Therefore they require
the least main memory bandwidth.

1600 ‘ ‘ ‘ ‘ ‘ Ru‘n—Tlr“ne ‘ ‘ ‘ ‘ ‘ 2.6 - . T T
— uniform \s | M"W’#‘ W \\7/\‘,\51//\//\ :(v:,_/,: Vscs .
1400 _ _ yniform unrolled : ‘\\ | AA W !
y,
— uniform prefetch \ "’|I Wy
1200 - J e
. B 2.4F 1 gy .
- - uniform prefetch unrolled e WA
1000 © v\’/ ! — uniform
@ w 2.3 .
< @ - - uniform unrolled
é 800 g 29 — uniform prefetch
S 600 5 - - uniform prefetch unrolled
f
©
521
400
200 20
Q7755 55 510 57 510 516 515 550 522 59 526 LY 7555 50 51z 517 556 518 520 532 557 526
20 22 2% 26 28 210 312 314 516 518 520 322 324 5 20 22 2% 20 28 210 212 14 516 518 320 322 324 3

size in elements

size in elements

Figure 4.13: Loop Unrolling

®Measured using performance counter event unit 0xD1 with unit mask 0x07, see [Int16b]
6Measured by the memory controller for the complete system

60 4. Binary Search

4.3.4 Loop Unrolling

The unrolled uniform binary search performs worse than the not unrolled version (left
side of Figure 4.13). The loop overhead avoided by unrolling is too small to matter.
Additionally, there are 0.5 more branch mispredictions on average (right side of Fig-
ure 4.13). We conclude that loop unrolling is not a suitable optimization for the binary
search.

4.3.5 Vectorization

We compared the run-times of the vectorized binary search using the ptest instruction
(Listing 4.5 and Listing 4.7) and the alternative implementation using a combination of
pmovmskb and test/cmp (Listing 4.6). We found little to no difference between them,
with the largest difference occurring in the exact match search if the search keys are
generated using Algorithm 3, where the pmovmskb version is 5% faster for an array size
of about 1000 keys.

The vectorized lower bound binary search is similar to the scalar implementation, in
that the branchless version is significantly slower. Prefetching improves the run-time a
bit, but it is still worse than the branching function. Finally, the version adding just
software prefetching is slightly faster on arrays with more than 2! elements (left side
of Figure 4.14). In case of the uniform binary search, the branching implementation
without prefetching is the fastest overall. Only for arrays with more than 2!7 elements,
the prefetching search has a similar and sometimes slightly smaller run-time (right side
of Figure 4.14).

Non—gniform V‘ecto‘rized‘ Bingry S‘earc‘h (S$E4.1)

Uniform Vectorized Binary Search (SSE4.1)

1600 1600

— branching — branching
140011 — pranchless 140011 — pranchless
12001 — prefetch 1200k — prefetch
—— branchless + prefetch —— branchless + prefetch
1000 - 1000 -
w %]
= =
< goof < goof
£ £
~ 600} ~ 600}
400 400
200 200
022 27 26 28 10 12 507 516 18 590 322 524 526 022 27 28 28 10 12 HiF 516 18 590 322 524 526
size in elements size in elements

Figure 4.14: Lower Bound Vectorized Binary Search

The left side of Figure 4.15 shows the run-times of the fastest scalar and SIMD lower
bound search algorithms. The vectorized implementations are slower than the scalar
ones, with the exception of small arrays with less than 60 elements, where the vectorized
algorithms perform similar to the non-uniform binary search. But even then, the uni-
form search is faster. The results are very similar for the exact match search functions

4.3. FEvaluation 61

(right side of Figure 4.15). Additionally, we tested the vectorized implementations with
16 and 64-bit keys, with the same result: The scalar uniform binary search is faster
than the SSE searches, with the only exception being arrays no larger than two 128-bit
words, were the SSE binary search behaves more like a sequential search. We conclude,
that the additional complexity introduced by using SIMD increases the run-time more
than it is decreased by slightly reducing the number of iterations.

‘ quer‘Bour‘md ‘

Exact Match

1000 1200

___scalar non-uniform { __scalar non-uniform
branchless prefetch g 1000 branchless prefetch)
800 vectorized non-uniform @ A - - vectorized non-uniform
T fetch g ;
pre ___ scalar uniform branchless ./
___ scalar uniform branchless 800 prefetch
600 |- prefetch - - vectorized uniform
- - vectorized uniform 600

time in ns
time in ns

400 -

200

T 5T 36 58 i 17 18 06 518 ;20 522 57 2 T T 35 38 Si0 i Hid 6 18 520 ;22 ;28 2
size in elements size in elements

Figure 4.15: Comparison of scalar and vectorized binary search implementations

4.3.6 Exact Match Search

In this section, we compare direct exact match search implementations with implemen-
tations in terms of a lower bound search, like Listing 4.3. The direct implementations
have an equality test in the search loop terminating the search as soon as the search
key has been seen. In contrast, the lower bound based versions have the same search
loop as a lower bound search and delay the equality test to the end.

We have measured the number of iterations exact match and lower bound algorithms
needed on the evaluation dataset with keys generated by the three algorithms described
in Section 4.3.1. For search keys drawn from the same distribution as the array elements,
it is very unlikely for a search key to actually be in the array. Consequently both exact
match and lower bound algorithms run for the same number of iterations. If the search
keys are randomly drawn from the array and therefore are guaranteed to be present,
exact match searches need almost precisely one iteration less. This is also the case for
the third search key generation algorithm, where a small set of keys drawn from the
array is repeatedly searched.

Figure 4.16 shows the run-times of the non-uniform branchless binary search with
prefetching, the uniform branchless binary search prefetching 2 keys per iteration and
alternative implementations based on the corresponding lower bound searches. For keys
generated by Algorithm 1, we expect the lower bound implementations to be superior,
because they have one branch less and run for the same number of iterations. For the
non-uniform search this is indeed the case, but for the uniform search, the direct exact

62 4. Binary Search

Search keys generated by Algorithm 1 Search keys generated by Algorithm 2

120} I
120 ' :
110 ,.A”J"“‘f“'w\-qnxq-uu 1 1
.- 100 PPt R ST NCUU
100 :L s YRS
0 P T SRR I [) |
g wmhst e nesie g fﬂ,,,u‘.m'u..-n‘._wwu"-__,u.m
= = A
° 90 g ° 80 o
£ £
S 80 | =
- 60 -
— non-uniform — non-uniform
70 . 1 .
- - non-uniform lower bound based - - non-uniform lower bound based
601 — uniform] 401 — uniform i
- - uniform lower bound based - - uniform lower bound based
50 L L L L L L L L 20 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
size in elements size in elements

110 Search keys generated by Algorithm 3

100

90

80

w
S 70 ,
£ ! P NPT IV B
g 60 —Adden avlasas
50 i -]
K — non-uniform
1 .
40 - - non-uniform lower bound based |
30 — uniform
- - uniform lower bound based
20

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

Figure 4.16: Exact match binary search and an exact match search implemented in
terms of a lower bound search

match implementation is slightly faster. In the next test, with search keys generated
by Algorithm 2, the lower bound based uniform search is significantly faster, since the
equality test in the search loop of the direct implementation has become hard to predict.
For the non-uniform search, the lower bound based version is still faster. Finally, the
last test using Algorithm 3 to select the search keys, produces a result almost identical
to Algorithm 2.

4.3.7 Offset Binary and Fibonaccian Search

Figure 4.17 compares the run-times of the lower bound offset binary search with equal
split ratios in the left and right partitions (1:2/1:2 and 3:5/3:5), and with ratios mir-
rored in the left partition (2:1/1:2 and 5:3/3:5). As we can see, mirroring the split
ratio depending on whether the left or right partition is chosen in a search step de-
grades performance. In the following, we only consider equal ratios in the left and right
partitions.

We have tested the branch elimination and software prefetching optimization tech-
niques on the lower bound offset binary search with a split ratio of 3:5 (Figure 4.18).

4.3. FEvaluation 63

200 T T T T T T T T

1200 T T T T T T T T T T T

— branching
1000}L| — branchless
— prefetch
—— branchless + prefetch
800
g e
£ c
. £
£ g
= =]
— 1:2/1:2
80 1
-- 2:1/1:2
6ol — 3:5/3:5|]
-- 5:3/3:5
40 L L L L L L L L 0 L L L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 22 2% 26 28 210 12 3If 516 518 520 322 724 526
size in elements size in elements

Figure 4.17: Lower Bound Offset Binary Figure 4.18: Lower Bound Offset Binary
Search Search 1:2 Optimizations

The results for branch elimination are similar to the standard 1:1 binary search: The
branchless implementation performs worst, while additional prefetching improves its
run-time substantially. In contrast to the 1:1 binary search prefetching alone yields
longer run-times. Also, the branchless prefetch variant looses its advantage over the
branching implementations for array sizes over 2.

800 ; ; ; ; . : : : : : : 35 T T T T T T T T T T T
— Fibonaccian
700F) — offset 1:2
600kl — offset 3:5 |
offset 31:33

500

400

time in ns

300

overhead in percent

200

100

L L

022 27 26 58 ol 17 18 Ll6 08 500 2 o4 2% 520 27 37 36 28 10 17 ;1 506 18 530 522 524

size in elements size in elements

Figure 4.19: Comparison of (lower bound) Figure 4.20: Percentage of the execution

Fibonaccian and Offset Binary Search. time of the lower bound Fibonaccian search
spend determining the initial Fibonacci
numbers

In Figure 4.19 we compare the run-times of the Fibonaccian search with the offset binary
search. Generally, the Fibonaccian search is slower than the offset binary search. In
part, because the Fibonaccian search needs to determine suitable Fibonacci numbers at
the start of each invocation, but probably also, because our implementation mirrors the
split ratio to have the separator elements nearer to their predecessors. The percentage
of the execution time of lowerBoundFibonaccianSearch spent with finding the initial

64 4. Binary Search

triple of Fibonacci numbers ranges from 30% for smaller arrays to 10% for larger ones
(Figure 4.20). From the split ratios we have tested for the offset binary search 3:5 is
the best. Generally the behavior of the offset binary search approaches the behavior of
the regular binary search for ratios closer to 1:1.

4.3.8 Cache Utilization

Figure 4.21 shows the run-times of the lower bound non-uniform, uniform and offset
branchless binary search with explicit prefetching. On the left, the search keys were
generated by Algorithm 1 and on the right by Algorithm 3. In both cases, the 1:1
binary search algorithms are faster than the offset binary search for smaller arrays,
but the offset binary search overtakes them around an array size of 2!7 to 2! elements.
Especially on the right, the non-offset searches have larger spikes, while the offset search
stays on a smooth curve. The peaks in the non-offset binary search occur at powers of
two. If no explicit prefetching is used the difference to the offset binary search is even
greater.

1000 Search keys generated by Algorithm 1 700 __Search keys generated by Algorithm 3
— binary — binary
— uniform binary 600[| — uniform binary
8001 — offset binary 3:5 1 — offset binary 3:5

time in ns
time in ns

T T 36 38 Si0 i iF 6 518 520 ;92 ;28 26 T 5T 58 58 ol 12 18 6 08 530 22 52 2
size in elements size in elements

Figure 4.21: Comparison of non-offset (1:1) and offset binary search

The problems with the non-offset binary search functions on larger arrays, especially
when the size is a power of two, is explained by Figure 4.22. It shows the number of
unique memory addresses accessed, not including prefetching, falling into each set of
the L1 cache. The data was collected over 10.000 search runs with randomly selected
search keys on an array of 224 keys. In the diagram on the left, the non-uniform binary
search is plotted, but the graph is almost precisely identical for the uniform binary
search. As we can see, the distribution is very spiky and therefore many separator
elements compete for the same set in the cache. This results in an inefficient usage
of the available space. The offset binary search on the right has much more evenly
distributed accesses leading to less evictions of separator keys that might be needed
again soon. The corresponding plot of the Fibonaccian search would look similar to the
offset binary search.

4.4. Summary 65

Offset Binary Search 3:5

16000 Blnary Search' ' ' 1850

=
o
o
o

14000 +

12000} 17501

10000 +
1700

8000
1650
6000 -

1600 |
4000 +

number of unigue memory addresses
number of unique memory addresses

N
o
o
o
=
u
U
o

. 1500 L L L L . .
10 20 30 40 50 60 0 10 20 30 40 50 60
cache set cache set

o

o

Figure 4.22: Number of unique memory accesses falling into each L1 cache set

The aliasing of many separator elements to the same cache sets comes from the formula
used to index them, in our case block address mod 64, and the search algorithm selecting
separator keys approximately spaced powers of two apart. The effect is worst for the
uniform binary search, since it directly uses powers of two to calculate the separator
indices and the non-uniform binary search on arrays with a power of two size, since
then the most keys fall into the same cache set.

We recorded virtual addresses to generated the graphs in Figure 4.22. For the L1D
cache this is correct, because our test machine actually indexes it with virtual addresses.
The situation is more complex for the L2 and L3 cache, since higher cache levels are
typically indexed with physical addresses. If the array is in a continuous range of
physical memory, the plots would look like in Figure 4.22. Otherwise, the location of
pages in physical memory and the distribution of search keys will influence the aliasing
effect, giving the non-offset binary search an unreliable performance.

The SSE4.1 instruction set extension offers a stream load instruction designed to avoid
polluting the cache with loads known to not exhibit temporal locality. We tried to delay
the cache aliasing effects on power of two array sizes by using this instruction in the
last few iterations of the vectorized binary search. However, using streaming loads was
always slower.

4.4 Summary

We have implemented the scalar exact match and lower bound binary search discussed
in the background chapter and also introduced our version of a uniform binary search.
Furthermore we implemented the vectorized binary search based on the idea described
in the background chapter. In addition to the usual binary search, partitioning the
search interval in two equally sized halves, we implemented an offset binary search with
a variable split ratio and the Fibonaccian search algorithm.

Applying branch elimination to the scalar binary search proved to be detrimental to
its performance, due to less hardware prefetching. However, combined with explicit

66 4. Binary Search

software prefetching we saw a performance increase of up to 40% for the scalar non-
uniform binary search and of up to 60% for the scalar uniform binary search. Loop
unrolling proved to be useless for the binary search, since the loop overhead already is
low. Finally, vectorizing the binary search by loading whole SIMD words of separators
did also not improve the run-time of binary searching.

We evaluated the performance difference between exact match binary search algorithms
allowing an early termination as soon as the search key is found and algorithms delaying
the equality test until the end of the search loop. We found, that moving the equality
test to the end of the loop never significantly increases the run-time and often brings a
positive effect.

While the non-offset binary search makes optimal use of the information gained with
each comparison by halving the search space, we found that offsetting the location the
separator keys are chosen from can significantly improve performance for larger arrays,
because of issues with cache aliasing. The offsetting can be achieved by changing the
split ratio from 1:1 to something asymmetric, either by simply modifying the calculation
of the midpoint in the usual binary search or by using the Fibonaccian search using the
Fibonacci numbers to achieve a split ratio approximating the golden ratio.

5. k-ary Search

In the last chapter, we treated dichotomic or binary search techniques choosing from
two alternatives in each search step. The exact match search algorithms added what
can be considered a third option of terminating the search early. In this chapter we will
examine search algorithms choosing between an arbitrary fixed number £ of possibilities
each iteration.

5.1 Implementation

In this section, we present implementations of the k-ary search for arbitrary k. We
have also developed a uniform k-ary search with simplified index computations. This
algorithm is the basis for our implementation of a vectorized k-ary search. Additionally
we have implemented search functions operating on the linearized complete k-ary search
trees discussed in the background chapter (Section 2.2.4).

5.1.1 Scalar k-ary Search

We have implemented a lower bound k-ary search in Listing 5.1, where k is a template
parameter. The function uses the variables segmentLeft and segmentRight to subdi-
vide the search range [left,right) in k segments. segmentLeft holds the start index
of the current segment, and segmentRight is the index of the current separator. The
initialization in line 8 selects the first separator element. The loop in lines 9 to 18 iter-
ates over all segments. Line 14 tests whether the search key falls in the current segment,
and if so exits the loop. After the for-loop is exited [segmentLeft, segmentRight) is the
new search range. The search terminates when the search range becomes empty.

An exact match variant is created by replacing line 14 with the commented out if-else
construct in lines 11 to 13 and uncommenting line 22. Lines 11 to 13 check the separator
elements for equality with the search key and line 22 reports an unsuccessful search if
the search interval becomes empty.

0~ O U W N

I I I R N B e R e e e S e S S S S S Gy
=W N OO0 Utk W~ OO

SO W N~

68 5. k-ary Search

Listing 5.1: Lower Bound k-ary Search

template <typename T, unsigned int k = 3>
IndexType lowerBound_kArySearch (
const T xkeys, IndexType size, T searchKey) {
IndexType left = 0, right = size; // left inclusive, right exzclusive
while (left < right) {
// divide [left, right) in k segments
IndexType segmentLeft = left ;
IndexType segmentRight = left + (right — left) / k;
for (IndexType i = 2; i <= k; ++i) {
// for exact match:
// if (searchKey == keys[segmentRight])
// return segmentRight;
// else if (searchKey < keys[segmentRight]) break;
if (searchKey <= keys|[segmentRight]) break;
// advance to the next segment
segmentLeft = segmentRight + 1;
segmentRight = left + (i % (right — left)) / k;
}
left = segmentLeft;
right = segmentRight;

}
// return size; // for exact match
return left; // left == right

}

5.1.2 Scalar Uniform k-ary Search

We have constructed a uniform k-ary search analogously to the uniform binary search
in Section 4.1.2. For our discussion of the search function we again first assume size
to correspondent to a perfect k-ary search tree, i.e. to be k™ — 1 with an integer n. The
algorithm first needs to determine the height of the tree treeHeight, or in other words
the number of iterations needed in the search loop (lines 21 to 31). This is done with
the formula [log,(size + 1)], computed by getTreeHeight. getTreeHeight is listed
in Listing 5.2. It searches the first h for that k" < size using a precalculated table via
the powConstBase template function defined in Listing A.3.

Listing 5.2: Calculate the height of a complete k-ary search tree containing size keys.

template <IndexType k>

IndexType getTreeHeight (IndexType size) {
IndexType height = 0;
while (powConstBase<IndexType, k>(height) <= size) 4++height;
return height;

}

0~ O U W N

CO Lo O Lo R DD DD R DD DD DN N N B = = b b b b
PR RO O N0 TJONEWNR, DO~ U W~ O ©

5.1. Implementation 69

Listing 5.3: Lower Bound Uniform k-ary Search

template <typename T, IndexType k = 3>
IndexType lowerBoundUniform_kArySearch (
const T xkeys, IndexType size, T searchKey) {
IndexType treeHeight = getTreeHeight<k>(size);
bool isPerfect = size = (powConstBase<IndexType, k>(treeHeight) — 1);
IndexType depth = 0, left = 0;
if (lisPerfect) {
IndexType idealPartitionSize =
powConstBase<IndexType, k>(treeHeight — 1) — 1;
IndexType remainder = size — idealPartitionSize;
for (IndexType i = 1; i <k — 1; ++i) {
IndexType separatorIndex = (i * remainder) / (k — 1);
if (searchKey <= keys|[separatorIndex]) break;
left = separatorIndex + 1;
}
IndexType separatorIndex = size — idealPartitionSize — 1;
if (searchKey > keys|[separatorIndex])
left = separatorIndex + 1;
depth++;
)
for (; depth < treeHeight; 4++depth) {
IndexType step = O0;
IndexType offset = 0;
for (IndexType i = 0; i <k — 1; ++i) {
offset += powConstBase<IndexType, k>(treeHeight — depth — 1);
IndexType separatorIndex = left + offset — 1;
if (searchKey <= keys[separatorIndex]) break;
step = offset;

}

left += step;

}

return left ;

In line 5 isPerfect is set to true, if size corresponds to a perfect k-ary search tree,
i.e. size = 2tTeeHeight _ 1 o) perfect array sizes, the algorithm directly continues
with the main search loop in line 21. The current search interval is determined by
the variables left and depth. left stores the offset of the current search range from
the beginning of the array, and depth is the current level in the conceptual search
tree counting the root as level 0. The inner for-loop iterates over the k — 1 separator
elements. Remember, that the offset of the i-th separator element from the beginning
of the current search range is i - k"~! — 1, if the current search range has a length
of k" — 1. The variable offset accumulates the term i - k"~!, where h is given by
treeHeight — depth. It is then used in line 26 to calculate the index of the separator
key. The inner for-loop is exited in line 27, if the search key lies to the left of the current
separator. step then contains the starting offset relative to left of the corresponding
partition. If no separator is greater than or equal to the search key, offset contains the

70 5. k-ary Search

starting offset of the last partition at the end of the loop. In line 30, left is updated
to point to the selected partition.

Handling imperfectly sized arrays

If size does not correspond to a perfect search tree, the first search step is handled
by lines 8 to 19. The code first calculates how many keys would need to be removed
from the array in order to make it correspond to a perfect search tree in the variable
remainder. These elements are equally distributed over the first k — 1 partitions, while
the last partition gets the perfect size. This means, the combined length of the first k—1
partitions is less than the length of the last partition. The following iterations can then
safely assume all partitions to have the perfect size of the last one, effectively letting the
initial partitions overlap. It is important that the last partition is the perfectly sized
one, so that no partition reaches beyond the end of the array.

An exact match search can be derived from Listing 5.3 by adding a test for equality
with the search key to every key comparison and reporting an unsuccessful search if the
algorithm reaches line 32.

5.1.3 Vectorized k-ary Search

The uniform k-ary search from the last section is the basis of our implementation of a
vectorized k-ary search parallelly computing separator indices and parallelly comparing
them to the search key. If the AVX2 instructions set is available, loading the keys is
also done in parallel. In the following implementation, parallel AVX2 loads are enabled
via the preprocessor constant USE_AVX2.

The first part of the implementation is shown in Listing 5.4. Since the type of the keys
(T) and of the indices (IndexType) can differ, we also need two types for our SIMD
vectors. These are KeyVector and IndexVector, respectively. Lines 5 to 17 select the
correct types. Lines 6 to 12 are used if parallel AVX2 loads should be used, otherwise
lines 14 to 16 are active. If AVX2 is enabled, we require both T and IndexType to be 4
or 8 bytes wide, since the gather family of instructions only supports these sizes. The
IndexVector and KeyVector types are determined using the kArySearchVectorTypes
template defined in Listing 5.5. By using either 128-bit or 256-bit vectors we have the
same number of keys and indices in one 128/256-bit vector. Additionally we need to
make sure that IndexType is signed, since our code uses signed SIMD multiplications.
This is done by redefining IndexType in line 6. Of course, care must be taken to avoid
overflowing the signed type.

If parallel loads are disabled, IndexType is derived from the type of the keys T using
the template kArySearchIndexType defined in Listing 5.6. The derived type is signed
and has the same width as T. This way, we have the same number of keys and indices
in a 128-bit vector. This also limits the array size to 2%%12°f(M=1 _ 1 keys. Note that
we require IndexType and therefore also the key type T to be at least 2 bytes wide.

0~ O U W N

D W W W W W WWWWNNNDDNDDNDDNDDNNDNDDN F == = =
QO OO TN UR WNNHF OO NDDUUERE WNNRHRE OO0 TR WNRE OO

5.1. Implementation 71

Listing 5.4: Vectorized Lower Bound k-ary Search (1)

template <typename T>
IndexType lowerBoundUniform_kArySearchSIMD (
const T xkeys, IndexType size, T searchKey) {
if (size = 0) return O0;
#ifdef USE_AVX2
using IndexType = typename std :: make_signed <::IndexType >::type;
static_assert (sizeof(T) >= 4 && sizeof(IndexType) >= 4,
"Invalid types”);
using IndexVector = typename kArySearchVectorTypes<sizeof(T),
sizeof (IndexType) >::IndexVector;
using KeyVector = typename kArySearchVectorTypes<sizeof(T),
sizeof (IndexType) >:: KeyVector;
Helse
using IndexType = typename kArySearchlndexType<T>::type;
static_assert (sizeof(IndexType) >= 2, ”Invalid types”);
using IndexVector = __m128i; using KeyVector = __m128i;

#endif

constexpr unsigned int KEYSPER WORD =
keys_per_simd_word<KeyVector, T>();

constexpr unsigned int k = KEYSPER WORD + 1;

const IndexVector one = _mm_setl<IndexVector, IndexType>(1);

const IndexVector laneFactors =
generateLaneFactors<IndexVector , IndexType>();

const KeyVector vecSearchKey = adjustForSignedComparison<T>(
_mm_setl<KeyVector, T>(searchKey));

// temporary storage for sequential loads

IndexType indicesArray [KEYSPERWORD]| alignas(sizeof(IndexVector));
#ifndef USE_AVX2

T separatorsArray [KEYSPER WORD] alignas (sizeof(KeyVector));
#endif

IndexType treeHeight = getTreeHeight<k > ((::IndexType)size);
bool isPerfect = size = (powConstBase<IndexType, k>(treeHeight) — 1);
IndexType left = 0, depth = 0;

// handle imperfect array size, see Listing 5.7
// main search loop, see Listing 5.8

In lines 19 to 26 the constants KEYS_PER_WORD and k are defined and the search key
is loaded into a SIMD register like in our other SIMD implementations. Additionally
a vector containing a single one in each lane is prepared in line 22. The variable
laneFactors is loaded with the one based index of each lane for a width given by
IndexType. For example, if IndexType is 32-bit wide, laneFactors would be (1, 2, 3, 4)
(starting with the least significant byte). The template function generateLaneFactors
is defined in the appendix (Listing A.13). Some storage for sequentially calculating

© 00~ O Uk Wi+

NG JUIN NI

72 5. k-ary Search

indices is allocated in line 29. If sequential loads are used, additional space to copy the
separator elements to is allocated in line 31. Lines 34 to 36 are the same as for the
scalar algorithm in Listing 5.3.

Listing 5.5: kArySearchVectorTypes

template <size_t keySize, size_t indexSize> struct kArySearchVectorTypes;
template <> struct kArySearchVectorTypes<4, 4>

{ using IndexVector = __m256i; using KeyVector = __m256i; };
template <> struct kArySearchVectorTypes<8, 4>
{ using IndexVector = __m128i; using KeyVector = __m256i; };
template <> struct kArySearchVectorTypes<4, 8>
{ using IndexVector = __m256i; using KeyVector = __m128i; };
template <> struct kArySearchVectorTypes<8, 8>
{ using IndexVector = __m256i; using KeyVector = __m256i; };

Listing 5.6: kArySearchIndexType

template <typename T> struct kArySearchIndexType

{ using type = typename std :: make_signed<T>::type; };

template <> struct kArySearchIndexType<float> { using type = int32_t; };
template <> struct kArySearchIndexType<double> { using type = int64_t; };

The code in Listing 5.7 is executed, if size does not correspond to a perfect k-ary search
tree. It works the same as in the scalar search. The most important difference is that
the indices of the separator elements are calculated up front in lines 2 to 7. If enabled,
an AVX2 gather instruction is used to load all separators in parallel (lines 12 and 13).
Since the indices are stored in an array, they first have to be loaded in lines 10 and 11.
We use the template function _mm_gather defined in the appendix (Listing A.12) to
select the appropriate intrinsic for the data types passed to it. If gather is not used,
the separators are copied to the previously allocated array separatorsArray and then
loaded into a SIMD register (line 15 to 18). Note that the load loop is unrolled by the
compiler. The comparison with the search key is done in lines 22 and 23. We then
use the createMask and countPositiveResults functions to evaluate the result. If
the search key was smaller than or equal to the smallest separator, the variable next is
zero. In this case, the search range still starts with the first element of the array, and
left is not updated. If the search key falls into any other partition, its starting index
is the index of the separator to its left plus one. We have all the separator indices in
the array indicesArray, so we can retrieve them by indexing the array with next — 1.
So if next is one, the new search range begins to the right of the first separator and so
on.

0~ O U W N

PO RO D DO D N DO DD M DD = = = = b m = s s
S 0T AN R WN R OW©OW-ITOD U W~ O

5.1. Implementation 73

Listing 5.7: Vectorized Lower Bound k-ary Search (2)

if (!isPerfect) {
IndexType idealPartitionSize =
powConstBase<IndexType, k>(treeHeight — 1) — 1;
IndexType remainder = size — idealPartitionSize;
for (IndexType i = 1; i < k — 1; ++i)
indicesArray[i—1] = (i * remainder) / (k — 1);
indicesArray [k—2] = size — idealPartitionSize — 1;

#ifdef USE_AVX2 // load the separator elements (parallel)
IndexVector indices = loadVector(
reinterpret_cast<const IndexVectorx>(indicesArray));
KeyVector separators =
_mm_gather<KeyVector, IndexVector, T>(keys, indices);
#else // load the separator elements (sequential)
for (IndexType i = 0; i < KEYSPERWORD; ++i)
separatorsArray [i] = keys[indicesArray[i]];
KeyVector separators = loadVector (
reinterpret_cast<const KeyVectorx>(separatorsArray));

Hendif

// compare and determine mnext partition (parallel)

KeyVector compResult = _mm_cmpgt<T>(vecSearchKey ,
adjustForSignedComparison<IT>(separators));

int mask = createMask<T>(compResult);

int next = countPositiveResults<T>(mask);
if (next != 0) left = indicesArray [next—1] + 1;
depth++;

The main search loop is listed in Listing 5.8. Like in the scalar uniform k-ary search,
this part of the function can safely assume a perfect array size. In lines 2 to 9 the
indices of the separator elements are computed. First all lanes of vecDist are set to
2treeHeightfdepth717 the distance between the separator elements in the current tree
level. Then laneFactors is used to compute i - dist — 1 in the ¢-th lane of indices.
Finally, 1left is added to all lanes of indices to get a vector of the offsets from the
beginning of the array. If parallel loads are enabled this vector is used directly to
load the separator keys in lines 11 and 12. Otherwise, the indices are first stored in
indicesArray. Then the separators are loaded sequentially like in Listing 5.7. The
calculation of next is also identical to Listing 5.7. The search is terminated in line 28,
if the leafs of the conceptual search tree are reached. The lower bound is then one of
the last separators or, if the search key is greater than all of the last separators, to the
right of them. Therefore the lower bound is simply left + next. If the search not yet
terminates, the starting index of the next search range is given by left + next - dist.

0~ O U W N

PO RO D DO D N DO DD M DD = = = = b m = s s
S 0T AN R WN R OW©OW-ITOD U W~ O

74 5. k-ary Search

Listing 5.8: Vectorized Lower Bound k-ary Search (3)

for (;; ++depth) {
// calculate separator indices (parallel)
IndexType dist = powConstBase<IndexType, k>(treeHeight — depth — 1);

IndexVector vecDist = _mm_setl<IndexVector, IndexType>(dist);
IndexVector indices = _mm_sub_epi<IndexType>(

_mm_mullo_epi<IndexType>(laneFactors, vecDist), one);
indices = _mm_add_epi<IndexType>(

_mm_setl<IndexVector, IndexType>(left), indices);

#ifdef USE_LAVX2 // load the separator elements (parallel)
KeyVector separators =
_mm_gather<KeyVector, IndexVector, T>(keys, indices);
#else // load the separator elements (sequential)
storeVector (reinterpret_cast<IndexVectorx>(indicesArray), indices);
for (IndexType i = 0; i < KEYSPERWORD; ++i)

separatorsArray [i] = keys[indicesArray[i]];
KeyVector separators = loadVector (
reinterpret_cast<const KeyVectorx>(separatorsArray));
#endif

// compare and determine mnext partition (parallel)

KeyVector compResult = _mm_cmpgt<T>(vecSearchKey ,
adjustForSignedComparison<IT>(separators));

int mask = createMask<T>(compResult);

int next = countPositiveResults<T>(mask);

if (depth = (treeHeight — 1))
return (::IndexType)(left + next);

left 4= next x dist;

To create a vectorized exact match k-ary search, the equality test in Listing 5.9 has to
be added before the key comparisons in line 22 of Listing 5.7 and line 22 of Listing 5.8.
Additionally, lines 7 to 9 of Listing 5.9 have to be uncommented in the main search
loop to store the indices if AVX2 is used. Moreover, the function should return size in
line 29 of Listing 5.8 to indicate an unsuccessful search. The code in Listing 5.9 works
the same as in the vectorized exact match binary search (see Listing 4.5 on page 42),
with the difference that the index of the found key comes from the already calculated
indices vector.

5.1.4 Linearized k-ary Search Trees

We have also implemented the linearized k-ary search trees discussed in Section 2.2.4.
In Listing 5.10 we present a lower bound search version returning an iterator object
whose implementation is listed in Listing 5.11.

= O © 00O Ut ixWwih -

—_ =

00 O Uik WK

D W W W W WWWWWNNNDNDDNDNDDNDNDDNDN F == = =
O OO DU WINHFHF OO UUERE WNHFEOOWWNO Uk WD OO

5.1. Implementation 75

Listing 5.9: Key equality test for vectorized exact match uniform k-ary search

KeyVector compResult = _mm_cmpeq<T>(vecSearchKey ,
adjustForSignedComparison<I>(separators));

int mask = createMask<T>(compResult);

unsigned long i = 0;

if (getFirstPositiveResult <I'>(&i, mask)) {
// search key is equal to one of the separators
J/#ifdef USE_AVX2
// storeVector(reinterpret_cast<IndexVectorx>(indicesArray), indices)}

//#endif
return (::IndexType)indicesArray[i];

Listing 5.10: Searching in Linearized k-ary Search Trees

template <typename T> LinearizedTreelterator <T,
keys_per_simd_word<Vector, T>() + 1, MAX TREE HEIGHT>
lowerBound_kArySearchSIMDLinearizedTree (
const T xkeys, unsigned int size, T searchKey) {
assert ((intptr_t)keys % sizeof(Vector) = 0);
constexpr IndexType KEYSPERWORD = keys_per_simd_word<Vector, T>();
constexpr IndexType k = KEYSPER WORD + 1;
assert (size % KEYSPERWORD =— 0);
const Vector vecSearchKey = adjustForSignedComparison<T>(
_mm_set1<Vector, T>(searchKey));

std :: array<unsigned short, MAX TREE HEIGHT> branches;
std :: array<IndexType, MAX TREE HEIGHT> offsets ;

IndexType left = 0, next = 0;
int depth = 0;
while (next < size) {
// load the separator elements
left = next;
Vector separators = loadVector (
reinterpret_cast<const Vectorx>(keys + left));

// compare with search key

Vector compResult = _mm_cmpgt<T>(vecSearchKey ,
adjustForSignedComparison<T>(separators));

int mask = createMask<T>(compResult);

int branch = countPositiveResults<T>(mask);

// go to the mext node, 0 <= branch < k
next = (left + 1) * k + branch % (k — 1) — 1;

// keep track of the path taken

branches [depth] = branch;
offsets [depth] = left + branch;
depth++;

}

return LinearizedTreelterator<T, k, MAX TREE HEIGHT>(keys ,
size , depth, std::move(branches), std::move(offsets));

0O Ui Wi

N RN DN DNDNDND = s b e s s s
OO U WP OO Uk W~ OO

76 5. k-ary Search

Listing 5.10 closely follows the pseudocode given in Algorithm 9 on page 22 with some
additional bookkeeping to construct an iterator allowing to efficiently visit the keys
following the lower bound in sorted order. The input array to the function must be a
linearized complete search tree. An array in sorted order is converted to such a tree by
applying the permutation in Equation 2.1 on page 21.

The search loop in lines 17 to 36 runs over the levels of the search tree. In each iteration
left contains the array index of the first key in the current tree node. Additionally,
there is the variable next set to the index of the node to visit in the next tree level. left
is updated with this value at the beginning of each iteration in line 19, but only after
the loop condition next < size has been verified. Remember, that in a complete k-ary
search tree some nodes above the deepest level of the tree have less than k children, for
example the nodes with the keys 11 and 12 in Figure 2.7 on page 21. If the search is in
such a node, the index of a child node computed in line 30 can lie beyond the end of
the array, meaning that there are no further nodes to check. The determination of the
next tree node to visit has already been discussed in Section 2.2.4.1.

Listing 5.11: Linearized Treelterator

template <typename T, unsigned int k, unsigned int MAX TREE HEIGHT = 16>
class LinearizedTreelterator {
public:
LinearizedTreelterator (
const T x_keys, IndexType _size,
int _treeHeight ,
std :: array<unsigned short, MAX TREE HEIGHT> _branches,
std :: array<IndexType, MAX TREE HEIGHT> _offsets
) ¢ /% dinitialize members x/ {
if (treeHeight > 0 && offsets[treeHeight —1] = size) treeHeight ——;
traverseUp ();

}

const T& operatorx*() const { return keys|[getIndex ()]; }
IndexType getlndex () const { return offsets[depth]; }
}

LinearizedTreelterator& operator+-+();
bool isDereferenceable () const { return depth >= 0;

private:
void traverseUp ();
const T xkeys;
const IndexType size;
int treeHeight;
int depth;
std :: array<unsigned short, MAX TREE HEIGHT> branches;
std :: array<IndexType, MAX TREE HEIGHT> offsets ;

}s

To construct the iterator in line 38 we need to store the index of the child node selected
and the offset from the beginning of the array to the next separator to test in the current

0~ O U W N -

—
W N~ OO

5.1. Implementation 77

node for each level of the tree, like discussed in Section 2.2.4.2. To this end we use the
arrays branches and offsets.

In Listing 5.11 we show the relevant parts of the implementation of an iterator based
on Algorithm 10 on page 23. The constructor in lines 4 to 12 initializes the member
variables with its parameters. Note that treeHeight gets the value of depth from the
search function. For perfect linearized search trees, this value is the height of the tree.
If the search tree is only complete, treeHeight can get two different values, depending
on whether the lower bound is smaller or greater than the fringe element. If it is smaller
than the fringe element, treeHeight is the maximal height of the tree, otherwise one
less. For example if we would search for 7 in the tree depicted in Figure 2.7, we would
get a height of 3, and if we search for 14, a height of 2. To ensure the correct function
of the iterator, treeHeight must be decremented if the iterator reaches the fringe
clement. This is done in operator++ (line 5 of Listing 5.12). Special care must be
taken if the lower bound is the fringe element. In this case treeHeight is initialized to
the higher value and immediately needs to be decremented in the constructor (line 10
of Listing 5.11). Remember from Section 2.2.4, that offsets [depth] gives the index of
the current key and that the fringe element is always the last key in the array containing
the linearized tree. So the expression offsets[depth] == size — 1 is true, if the
fringe entry has been reached.

Listing 5.12: Linearized Treelterator::operator+-()

inline LinearizedTreelterator&
LinearizedTreelterator :: operator++() {
if (depth >= 0) {
if (offsets[depth] = size — 1) {
treeHeight ——;
1 else {
branches [depth] += 1;
offsets [depth] += 1;
}

traverseUp ();

}

return xthis;

}

Furthermore, the constructor calls traverseUp, which is listed in Listing 5.13. tra-
verseUp implements lines 1 to 5 of Algorithm 10. It initialized depth to the leaf level
in the current part of the tree (treeHeight — 1) and then traverses up, until a node is
found, where the search has not yet reached the last child using the while-loop. When
traverseUp is first called by the constructor this loop is only entered, if the lower
bound lies to the right (in sorted order) of the last tree node examined. This is always
the case when the lower bound is not in one of the leafs. In other words: If the search
stops between two leafs, the lower bound is in one of the inner nodes. We have already
encountered this case in the vectorized binary search, where it required special handling
of the last iteration (see Section 4.1.3).

© 00 ~J O U Wi+

78 5. k-ary Search

Listing 5.13: Linearized Treelterator::traverseUp()

inline void LinearizedTreelterator ::traverseUp () {
depth = treeHeight — 1; // reset depth
while (depth >= 0 && branches|[depth] = (k — 1)) {
branches [depth] = 0;
depth ——;

if (depth >= 0 && offsets [depth] >= size)
depth = —1;

The last issue is to detect when there are no more keys left in sorted order. First
assume a perfect search tree. Then the while-loop in traverseUp will run until depth
is —1, if the iterator is incremented after the last key has been reached. The method
isDereferenceable can then report the iterator to be no longer dereferenceable if
depth is negative. If the tree is not perfect, we detect this condition with the test
offsets[depth] >= size, i.e. the next key would lie outside of the array, and set
depth to —1 manually (lines 7 and 8 of Listing 5.13). This is similar to the loop
condition in the search function.

Implementing an exact match variant of Listing 5.10 is simply a matter of adding a
test for equality in the search loop and reporting an unsuccessful search, if the algo-
rithm leaves the loop without having found the search key. The algorithm is shown in
pseudocode in the background chapter (Algorithm 9 on page 22).

5.2 Optimizations

We have applied two manual optimizations to the k-ary search. First, we have manually
unrolled the inner loops of Listing 5.1 and Listing 5.3. The inner loops of Listing 5.15
and Listing 5.16 were automatically unrolled by the compiler. Second, we eliminated
branches in the inner loops in the same way we did for the sequential search. We are
not considering unrolling the main search loop, because this optimization technique
was already detrimental in the binary search. Furthermore, we are not adding software
prefetching to the k-ary search, since even the ternary search would already prefetch six
potential separator elements looking one iterations ahead. Even prefetching just four
keys each iteration slowed down the uniform binary search considerably.

Branch Elimination

Determining the next partition in each step of a k-ary search is in itself a search problem
on k— 1 separator keys. The scalar k-ary search algorithms we presented search sequen-
tially through the separators, breaking out of the innermost search loop as soon as the
correct partition has been determined. In Chapter 3, we have seen that it can be ben-
eficial to instead always search through all keys and thus enable replacing conditional

O J O UL W N+

e e e e e e
CO O Ul W N OO

SO W N~

0O Ui Wi+

5.2. Optimizations 79

jumps with conditional move instructions. In Listing 5.14 we show the (non-uniform)
ternary search using a branchless sequential search on the separator elements. Note
that the sequential search loop has been unrolled in this listing. We have implemented
versions for 3 < k < 9 analogously to Listing 5.14.

Listing 5.14: Branchless Lower Bound Ternary Search

template <typename T>
IndexType lowerBound_kArySearch3Branchless(
const T xkeys, IndexType size, T searchKey) {
IndexType left = 0, right = size;
while (left < right) {
IndexType sepIndexl = left + (1 * (right — left)) / 3;
IndexType seplndex2 = left + (2 % (right — left)) / 3
IndexType nextLeft = left;
IndexType nextRight = seplndexl;
nextLeft = searchKey > keys[sepIndexl] ? sepIndexl + 1 : nextLeft;
nextRight = searchKey > keys[sepIndexl] ? sepIndex2 : nextRight;
nextLeft = searchKey > keys[sepIndex2] ? sepIndex2 + 1 : nextLeft;
nextRight = searchKey > keys[sepIndex2] ? right : nextRight;
left = nextLeft;
right = nextRight;

)

return left; // left == right
¥

Using the branchless sequential search is also possible in the uniform variant of the
k-ary search. In Listing 5.15 and Listing 5.16 we show the updated inner search loops.

Listing 5.15: Branchless version of the search loop in lines 11 to 18 of Listing 5.3

for (IndexType i = 1; i <k — 1; +i) {

IndexType separatorIndex = (i % remainder) / (k — 1);

left = searchKey > keys[separatorIndex] ? separatorIndex + 1 : left;
}
IndexType separatorIndex = size — idealPartitionSize — 1;
left = searchKey > keys[separatorIndex] ? separatorIndex + 1 : left;

Listing 5.16: Branchless version of the search loop in lines 22 to 30 of Listing 5.3

const IndexType dist = powConstBase<IndexType, k>(treeHeight — depth — 1);
IndexType step = 0;
IndexType separatorIndex = left — 1;
for (IndexType i = 0; i <k — 1; ++i) {
separatorIndex 4= dist;
step = searchKey > keys[separatorIndex]| ? step + dist : step;

}

left 4= step;

The vectorized k-ary search fits all of the £ — 1 separator keys into one SIMD word
to compare them to the search key in parallel. Therefore it unconditionally loads all
separator keys like the branchless k-ary search implementations in this section and does
not require an inner search loop with conditional jumps.

80 5. k-ary Search

We considered another modification to the branchless scalar k-ary search. Instead of
always iterating over all separator keys like the vectorized algorithm, the search func-
tions could stop advancing to the next separator as soon as the correct partition was
determined. For example if & = 5 and the search key falls into the second partition,
we would stay at the second separator element and repeatedly test this key instead of
loading the other separators. This method theoretically has the advantage of avoiding
conditional jumps, while still eliminating unnecessary loads as the branching implemen-
tation. However, our implementations of this idea were significantly slower than the
branchless implementations we show in this section.

5.3 Evaluation

We used the same evaluation setup and the same search key generation algorithms as
in the evaluation of the binary search to evaluate the k-ary search. See Section 3.3.1
and Section 4.3.1 for a description.

Note that we have manually unrolled the inner loops of Listing 5.1 and Listing 5.3. The
uniform k-ary search with & < 5 is sped up by 1% to 3% by unrolling the inner loop, for
larger k it is about 1% slower. In case of the non-uniform k-ary search unrolling improves
the performance of the ternary search by about 5%, but for larger k& and especially on
larger arrays, unrolling can also reduce the search speed by about the same 5%. Since
the inner loops in Listing 5.15 and Listing 5.16 were automatically unrolled by the
compiler, we will only use the unrolled implementations in this chapter. This way, we
maintain comparability between the branching and branchless implementations.

Scalar k-Ary Search Scalar Branchless k-Ary Search
e
— k=4

1000 1200

1000
800 k=5

k=8

800

600

600

time in ns
time in ns

400

200 + 200l

22 2‘4 2‘5 2‘8 2‘10 2‘12 2i4 2‘16 ziB 2‘20 2‘22 2‘24 226 22 2‘4 2‘6 2‘8 2‘10 2‘12 2i4 2‘16 2‘18 2‘20 2‘22 2‘24 226
size in elements size in elements

Figure 5.1: Branching and branchless non-uniform k-ary search

5.3.1 Scalar k-ary Search

We show the run-times of the scalar k-ary search for £ = 3,4,5 and 8 in Figure 5.1. For
smaller arrays with less than 2'7 keys, setting k to a power of two results in the best
performance, probably mostly due to the simpler index computations. The division by

5.3. FEvaluation 81

k in Listing 5.1 is compiled to a single bit shift if £ is a power of two. For larger arrays
the cache aliasing effects discussed in Section 4.3.8 apply, so a power of two is a bad
choice for k. In our experiments with 3 < k£ < 9, we found 3 and 5 to give good reliable
performance.

5.3.2 Scalar Uniform k-ary Search

In the uniform k-ary search powers of two have no advantage anymore. Since the
binary search is theoretically optimal, we expect small k to yield the best performance.
Interestingly, & = 9 is relatively fast in the branching uniform search on the left side
of Figure 5.2, but slow in the branchless search on the right side of Figure 5.2. This
is probably cause by the branchless variant always searching through all separator
elements, whereas the branching variant enables the case kK = 9 to gain some efficiency
by exiting the inner search loop earlier. However, since the branchless implementation
generally is faster, smaller k are more useful. Like for the non-uniform search, k£ = 3 or
k =5 are the best choices.

Scalar Lower Bound Uniform k-Ary Search

0

1500 2000 2500 3000 3500 4000

size in elements

1000

500

60
0

Scalar Lower Bound Branchless Uniform k-Ary Search

160 . 110
150} 105} WMWWMWWW
. bttt
130} 95| Meelfpont 1. A Mvor I i
2 2 Joamd e A st
c c
2 120+ 2 90 ,
£ £ L
110} “ 85}
100 f k=3 80 — k=3
I’ — k=4[] i — k=4|]
90f — k=5 75 — k=51
— k=9 k=9
80 L L L L L L L L 70 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
size in elements size in elements
Figure 5.2: Branching and branchless uniform k-ary search
160 Scalar Lower Bound Branching k-Ary Search 140 Scalar Lower Bound Branchless k-Ary Search
BT N B g
150} . 130}
VAN A ryar s W
1401 PNy X 1 1201
et tamesainast!
130 et . 110}
) (o)
< < v v Ay deve o w v
,ﬂg) 120 i -GE) 100 REDSERN A NSRRI
£ £ e R Ay e A e
110 { 7 90
00 — non-uniformk = 3 80 — non-uniformk = 3
! -- uniformk =3 , -- uniformk =3 1
90 — non-uniformk = 5] 20l — non-uniform k = 5 |
- - wuniformk =5 -- uniformk =5
80

1500 2000 2500 3000 3500 4000

size in elements

500 1000

Figure 5.3: Comparison of the non-uniform and uniform k-ary search

82 5. k-ary Search

In Figure 5.3 we compare the uniform and non-uniform k-ary search. The branching
uniform k-ary search tends to be faster than the non-uniform alternative if £ = 3 and
is always faster if k£ = 5. For the branchless k-ary search, the uniform variant is clearly
always preferable.

5.3.3 Branch Elimination

The branchless k-ary search is faster then the branching implementation for arrays
with up to 2!7 to 2! keys, depending on k. For larger arrays, the branchless imple-
mentations fall behind. This is similar to the binary search in Section 4.3.2, albeit less
pronounced. As with the binary search, the branching k-ary search has much more
hardware prefetcher activity and produces more LLC misses than the branchless im-
plementation when the array size exceeds about 27 keys. There are more hardware
prefetcher requests in the branchless search the larger k is, since the prefetcher can de-
tect loads with a constant stride [Int16a]. However, this does not yield a better run-time
for k > 5.

800 $ca|ar k—Ary Sgarch 800 $calgr Un‘lforn‘1 k—Ary Sgarch

— branchingk =3 / — branching k = 3

700F| — — pranchless k = 3 /! 700F| — — pranchless k = 3

6o0l| — Pranching k =35 s 6ool| — Pranching k =5 |
- - branchless k =5 ’ - - branchless k =5 4

v

o

o
T

time in ns
Y
o
o
time in ns

w

o

o
T

N
o
o

100

022 2‘4 2‘6 2‘8 2‘10 2i2 zid 2‘16 2i8 2‘20 2‘22 2‘24 26 022 2‘4 2‘6 2‘8 2‘10 2i2 zid 2‘16 2i8 2‘20 2‘22 2‘24 26
size in elements size in elements

Figure 5.4: Branching and branchless scalar lower bound k-ary search

The right side of Figure 5.4 shows the branching and branchless uniform k-ary search.
It behaves similar to the non-uniform search, but the points where the branching imple-
mentations become faster are at about four times as many keys, probably because the
uniform search makes better use of the caches, since there are less possible separator
elements at each search depth.

5.3.4 Vectorized k-ary Search

Figure 5.5 compares the vectorized k-ary search using SSE with the corresponding scalar
branchless uniform k-ary search. The diagram shows the run-times on arrays with the
usual 32-bit keys (int32), but also with 16-bit (int16) and 64-bit keys (int64). The k of
the scalar search is chosen to match the vectorized search with 128-bit SSE registers.
Note that the vectorized search is limited to arrays of less than 2'° elements when 16-bit

5.3. FEvaluation 83

1200 ; ; ; ; . : : : : : :
— vectorized (int16)
1000L| —~ scalar k =9 (intl6)
— vectorized (int32)
-~ scalark =5 (int32)
— vectorized (int64)
scalar k = 3 (int64)

800 T T T T T T T T T T T

g
o

700

=
IS

L '
Rl B R S ST

SESVEL SIS iy

.
8001 600| TV D

!
=
N

instructions per clock (dashed)

500

-
o

600

time in ns

400

o
©

instructions retired

400

300 0.6
200 1 "
___________ 200 — vectorized (k = 5) ~>-404
— scalark=5 h
0 L L L L L L L L L L L N N n n n n n n L n L
22 24 26 58 910 512 514 516 518 520 522 524 526 10022 2% 26 28 10 12 14 516 18 20 522 24 229'2
size in elements size in elements

Figure 5.5: Comparison of the vector- Figure 5.6: Instructions retired and instruc-
ized (SSE4.1) k-ary search and the scalar tions per clock of the vectorized (SSE4.1)
branchless uniform k-ary search and scalar k-ary search with 32-bit keys

keys are used. As we can see, the SIMD search is slower than the scalar implementation.
Figure 5.6 shows the average number of retired instructions and the average number
of instructions per clock for the scalar and vectorized k-ary search with 32-bit search
keys. The vectorized search executes 30 to 230 more instructions per search run and can
not achieve a sufficiently higher instruction throughput than the scalar implementation,
explaining its longer run-time.

700 . 3bitkeys 900 . babitkeys
— vectorized with gather (k = 9) 800 — vectorized with gather (k = 5)
600 scalark = 3 | — scalark=3
— scalark =5 700} — scalark =5
500 scalark =9 scalark =9
600 |
2 400} € 500l
£ S
[[
£ 300} £ 400}
300}
200+
200}
100 w*ﬁ—/ 100} B el WSS i
022 2‘4 2‘6 2‘8 2‘10 ziZ 2i4 2‘16 25.8 2‘20 2‘22 2‘24 2 6 022 2‘4 2‘6 2‘8 2‘10 25.2 2‘14 2‘16 2i8 2‘20 2‘22 2‘24 2 6
size in elements size in elements

Figure 5.7: Comparison of the vectorized (AVX2) k-ary search and the scalar branchless
uniform k-ary search

AVX2 Gather Instructions

Remember, that the SSE implementation of k-ary searching uses scalar loads to gather
the separator elements, writes them to a temporary location and then loads them into an
SSE register. AVX2 contains instructions to directly load values from non-continuous
memory locations. Since our usual evaluation system does not support AVX2, we
evaluated the AVX2 implementation on an Intel Xeon E5-2630v3 processor (32 KiB

84 5. k-ary Search

L1D and 256 KiB L2 cache per core; 20 MiB shared L3 cache). The source code
was compiled with the GNU C++ compiler version 5.1.1. The AVX2 implementation
performs better relative to the scalar k-ary search algorithms, especially when 64-bit
keys are used (Figure 5.7). Nevertheless, the scalar 9-ary search is always faster than
the AVX2 implementation, except for an array with just 4 64-bit keys.

5.3.5 Exact Match

We compared exact match search implementations, terminating the search as soon as
the search key has been seen, and implementations based on the lower bound moving the
equality tests out of the search loop, like we did for the binary search in Section 4.3.6.
For this evaluation, we tested k = 3 and 5, because these give the best performance.
The search keys were generated by Algorithm 2 (see Section 4.3.1), so that all searches
are successful.

Ternary Search 5-ary Search

iterations
=} =]
w EN
T
iterations
=4 I
w >

I
[N]
T

01l — non-uniform || 0.1+ — non-uniform 4

— uniform — uniform

0'020 2‘2 57 2‘6 2‘8 zio Ziz S Zie 2is 250 252 2‘24 52 0'020 52 57 2‘6 2‘8 Zic Ziz Sz 2i6 Zis 250 252 2‘24 526
size in elements size in elements

Figure 5.8: Average number of additional iterations needed by the lower bound based
exact match k-ary search

Remember from Section 4.3.6, that the lower bound based exact match binary search
needs about one iteration more than the direct exact match implementation. For the
k-ary search we expect this difference to be lower, because the conceptual search tree
created by a k-ary search has up to k£ times more leafs than internal nodes. This means,
the search is more likely to only discover the search key in the last iteration, the greater
k is. For the uniform k-ary search we measured about 0.5 iterations difference if k
is 3 and 0.25 iterations difference if k is 5 (see Figure 5.8). The differences for the
non-uniform k-ary search are slightly larger with about 0.6 and 0.4, respectively.

Despite the smaller difference in iterations, the direct exact match k-ary search is more
useful to improve the run-time than in the binary search. The branching direct exact
match implementation is on average about 4% to 7% faster than the branching lower
bound based implementation (see Figure 5.9). The direct exact match implementation
is also faster for the branchless non-uniform k-ary search. However, the lower bound
based variant is on average about 12% to 15% faster for the branchless uniform search on

5.3. FEvaluation

85

1.20 Ternary Search 14 m—
— branching — branching
1.15} -~ branchless 13k - - branchless i
| . . o . .
110! , — uniform branching || \ uniform branching
' l. h NG - - uniform branchless j. - - uniform branchless |
81'05’!: FALARATY A g g
© \ ! 1 | [N RERR AP 7 / 8
‘o { R R A NG < a
SL00F N oy . . E
el \ 1 / °
! ~=--" (]
o [Pk g
a 0.95h" . =1
0 W L’
WY ;7
09011 | L
1\ " - ~7 -
' ’I\\ ' N’#H" ! '% g -
085F v "I\\ e AN »\Vuw"v%n‘w)
' { [t N
0.80

2

0 2‘2

27 26

2‘8 2‘10 2‘12 2‘14 2‘16 2‘18 2‘20 2‘22 2‘24 226
size in elements

5-ary Search

08

22

27

2°

2‘8 2‘10 2‘12 2‘14 2i6 2‘18 2‘20 2‘22 2‘24 2
size in elements

26

Figure 5.9: Relative speedup of the direct exact match k-ary search compared to the
lower bound based search

arrays with less then about 2'7 keys. For larger arrays the difference starts to approach
zZero.

5.3.6 Linearized k-ary Search Trees

The left side of Figure 5.10 shows the run-time of the lower bound k-ary search on a
linearized search tree. Since we were using SSE and 32-bit keys, & is 5. For comparison,
a search on linearized binary trees, the scalar uniform branchless k-ary search and an
optimized binary search (uniform, branchless and using prefetching) are plotted. As we
can see, the 5-ary and binary search algorithms are faster than searching on a linearized
tree for arrays with up to about 22° keys. For larger arrays, directly searching on the
sorted keys is slower. Clearly, the most often referenced nodes of the linearized tree are
kept in the processor cache. This combined with the separator elements being tightly
packed in the nodes avoids stalls due to memory accesses. In contrast to the vectorized
k-ary search, the (scalar) binary search on linearized binary trees fails to outperform
the corresponding binary search operating directly on a sorted array. The vectorized
k-ary search makes better use of the linearized tree layout, since the cost of a SIMD
load is similar to a scalar load, while the scalar binary search needs more iterations and
has more spread out memory accesses.

The higher search time in a linearized tree for smaller key counts is explained by the
overhead introduced by the need to construct an iterator, that is used to efficiently
loop over the keys in sorted order. The right side of Figure 5.10 shows the exact match
search on the same linearized tree as before. The exact match search is 10% to 30%
faster than the lower bound algorithm and is always faster than the 5-ary search on the
sorted array. However, it only reliably beats an optimized binary search on arrays of
more than 2% keys.

86 5. k-ary Search

1000 Lo‘wer‘Bour‘1d 1000 E‘xact ‘Matc‘h

— linearized search tree (k = 5, SSE) — linearized search tree (k = 5, SSE)
- - scalar 5-ary search , - - scalar 5-ary search

800F| — Jinearized search tree (k = 2, scalar) S 800F| — Jinearized search tree (k = 2, scalar) /T
- - binary search e - - binary search .

(=)}
o
o
T
(=)}
o
o

time in ns
time in ns

400 -

200

22 2‘4 2‘6 2‘8 2‘10 2‘12 2ll4 2‘16 2‘18 2‘20 2‘22 2‘24 2 6 22 2‘4 2‘6 2‘8 2‘10 2112 2‘14 2‘16 2‘18 2‘20 2‘22 2‘24 2 6
size in elements size in elements

Figure 5.10: Lower bound and exact match search on a linearized tree compared with

searching on a sorted array

5.4 Summary

We have implemented the scalar k-ary search algorithm and introduced a uniform imple-
mentation variant using precalculated tables to reduce the cost of index computations.
Eliminating the conditional branches out of the loops of these algorithms yielded addi-
tional variants. Our experimental evaluation showed, that k should not be a power of
two to avoid the cache aliasing we have already observed in the binary search. Setting &
to 3 or 5 offers the best performance in most cases. We found, that on average the uni-
form branchless 5-ary search is the best scalar k-ary search for k£ > 2 on the evaluation
system.

To evaluate the viability of SIMD k-ary searching, we implemented the SIMD k-ary
search discussed in the background chapter. The vectorized k-ary search proved to be
inferior to the scalar k-ary search.

Comparing direct and lower bound based exact match search implementations, we found
that testing for equality with the search key in the search loop has more potential to
speed up the k-ary search than the binary search. However, our fastest k-ary search
function, the uniform branchless 5-ary search was slowed down by these additional
conditional jumps.

Finally, we implemented and evaluated vectorized k-ary search functions operating on
linearized trees. These functions are faster if the sorted array is too large to be effectively
cached, but the lower bound variant adds additional overhead for iteration over a range
of keys in sorted order. This means, that searching directly on the sorted list is actually
faster for less than 22° keys in our test. In case of an exact match search using linearized
search trees becomes worthwhile for more than 2% keys. We conclude, that the k-ary
search on linearized trees is only useful for very large arrays, where to cost of LLC
misses becomes dominant. Of course the higher search speed also needs to be balanced
with the cost of constructing the linearized tree.

6. Comparison of Sequential,
Binary and k-ary Searching

In this chapter, we compare the best sequential, binary and k-ary search algorithms
discussed in the previous chapters and analyze their advantages and disadvantages on
arrays of different sizes. In particular, we look at three array size ranges we found to
favor different search algorithms. For each size range, we point out the fastest lower
bound search algorithms. The relative order of the best performing algorithms is the
same for the corresponding exact match searches. Note that we do not include the k-ary
search on linearized trees in this comparison, since it is a special case using a different
array layout.

Arrays of less than 32 keys

For very small arrays of up to about 32 keys the vectorized branchless sequential search is
the fastest algorithm (Figure 6.1). Loop unrolling does not improve the run-time on such
small arrays, it only becomes effective for more than about 50 keys. Binary searching in
form of the uniform (branchless) binary search becomes faster than vectorized sequential
searching for more than about 32 keys. If we restrict our view to scalar implementations,
the point where binary searching becomes faster then sequential searching is already
reached at 8 keys.

Arrays sized between 32 and 26 keys

The branchless uniform binary search stays the fastest search function for up to 2'3 keys
(Figure 6.2), with the branchless uniform binary search employing software prefetching
only 1 ns to 2 ns behind. For arrays larger than 2!3 elements, the prefetching uniform
search becomes faster than the non-prefetching version. k-ary searching does not reach
the performance of binary searching on these array sizes. Offset binary searching is tens
of nanoseconds slower than both the uniform binary search and the k-ary search and
thus can not be recommended in this case.

88 6. Comparison of Sequential, Binary and k-ary Searching

100

— sequential branchless

— sequential branchless SSE

— sequential branchless SSE (unrolled)
90} —— uniform branchless binary 1

time in ns

50 | |
0

10 20 30 40 50 60
size in elements

Figure 6.1: Fastest lower bound search algorithms for less than 32 keys, showing up to
64 keys

120 —

) |JL1
Wil

time in ns

uniform branchless binary 1
uniform branchless binary (prefetch)
uniform branchless 3-ary
uniform branchless 4-ary
uniform branchless 5-ary

25 26 27 28 29 210 211 2)2 213 214 215 216
size in elements

Figure 6.2: Fastest lower bound search algorithms for arrays of 32 to 26 keys

Arrays of more than 26 keys

For arrays of more than 2'® keys (Figure 6.3), the number of LLC misses rises and
due to the cache aliasing problems discussed in Section 4.3.8, regular binary searching
becomes inefficient for large arrays, so the k-ary search functions are better for sizes
above 2'® keys. For arrays of this size, the differences between uniform and non-uniform,
branching and branchless k-ary search implementations become much less significant,
since memory latency is the bottleneck.

For more than 224 keys the branching k-ary searches, sometimes avoiding to load all
separators in a search step, become faster than their branchless counterparts, since

89

timeinns

1400

1200

1000

800

branchless uniform binary

branchless uniform binary (prefetch)
branchless offset binary 3:5 (prefetch)
branchless uniform 3-ary

branchless uniform 5-ary

7-ary (not unrolled)

9-ary (not unrolled)

| — uniform 7-ary (not unrolled)

uniform 9-ary (not unrolled) -

16 2‘17 2‘18 25.9 2‘20 2‘21 2‘22 2‘23 2‘24

size in elements

>

226

Figure 6.3: Fastest lower bound search algorithms for more than 2'¢ keys

very costly LLC misses become even more frequent. Additionally, functions using k& =
7 and 9 become faster relative to the other search algorithms, probably because they
can profit from the hardware prefetcher recognizing the loads of the evenly spaced
separator elements. Like mentioned in Section 5.3, not unrolling the inner loop of the
k-ary search can be faster than unrolling it, especially for larger £ and array sizes. This
leads to the not unrolled 7 and 9-ary search to be among the fastest algorithms on
arrays of 2! and more keys.

On large arrays, the offset binary and branchless uniform ternary search perform almost
as good as the faster k-ary search functions, but require less main memory bandwidth
(see Figure 6.4). In fact, the ternary search uses the least bandwidth of the fastest
search functions, thereby offering a good latency—bandwidth compromise.

bytes loaded

3000

2500

2000

1500

1000

500

NO

branchless uniform binary
branchless uniform binary (prefetch)

L| — branchless offset binary 3:5 (prefetch)
branchless uniform 3-ary

branchless uniform 5-ary

7-ary (not unrolled)

9-ary (not unrolled) s
uniform 7-ary (not unrolled)
uniform 9-ary (not unrolled)

———

% ST > > 5 S5

size in elements

>ie >

>

226

Figure 6.4: Average number of bytes loaded from main memory per search

90 6. Comparison of Sequential, Binary and k-ary Searching

If the search keys are generated by Algorithm 3 instead of Algorithm 1 or 2 (Figure 6.5),
the branchless uniform 3 and 5-ary search functions stay among the fastest even for large
arrays, since there are less LLC misses. The branching 3, 6 and 9-ary search are also
very fast. Implementations with an unrolled inner loop are often a few percent faster
than the not unrolled ones.

700

— branchless uniform binary

- - branchless uniform binary (prefetch)
— branchless offset binary 3:5 (prefetch)
—— branchless uniform 3-ary

- - branchless uniform 5-ary

— uniform 3-ary
- - uniform 5-ary
4001} uniform 6-ary
uniform 9-ary

600 -

500

time in ns

gk

Yy 218 1o 520 P 22 23 2% 55 5%
size in elements

Figure 6.5: Fastest lower bound search algorithms with search keys are generated by

Algorithm 3

Comparison to std: :lower_bound

Finally, we have plotted the speedup obtained by using optimized search algorithms
compared to the C++ standard library function std: :lower_bound (as implemented
by Microsoft Visual C++ 2015) in Figure 6.6. Improvements of up to 60% are possible,
and even for large arrays the speedup is still at least 5% and can be as high as 40%.

L35 Up to 128 keys 18 ‘More Fhan }28 kgys
| — sequential branchless SSE|
1.30 1.6
1.25 14
g g
8120 R
Q
= E 1.2
el
@ 1.15 9
L o
a Y 1.0
1.10
— branchless uniform binary (prefetch)
1.05 08rl — pranchless uniform 5-ary
— branchless offset binary 3:5 (prefetch)
! ! ! ! ! ! 06 L L L L L L L L L
1.005 20 40 60 80 100 120 27 2% M 213 s 17 pl9 g2l 23 92
size in elements size in elements

Figure 6.6: Relative performance of optimized search algorithms compared to the gen-
eral purpose std: :lower_bound

7. Related Work

We have compared branching, branchless and branchless with explicit prefetching im-
plementations of binary searching. Khuong and Morin [KM17] have done the same
with similar results, although they state that their explicit prefetching implementation
consumes more memory bandwidth than the branching one. In our evaluation, explicit
prefetching needed less memory bandwidth. They also have analyzed the cache usage
of the binary search and point out the cache aliasing issues we discuss in Section 4.3.8.
There is also an online article by Khuong examining the caching behavior of binary,
offset binary, ternary and quaternary searching in detail [Khul2].

Zeuch et al. employ hardware performance counters to characterize to processor utiliza-
tion reached by the relational selection operator concerning branch prediction, cache
misses and superscalar execution [ZF15], similar to how we used them to analyze search
algorithms.

Optimizing Sequential Searching with Sentinel Keys

A well-known optimization of sequential searching, we have not considered in Chapter 3,
is to place a sentinel key at the end of the array to avoid the conditional jump exiting
the search loop when the array is exhausted [Knu98|. For an exact match search the
sentinel key should be equal to the search key and for a lower bound search it should
be larger than all other keys. This way termination is ensured, even if the search key
is not in the array or in case of a lower bound search, if the lower bound is beyond the
end of the array.

Other Binary Search Variants

Another variant of the uniform binary search is the bit set binary search [Pulll][Canl7].
It uses only bit manipulation operations to calculate array indices and an efficient
branchless implementation is also possible. Cannizzo also proposes to vectorize the

92 7. Related Work

binary search to search for multiple keys in parallel instead of loading clusters of adjacent
separators, searching for a single key [Canl7]. Since the vectorized binary search we
have implemented in Section 4.1.3 was inferior to an optimized scalar binary search,
exploring this direction of parallelization might be interesting.

Other Array Layouts

This works is focused on searching in sorted arrays, but as we have seen by implementing
the array layout proposed by Schlegel et al. to speed up k-ary searching [SGL09], other
array layouts can offer large benefits. The linearized k-ary tree layout implemented in
this work is also known as Btree layout [KM17]. There are many more array layouts
to improve cache locality in search algorithms based on different tree traversals and
blocking schemes in the literature. Examples include the Eytzinger and van Emde Boas
layout, as well as layouts based on preorder and inorder tree traversals [BFJ02][KM17].
In Section 5.3.6 we have seen that packing more keys into one node of a linearized tree
can considerably improve performance, but we have not tried to increase the size of a
node to fill a complete cache line. FAST is an optimized tree layout organized to exploit
the width of SIMD loads, the cache line size and page size [KCST10].

Interpolation Search

A completely different way to improve search performance on sorted data is to make
assumptions about the distribution of said data. The search algorithm can then make
more informed decisions on which elements are selected as separators. Interpolation
search is a dichotomic search algorithm using this idea. Classically it assumes a uni-
form distribution. If the data is indeed uniformly distributed, the expected number of
iterations is only log, (log,(size)) + O(1) with a variance of O(log,(log,(size))), making
it asymptotically better than binary searching [GRG80]. Interpolation search can be
adapted to other distributions by using a suitable approximation to the distribution
[Pri71].

8. Conclusion and Future Work

The next paragraphs summarize the most important results of this work. Then we give
an outlook to possible future work. With all our results, it is important to keep in
mind that we mostly used only a single evaluation system. While our results should
be applicable to most modern CPUs, details may change from machine to machine,
especially concerning prefetching and SIMD.

Sequential searching has a worse asymptotic time complexity than binary searching, but
due to different constants factors, one could assume the very simple sequential search
to be faster on small arrays. We found, that this is only true for arrays of very few keys,
since an optimized binary search is executed very efficiently on modern processors. In
our evaluation the sequential search only beat the binary search by a few nanoseconds
on an array of less then 8 32-bit keys, thereby occupying less than half of a 64-byte cache
line. Nevertheless sequential searching on sorted data has its usage, if SIMD processing
is used. SIMD sequential searching is the fastest way we found to search in small arrays.
Note however, that we only considered cases where the array was aligned to the SIMD
word size and a multiple of the SIMD word size in length. If these constraints are not
met, special handling of the ‘overhanging’ elements and /or unaligned loads are needed,
potentially degrading performance.

Binary searching, the most obvious and theoretically optimal choice for searching in
randomly accessible sorted data, performed well in our evaluation, but we found huge
optimization potential in the classical textbook implementation. Reducing the overhead
of index computations and branching, by using a uniform implementation variant and
employing branch predication, worked especially well. A problem of binary searching
is its interaction with the power of two based cache addressing scheme found in most
current processors, that can lead to a very inefficient utilization of caches. We found
both binary searching with an offset split location and k-ary searching with k& not a
power of two effective in avoiding this situation.

94 8. Conclusion and Future Work

Binary search is struggling, if an arrays becomes too large to fit in the processor caches,
because of cache aliasing issues and random, irregular spaced memory accesses, that
make prefetching difficult even with software assistance. On such large arrays k-ary
searching has the better performance, although it is difficult to pinpoint the optimal
choice of k and optimization techniques. Testing on the specific hardware with the
specific arrays sizes to be used is probably necessary. In addition to the k-ary search
operating on sorted arrays, we implemented a variant using linearized search trees to
improve the locality of memory references. Like expected, an optimized array layout
further improves performance on large arrays.

The vectorization techniques we tried on the binary and k-ary search algorithms yielded
inferior implementations in all cases. The only functions that came close to scalar
searching used AVX2 gather load instructions. SIMD processing only improved the
search algorithms, if SIMD loads from continuous memory locations could be used. This
was the case for the sequential search and on linearized k-ary search trees. Nevertheless,
SIMD processing in binary and k-ary searching might prove useful, if other vectorization
techniques, like searching multiple keys in parallel, are used, or on other processors
implementing SIMD differently.

On multiple occasions, we found a tradeoff between search speed and the memory band-
width used. For example, a branchless binary search, thus using less branch prediction,
consumes much less memory bandwidth than a regular branching one, but also waits
for memory much longer. This latency—bandwidth tradeoff might be important to keep
in mind if a search algorithm is selected as part of a greater function.

Future Work

There are a number of points we have not addressed in this work, that might be inter-
esting in the future:

Array alignment and non-continuous keys: This thesis is restricted to SIMD word
aligned arrays of tightly packed keys. It would be interesting to lift these restric-
tions, for example by considering keys interleaved with other data.

Specialization to specific array sizes: The search functions in this thesis work on
arrays of arbitrary length. Further optimizations are possible, if we create func-
tions restricted to one specific array length.

Offset k-ary search: The position of the separator elements in a k-ary search could
be offset like in the offset binary search to avoid cache aliasing if k is a power of
two.

Combining search algorithms: Combining different search algorithms, for example
by first utilizing binary and, after the search interval is narrowed down, SIMD
sequential searching, might further improve performance. Especially interesting
in this regard is the interpolation search, since its expected number of iterations is

95

better than in the binary search, but with higher constant overhead per iteration
and only if its assumptions on the distribution of the keys are met. Otherwise it
can degenerate to an inefficient sequential search. Therefore it is commonly com-
bined with other search algorithms like sequential or binary search [GR77][SS85].

Other vectorization techniques: The SIMD binary and k-ary search algorithms we
evaluated were not very successful. By using different vectorization techniques,
like parallelizing over multiple search runs, it might be possible to obtain better
performance.

Compare different processor architectures: We have mainly used an Intel pro-
cessor of the Ivy Bridge microarchitecture in the evaluation. Other microarchi-
tectures, processors from different vendors and non-x86 processors will proba-
bly respond differently to certain optimizations, especially to software controlled
prefetching.

Linearized k-ary search trees: A logical extension of the SIMD search on k-ary
search trees would be to increase the size of the nodes to fill entire cache lines.
This way no bytes loaded on a last level cache miss would be wasted, because
cache lines are always loaded as complete units from main memory. Since the
main costs of searching on large arrays comes from last level cache misses, this
could further improve performance on arrays not entirely fitting in the processor
cache. For example, on a machine with 64-byte cache lines and 128-bit SIMD
registers we could fit 16 keys into one node, yielding a 17-ary search tree. Since
searching through one node would then no longer be possible with a single SIMD
comparison we would have to select a secondary search algorithm for this task.

Evaluating the search algorithms in the context of a larger system: Searching
is often part of a larger algorithm. Therefore it would be interesting to incorporate
the search optimization techniques we have found useful into larger algorithms and
data structures. An example of such a data structure is Elf, where the search in
its sorted dimension lists could be optimized [BKSS17].

96

8. Conclusion and Future Work

O O UL W N+

DO DD = = = b e e e e e
— O © 00 IO Uik W~ OO

A. Helper Functions

This appendix contains the definitions of the helper functions used throughout this
work. The preprocessor constants USE_SSE, USE_VEX, USE_AVX and USE_AVX2 are used
to configure the code. Only one of USE_SSE, USE_AVX and USE_AVX2 may be defined,
to select the the SSE4.1, AVX or AVX2 instruction set. If USE_SSE is defined, USE_VEX
can additionally be defined to use the new SSE instruction encoding introduced with
AVX.

A.1 Bit Scans

Listing A.1: Bit scans

inline unsigned char bitScanForward (
unsigned long xindex, unsigned long mask) {
#ifdef MSVC
return _BitScanForward (index, mask);
#elif (defined GNU)

if (mask = 0) return O0;
xindex = (unsigned long)__builtin_ctz (mask);
return 1;

#endif

}

inline unsigned char bitScanReverse(
unsigned long xindex, unsigned long mask) {
#ifdef MSVC
return _BitScanReverse(index, mask);
#elif (defined GNU)

if (mask = 0) return O0;
xindex = (unsigned long)(8*sizeof(int) — __builtin_clz (mask) — 1);
return 1;

#endif

}

~N O Uk W N

0 O Ui Wi

W NN NN NN DN DN — e e e e
SO X TN EWN OO U R WN RO ©

98 A. Helper Functions

A.2 Mathematical Functions

The uniform binary search needs to efficiently calculate the function [log,(x)] for integer
x. The function ceilLog does this using bit scans for 0 < x < 23!, assuming unsigned
long is 32 bits wide.

Listing A.2: Definition of ceilLog?2

inline unsigned long ceilLog2 (unsigned long x) {
unsigned long i;
bitScanReverse(&i, x); // i = floor(log2(z))

x 4= (1 << 1) — 1; // round up
bitScanReverse(&i, x);
return i;

3

Both, the scalar and vectorized uniform k-ary search need to calculate the expression
k* for integer x. Since k is a constant, a precomputed table accessed via the template
pow_const_base is used for this. k£ = 2,4 and 8 are treated as special cases, where
cheap bit shifts are used instead of table look-ups.

Listing A.3: Definition of pow_const_base

template <typename T, unsigned int base> struct pow_const_base {
const static T table [];

b

template <typename T, unsigned int base> constexpr T powConstBase(T x)
{ return pow_const_base<T, base>::table[x]; }

template <>

inline constexpr uint8_t powConstBase<uint8_t , 2>(uint8_t x)
{ return 1 << x; }

template <>

inline constexpr uintl6_t powConstBase<uintl6_t, 2>(uintl6_t x)
{ return 1 << x; }

template <>

inline constexpr uint32_t powConstBase<uint32_t , 2>(uint32_t x)
{ return 1 << x; }

template <>

inline constexpr uint64_t powConstBase<uint64_t, 2>(uint64_t x)
{ return 1ull << x; }

template <>

inline constexpr uint8_t powConstBase<uint8_t , 4>(uint8_t x)
{ return 1 << (2 * x); }

template <>

inline constexpr uintl6_t powConstBase<uintl6_t, 4>(uintl6_t x)
{ return 1 << (2 * x); }

template <>

inline constexpr uint32_t powConstBase<uint32_t, 4>(uint32_t x)
{ return 1 << (2 = x); }

template <>

inline constexpr uint64_t powConstBase<uint64_t , 4>(uint64_t x)
{ return 1ull << (2 % x); }

template <>

31
32
33
34
35
36
37
38
39
40
41

T W N

0O Ui Wi

DD = = = s e e e e e
O © 00 IO UL W~ O©

A.3. SSE/AVX Intrinsic Wrappers 99

inline constexpr uint8_t powConstBase<uint8_t , 8>(uint8_t x)
{ return 1 << (3 * x); }

template <>

inline constexpr uintl6_t powConstBase<uintl6_t, 8>(uintl6_t x)
{ return 1 << (3 * x); }

template <>

inline constexpr uint32_t powConstBase<uint32_t , 8>(uint32_t x)
{ return 1 << (3 * x); }

template <>

inline constexpr uint64_t powConstBase<uint64_t , 8>(uint64_t x)
{ return lull << (3 * x); }

A.3 SSE/AVX Intrinsic Wrappers

Our code uses the following wrapper templates to select suitable SSE/AVX intrinsic
functions for the given key and index data types. These functions are used throughout
all our SIMD implementations. Note that out vector type is always one of the integer
types __m128i and __m256i. For floating point keys casts are used. The distinction
between integer and floating point SIMD types is only meaningful to the compiler, thus
the cast are purely syntactical and incur no run-time overhead.

Listing A.4: Definition of Vector

#ifdef USE_SSE

using Vector = __m128i;
#else

using Vector = __m256i;
#endif

Listing A.5: Definition of keys_per_simd_word

template <typename VectorType, typename T>
constexpr unsigned int keys_per_simd_word ();
template <> inline constexpr unsigned int

keys_per_simd_word<__m128i, int8_t >() { return 16; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, intl6_t >() { return 8; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, int32_t >() { return 4; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, int64_t >() { return 2; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, uint8_t >() { return 16; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, uintl6_t >() { return 8; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, uint32_t >() { return 4; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, uint64_t >() { return 2; }

template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, float >() { return 4; }

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O O UL W N

I I N I N R N R e e e e S e i
=W O OWWTO Uk W~ OO

100 A. Helper Functions

template <> inline constexpr unsigned int
keys_per_simd_word<__m128i, double>() { return 2; }
#if (defined USE.AVX) || (defined USE_AVX2)
template <typename VectorType, typename T>
constexpr unsigned int keys_per_simd_word ();
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, int8_t >() { return 32; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, intl6_t >() { return 16; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, int32_t >() { return 8; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, int64_t >() { return 4; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, uint8_t >() { return 32; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, uintl6_t >() { return 16; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, uint32_t >() { return 8; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, uint64_t >() { return 4; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, float >() { return 8; }
template <> inline constexpr unsigned int
keys_per_simd_word<__m256i, double>() { return 4; }

#endif

Listing A.6: Loding, storing and setting SSE/AVX registers

inline __m128i loadVector(const __m128i smem_addr)
{ return _mm_load_si128 (mem_addr); }

inline void storeVector(_-_m128i smem_addr, __m128i a)
{ _mm_store_si128 (mem_addr, a); }

template <typename VectorType> inline VectorType getAllOnesVector ();
template <> inline __m128i getAllOnesVector<__m128i>() {

_-m128i a = _mm_undefined_sil28 ();

return _mm_cmpeq_epi32(a, a);

}

template <typename VectorType, typename T> VectorType _mm_setl(T a);

template <> inline __m128i _mm_setl(int8_t a)
{ return _mm_setl_epi8(a); }

template <> inline __m128i _mm_setl(intl6_t a)
{ return _mm_setl_epil6(a); }

template <> inline __m128i _mm_setl(int32_t a)
{ return _mm_setl_epi32(a); }

template <> inline __m128i _mm_setl(int64_t a)
{ return _mm_setl_epi6dx(a); }

template <> inline __m128i _mm_setl(uint8_t a)
{ return _mm_setl_epi8(a); }

template <> inline __m128i _mm_setl(uintl6_t a)
{ return _mm_setl_epil6(a); }

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

A.3. SSE/AVX Intrinsic Wrappers 101

template <> inline __m128i _mm_setl(uint32_t a)
{ return _mm_setl_epi32(a); }
template <> inline __m128i _mm_setl(uint64_t a)
{ return _mm_setl_epi6dx(a); }
template <> inline __m128i _mm_setl(float a)
{ return _mm_castps_sil28(_mm_setl_ps(a)); }
template <> inline __m128i _mm_setl(double a)
{ return _mm_castpd_sil28(_mm_setl_pd(a)); }

#if (defined USEAVX) || (defined USE_AVX2)

inline __m256i loadVector(const __m256i smem_addr)
{ return _mm256_load_si256 (mem_addr); }

inline void storeVector(_-_m256i *mem_addr, __m256i a)
{ -mm256_store_si256 (mem_addr, a); }

template <> inline __m256i getAllOnesVector<__m256i>() {
#ifdef USE_AVX2

_-m256i a = _mm256_undefined_si256 ();

return _mm256_cmpeq_epi32(a, a);
#else

_-m256 a = _mm256_setzero_ps();

return _mm256_castps_si256 (_mm256_cmp_ps(a, a, -CMPEQOQ));
#endif
}

template <> inline __m256i _mm_setl(int8_t a)
{ return _mm?256_setl_epi8(a); }
template <> inline __m256i _mm_setl(intl6_t a)
{ return _mm256_setl_epil6(a); }
template <> inline __m256i _mm_setl(int32_t a)
{ return _mm256_setl_epi32(a); }
template <> inline __m256i _mm_setl(int64_t a)
{ return _mm256_setl_epi6dx(a); }
template <> inline __m256i _mm_setl(uint8_t a)
{ return _mm256_setl_epi8(a); }
template <> inline __m256i _mm_setl(uintl6_t a)
{ return _mm?256_setl_epil6(a); }
template <> inline __m256i _mm_setl(uint32_t a)
{ return _mm256_setl_epi32(a); }
template <> inline __m256i _mm_setl(uint64_t a)
{ return _mm256_setl_epibdx(a); }
template <> inline __m256i _mm_setl(float a)
{ return _mm256_castps_si256 (_mm256_setl_ps(a)); }
template <> inline __m256i _mm_setl(double a)
{ return _mm256_castpd_si256 (_mm256_setl_pd(a)); }

#endif

A.3.1 SSE/AVX Comparisons

The following template functions provide signed SIMD comparisons including the func-
tion adjustForSignedComparison needed to preprocess unsigned operands.

0O Ui Wi+

U OU b W b B R B b R s B W W W W W WWWWwWhN NNDDDNDDNDDNDNDLN = = s = s
— O OO0 IDDUk WNHFEF OO Uk WNNRFE OO Ulkr WNDHFE OO0 Utk WwWwNnFOO

102 A. Helper Functions

Listing A.7: SIMD comparison

template <typename T> __m128i _mm_cmpeq(--m128i a, __m128i b);

template <> inline __m128i _mm_cmpeq<int8_t >(__m128i a, __m128i b)
{ return _mm_cmpeq_epi8(a, b); }

template <> inline __m128i _mm cmpeq<intl6_t>(__m128i a, __ml128i b)
{ return _mm_cmpeq_epil6(a, b); }

template <> inline __m128i _mm cmpeq<int32_t>(__m128i a, __m128i b)
{ return _mm_cmpeq_epi32(a, b); }

template <> inline __m128i _mm_cmpeq<int64_t >(__m128i a, __m128i b)
{ return _mm_cmpeq_epi64d(a, b); }

template <> inline __m128i _mm cmpeq<uint8_t>(__m128i a, __ml128i b)
{ return _mm_cmpeq_epi8(a, b); }

template <> inline __m128i _mm cmpeq<uintl6_t>(__m128i a, __m128i b)
{ return _mm_cmpeq_epil6(a, b); }

template <> inline __m128i _mm_cmpeq<uint32_t>(__m128i a, __m128i b)
{ return _mm_cmpeq_epi32(a, b); }

template <> inline __m128i _mm cmpeq<uint64_t>(__m128i a, __ml128i b)
{ return _mm_cmpeq_epi64d(a, b); }

template <> inline __m128i _mm cmpeq<float>(__m128i a, __ml128i b) {
return _mm_castps_sil28(

_mm_cmpeq_ps(_mm_castsil28_ps(a), _mm_castsil28_ps(b)));

¥

template <> inline __m128i _mm cmpeq<double>(__m128i a, __m128i b) {
return _mm_castpd_sil28(

_mm_cmpeq_pd (_mm_castsil28_pd(a), -mm_castsil28_pd(b)));

}

template <typename T> __m128i _mm cmpgt(__m128i a, __m128i b);

template <> inline __m128i _mm_cmpgt<int8_t>(__m128i a, __ml128i b)
{ return _mm_cmpgt_epi8(a, b); }

template <> inline __m128i _mm_cmpgt<intl6_t>(__m128i a, __m128i b)
{ return _mm_cmpgt_epil6(a, b); }

template <> inline __m128i _mm cmpgt<int32_t>(__m128i a, __ml128i b)
{ return _mm_cmpgt_epi32(a, b); }

template <> inline __m128i _mm cmpgt<int64_t>(__m128i a, __m128i b)
{ return _mm_cmpgt_epi6d(a, b); }

template <> inline __m128i _mm_cmpgt<uint8_t>(__m128i a, __ml128i b)
{ return _mm_cmpgt_epi8(a, b); }

template <> inline __m128i _mm cmpgt<uintl6_t>(__m128i a, __m128i b)
{ return _mm_cmpgt_epil6(a, b); }

template <> inline __m128i _mm_cmpgt<uint32_t>(__m128i a, __m128i b)
{ return _mm_cmpgt_epi32(a, b); }

template <> inline __m128i _mm cmpgt<uint64_t>(__m128i a, __ml128i b)
{ return _mm_cmpgt_epi6d(a, b); }

template <> inline __m128i _mm_cmpgt<float>(__m128i a, __m128i b) {
return _mm_castps_sil128(

_mm_cmpgt_ps(-mm_castsil28_ps(a), _mm_castsil28_ps(b)));

}

template <> inline __m128i _mm cmpgt<double>(__m128i a, __m128i b) {
return _mm_castpd_sil28(

_mm_cmpgt_pd (_mm_castsil28_pd(a), -mm_castsil28_pd(b)));

52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

A.3. SSE/AVX Intrinsic Wrappers 103

template <typename T> __m128i _mm_cmplt(__m128i a, __m128i b)
{ return _mm_cmpgt<I>(b, a); }

#if (defined USEAVX) || (defined USE_AVX2)
template <typename T> __m256i _mm_cmpeq(__m256i a, __m256i b);
template <> inline __m256i _mm cmpeg<float>(__m256i a, __m256i b) {
return _mm256_castps_si256 (_mm256_cmp_ps (
_mm256_castsi256_ps(a), —mm256_castsi256_ps(b), _-CMP_EQOQ));
¥
template <> inline __m256i _mm_cmpeq<double>(__m256i a, __m256i b) {
return _mm256_castpd_si256 (_mm256_cmp_pd (
_mm256_castsi256_pd(a), _mm256_castsi256_pd(b), _-CMP_EQOQ));

}

template <typename T> __m256i _mm_cmpgt(__m256i a, __m256i b);
template <> inline __m256i _mm_cmpgt<float >(__m256i a, __m256i b) {

return _mm256_castps_si256 (_mm256_cmp_ps (
_mm256_castsi256_ps(a), —mm256_castsi256_ps(b), _-CMP_-GT_0Q));
}
template <> inline __m256i _mm_cmpgt<double>(__m256i a, __m256i b) {

return _mm256_castpd_si256 (_mm256_cmp_pd (
_mm256_castsi256_pd(a), _mm256_castsi256_pd(b), _-CMP_.GT_0OQ));

}

template <typename T> __m256i _mm_cmplt(__m256i a, __m256i b)
{ return _mm_cmpgt<T>(b, a); }

#ifdef USE_AVX2

template <> inline __m256i _mm cmpeq<int8_t>(__m256i a, __m256i b)
{ return _mm256_cmpeq_epi8(a, b); }

template <> inline __m256i _mm_cmpeq<intl6_t >(__m256i a, __m256i b)
{ return _mm256_cmpeq_epil6(a, b); }

template <> inline __m256i _mm cmpeq<int32_t>(__m256i a, __m256i b)
{ return _mm256_cmpeq_epi32(a, b); }

template <> inline __m256i _mm cmpeq<int64_t>(__m256i a, __m256i b)
{ return _mm?256_cmpeq_epi64(a, b); }

template <> inline __m256i _mm_cmpeq<uint8_t >(__m256i a, __m256i b)
{ return _mm256_cmpeq_epi8(a, b); }

template <> inline __m256i _mm cmpeq<uintl6_t>(__m256i a, __m256i b)
{ return _mm256_cmpeq_epil6(a, b); }

template <> inline __m256i _mm_cmpeq<uint32_t>(__m256i a, __m256i b)
{ return _mm256_cmpeq_epi32(a, b); }

template <> inline __m256i _mm cmpeq<uint64_t>(__m256i a, __m256i b)
{ return _mm256_cmpeq_epi64(a, b); }

template <> inline __m256i _mm_cmpgt<int8_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epi8(a, b); }

template <> inline __m256i _mm_cmpgt<intl6_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epil6(a, b); }

template <> inline __m256i _mm_cmpgt<int32_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epi32(a, b); }

template <> inline __m256i _mm_cmpgt<int64_t >(__m256i a, __m256i b)

105
106
107
108
109
110
111
112
113
114
115

0O Ui Wi+

LW W W WWWWWWwWwhhNoNDNDNDNDDNDNDNDN == = =
O OO TDHDUL R WNFEF O OOk WNNFE O OO Utk W~ OO

104 A. Helper Functions

{ return _mm256_cmpgt_epi64d(a, b); }

template <> inline __m256i _mm cmpgt<uint8_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epi8(a, b); }

template <> inline __m256i _mm cmpgt<uintl6_t>(__m256i a, __m256i b)
{ return _mm?256_cmpgt_epil6(a, b); }

template <> inline __m256i _mm_cmpgt<uint32_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epi32(a, b); }

template <> inline __m256i _mm cmpgt<uint64_t>(__m256i a, __m256i b)
{ return _mm256_cmpgt_epi64(a, b); }

Hendif

#endif

Listing A.8: Definition of adjustForSignedComparison

extern const uint32_t VEC16_INT8_MIN [4] alignas(16);

// =1 0280808080, 0xz80808080, 0xz80808080, 0xz80808080 };
extern const uint32_t VEC16_.INT16_MIN [4] alignas(16);

// = { 0280008000, 0x80008000, 0x80008000, 0x80008000 };
extern const uint32_t VEC16_INT32_MIN[4] alignas(16);

// =4 0280000000, 0x80000000, 0xz80000000, 0x80000000 };
extern const uint32_t VEC16_.INT64_MIN[4] alignas(16);

// = { 0280000000, 0x00000000, 0x80000000, 0x00000000 };

template <typename T> __m128i
adjustForSignedComparison (__m128i);
template <> inline __m128i
adjustForSignedComparison<int8_t >(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<int16_t >(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<int32_t >(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<int64_t >(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<float >(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<double>(__m128i a) { return a; }
template <> inline __m128i
adjustForSignedComparison<uint8_t >(__m128i a) {
return _mm_add_epi8(a, _mm_load_sil28(
reinterpret_cast<const __ml128ix>(VECI6_.INT8_ MIN))); }
template <> inline __m128i
adjustForSignedComparison<uintl6_t >(__m128i a) {
return _mm_add_epil6(a, _mm_load_si128(
reinterpret_cast<const __m128ix>(VECI6_INT16_-MIN))); }
template <> inline __m128i
adjustForSignedComparison<uint32_t >(__m128i a) {
return _mm_add_epi32(a, _mm_load_sil28(
reinterpret_cast<const __m128ix>(VECI6_INT32_-MIN))); }
template <> inline __m128i
adjustForSignedComparison<uint64_t >(__m128i a) {
return _mm_add_epi64(a, _mm_load_sil28(
reinterpret_cast<const __m128ix>(VEC16_INT64_MIN))); }

40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

A.3. SSE/AVX Intrinsic Wrappers

105

#if (defined USE_AVX) || (defined USE_AVX2)
extern const uint32_t VEC32_INT8_MIN [8] alignas(32);
// =1 0280808080, 0xz80808080, 0xz80808080, 0xz80808080,
// 0280808080, 0x80808080, 0x80808080, 0x80808080 };
extern const uint32_t VEC32_INT16_MIN [8] alignas(32);
// =4 0280008000, 0x80008000, 0x80008000, 0x80008000,
// 0280008000, 0x80008000, 0x80008000, 0x80008000 };
extern const uint32_t VEC32_INT32_MIN[8] alignas(32);
// = { 0280000000, 0x80000000, 0x80000000, 0x80000000,
// 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
extern const uint32_t VEC32_INT64_MIN[8] alignas(32);
// =4 0280000000, 000000000, 0x80000000, 0x00000000,
// 0280000000, 0x00000000, 0z80000000, 0x00000000 };

template <typename T> __m256i

adjustForSignedComparison (__m2561i);
template <> inline __m256i

adjustForSignedComparison<int8_t >(__m256i a) { return a; }
template <> inline __m256i

adjustForSignedComparison<int16_t >(__m256i a) { return a; }
template <> inline __m256i

adjustForSignedComparison<int32_t >(__m256i a) { return a; }
template <> inline __m256i

adjustForSignedComparison<int64_t >(__m256i a) { return a; }
template <> inline __m256i

adjustForSignedComparison<float >(__m256i a) { return a; }
template <> inline __m256i

adjustForSignedComparison<double>(__m256i a) { return a; }

#ifdef USE_AVX2
template <> inline __m256i
adjustForSignedComparison<uint8_t >(__m256i a) {
return _mm256_add_epi8(a, _mm256_load_si256 (
reinterpret_cast<const __m256ix>(VEC32_.INT8_MIN))); }
template <> inline __m256i
adjustForSignedComparison<uint16_t >(__m256i a) {
return _mm256_add_epil6(a, —mm256_load_si256 (
reinterpret_cast<const __m256ix>(VEC32_INT16_MIN))); }
template <> inline __m256i
adjustForSignedComparison<uint32_t >(__m256i a) {
return _mm256_add_epi32(a, _mm256_load_si256 (
reinterpret_cast<const __m256ix>(VEC32_INT32.MIN))); }
template <> inline __m256i
adjustForSignedComparison<uint64_t >(__m256i a) {
return _mm256_add_epi64 (a, —mm256_load_si256 (
reinterpret_cast<const __m256ix>(VEC32_INT64_MIN))); }
#Hendif
#endif

0O Ui Wi

R R O R R R R W W W W W W W W W WERNDNDDNDNDNDDNDNDLDN e e e e e e
N OO U W OO T UkR WNNRFE OO0 WNRFPE O OO0 Utk WwNh e~ O©o

106 A. Helper Functions

A.3.2 Mask Evaluation

The following functions are used to evaluate the result masks generated by SSE/AVX
comparisons.

Listing A.9: Mask Evaluation

template <typename T> int createMask (__m128i a)
{ return _mm_movemask_epi8(a); }

template <> inline int createMask<float>(__m128i a)
{ return _mm_movemask_ps(_mm_castsil28_ps(a)); }

template <> inline int createMask<double>(__m128i a)
{ return _mm movemask pd(_-mm_castsil28_pd(a)); }

template <typename VectorType, typename T> struct MASK { };

template <typename T> struct MASK<__m128i, T> {
static constexpr int NONE = 0;
static constexpr int ALL = OxFFFF;

H

template <> struct MASK<__m128i, float> {
static constexpr int NONE = 0;
static constexpr int ALL = 0xOF;

=

template <> struct MASK<__m128i, double> {
static constexpr int NONE = 0;
static constexpr int ALL = 0x03;

b

#if (defined USEAVX) ||

(defined USE_AVX2)

template <typename T> int createMask(__m256i a)

{ return _mm256_movemask_epi8(a); }
template <> inline int createMask<float >(__m256i a)

{ return _mm256_movemask_ps(_mm256_castsi256_ps(a)); }
template <> inline int createMask<double>(__m256i a)

{ return _mm256_movemask_pd(_mm256_castsi256_pd(a)); }

template <typename T> struct MASK<__m256i, T> {
static constexpr int NONE = 0;
static constexpr int ALL = OxFFFFFFFF;

b

template <> struct MASK<__m256i, float> {
static constexpr int NONE = 0;
static constexpr int ALL = 0xFF;

b

template <> struct MASK<__m256i, double> {
static constexpr int NONE = 0;
static constexpr int ALL = 0xOF;

b

#endif

48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

0O Ui Wi

[I I I G I e e e e e e e]
G W N O OO0 Ul WNRHFEOO©

A.3. SSE/AVX Intrinsic Wrappers 107

template <typename T> unsigned int countPositiveResults(int mask) {
return (unsigned int)(_mm_popcnt_u32((unsigned int)mask) / sizeof(T));

}

template <> inline unsigned int countPositiveResults<float >(int mask) {
return (unsigned int)(_mm_popcnt_u32((unsigned int)mask));

}

template <> inline unsigned int countPositiveResults<double>(int mask) {
return (unsigned int)(_mm_popcnt_u32 ((unsigned int)mask));

}

template <typename T> unsigned char getFirstPositiveResult (

unsigned long *i, int mask) {

if (bitScanForward (i, (unsigned int)mask)) {
x1 /= sizeof(T);
return 1;

}

else return 0;
¥
template <> inline unsigned char getFirstPositiveResult<float >(

unsigned long i, int mask)

{ return bitScanForward (i, (unsigned int)mask); }
template <> inline unsigned chargetFirstPositiveResult <double>(
unsigned long *i, int mask)

{ return bitScanForward (i, (unsigned int)mask); }

Listing A.10: Definition of _mm_testz and _mm_testc

template <typename T> int _mm_testz(__m128i a, __ml128i b)
{ return _mm_testz_sil28(a, b); }
#ifdef USE_VEX

template <> inline int _mm_testz<float>(__m128i a, __m128i b)
{ return _mm_testz_ps(_-mm_castsil28_ps(a), _mm_castsil28_ps(b)); }
template <> inline int _mm_testz<double>(__m128i a, __m128i b)

{ return _mm_testz_pd(_mm_castsil28_pd(a), _mm_castsil28_pd(b)); }
Hendif
template <typename T> int _mm_testc(_-_m128i a, __m128i b)

{ return _mm_testc_sil28(a, b); }
#ifdef USE_VEX

template <> inline int _mm_testc<float>(__m128i a, __m128i b)
{ return _mm_testc_ps(_mm_castsil28_ps(a), _mm_castsil28_ps(b)); }
template <> inline int _mm_testc<double>(__m128i a, __m128i b)

{ return _mm_testc_pd(_mm_castsil28_pd(a), _mm_castsil28_pd(b)); }
#endif

#if (defined USEAVX) || (defined USE_AVX2)
template <typename T> int _mm_testz(__m256i a, __m256i b)
{ return _mm256_testz_si256 (a, b); }

template <> inline int _mm_testz<float>(__m256i a, __m256i b) {

return _mm256_testz_ps(_mm256_castsi256_ps(a), -mm256_castsi256_ps(b));
}
template <> inline int _mm_testz<double>(__m256i a, __m256i b) {

return _mm256_testz_pd (_mm256_castsi256_pd(a), -mm256_castsi256_pd(b));

26
27
28
29
30
31
32
33
34
35

00 O Uik W N

W W WWWNNNNDNNDNNDNDDLN - = = =
WP O OWO DU R WNDRFE O OO Ok Wwhh — OO

108 A. Helper Functions

}

template <typename T> int _mm_testc(__m256i a, __m256i b)

{ return _mm256_testc_si256(a, b); }
template <> inline int _mm_testc<float>(__m256i a, __m256i b) {

return _mm256_testc_ps(_mm256_castsi256_ps(a), —mm256_castsi256_ps(b));
}

template <> inline int _mm_testc<double>(__m256i a, __m256i b) {
return _mm256_testc_pd (_mm256_castsi256_pd(a), —mm256_castsi256_pd(b));
}

#endif

A.3.3 SSE/AVX Arithmetic

The vectorized k-ary search performs index computations with SSE/AVX. The following
functions provide addition, subtraction and multiplication.

Listing A.11: SSE/AVX Arithmetic

template <typename T> __m128i _mm_add_epi(__m128i a, __m128i b);

template <> inline __m128i _mm_add_epi<int8_t>(__m128i a, __m128i b)
{ return _mm_add_epi8(a, b); }

template <> inline __m128i _mm_add_epi<intl6_t >(__m128i a, __m128i b)
{ return _mm_add_epil6(a, b); }

template <> inline __m128i _mm_add_epi<int32_t>(__m128i a, __ml128i b)
{ return _mm_add_epi32(a, b); }

template <> inline __m128i _mm_add_epi<int64_t >(__m128i a, __m128i b)
{ return _mm_add_epi64(a, b); }

template <typename T> __m128i _mm_sub_epi(__m128i a, __m128i b);

template <> inline __m128i _mm_sub_epi<int8_t>(__m128i a, __ml28i b)
{ return _mm_sub_epi8(a, b); }

template <> inline __m128i _mm_sub_epi<int16_t >(__m128i a, __m128i b)
{ return _mm_sub_epil6(a, b); }

template <> inline __m128i _mm_sub_epi<int32_t>(__m128i a, __ml128i b)
{ return _mm_sub_epi32(a, b); }

template <> inline __m128i _mm_sub_epi<int64_t>(__m128i a, __m128i b)
{ return _mm_sub_epi64(a, b); }

template <typename T> __m128i _mm_mullo_epi(__m128i a, __m128i b);

template <> inline __m128i _mm_mullo_epi<intl6_t>(__m128i a, __m128i b)
{ return _mm_mullo_epil6(a, b); }

template <> inline __m128i _mm_mullo_epi<int32_t >(__m128i a, __m128i b)
{ return _mm_mullo_epi32(a, b); }

template <> inline __m128i _mm_mullo_epi<int64_t >(__m128i a, __m128i b)
{ return _mm_mul_epi32(a, b); }

#ifdef USE_AVX2

template <typename T> __m256i _mm_add_epi(--m256i a, __m256i b);

template <> inline __m256i _mm_add_epi<int8_t >(__m256i a, __m256i b)
{ return _mm256_add_epi8(a, b); }

template <> inline __m256i _mm_add_epi<intl6_t>(__m256i a, __m256i b)
{ return _mm256_add_epil6(a, b); }

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57

0O Uik Wi

DO R = = b= e e e e e e
= O O© 00 O Utk WNH— OO

A.3. SSE/AVX Intrinsic Wrappers

109

template <> inline __m256i _mm_add_epi<int32_t>(__m256i a, __m256i b)
{ return _mm256_add_epi32(a, b); }

template <> inline __m256i _mm_add_epi<int64_t >(__m256i a, __m256i b)
{ return _mm256_add_epi64(a, b); }

template <typename T> __m256i _mm_sub_epi(__m256i a, __m256i b);

template <> inline __m256i _mm_sub_epi<int8_t>(__m256i a, __m256i b)
{ return _mm?256_sub_epi8(a, b); }

template <> inline __m256i _mm_sub_epi<intl6_t>(__m256i a, __m256i b)
{ return _mm256_sub_epil6(a, b); }

template <> inline __m256i _mm_sub_epi<int32_t >(__m256i a, __m256i b)
{ return _mm256_sub_epi32(a, b); }

template <> inline __m256i _mm_sub_epi<int64_t>(__m256i a, __m256i b)
{ return _mm?256_sub_epi64(a, b); }

template <typename T> __m256i _mm_mullo_epi(_-_m256i a, __m256i b);

template <> inline __m256i _mm_mullo_epi<intl6_t >(__m256i a, __m256i b)
{ return _mm256_mullo_epil6(a, b); }
template <> inline __m256i _mm_mullo_epi<int32_t >(__m256i a, __m256i b)

{ return _mm256_mullo_epi32(a, b); }

template <> inline __m256i _mm_mullo_epi<int64_t >(__m256i a, __m256i b)

{ return _mm256_mul_epi32(a, b); }
#endif

A.3.4 AVX2 Gather Loads

AVX2 supports loads from non-continuous memory locations. The vectorized k-ary

search can use this to speed up loads.

Listing A.12: AVX2 gather

#ifdef USE_AVX2
template <typename KeyVector, typename IndexVector, typename T>
KeyVector _mm_gather (const T xbase_addr, IndexVector vindex);

template <> inline __m256i _mm_gather (
const int32_t xbase_addr, __m256i vindex) {
return _mm256_i32gather_epi32(base_addr, vindex, 4);
}
template <> inline __m256i _mm_gather(
const uint32_t xbase_addr, __m256i vindex) {
return _mm256_i32gather_epi32 (
reinterpret_cast<const int32_tx>(base_addr), vindex, 4);
}
template <> inline __m256i _mm_gather (
const int64_t xbase_addr, __m128i vindex) {
return _mm256_i32gather_epi64 (
reinterpret_cast<const long longx>(base_addr), vindex, 8);
}
template <> inline __m256i _mm_gather (
const uint64_t xbase_addr, __m128i vindex) {
return _mm256_i32gather_epi64 (

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60

T W N~

110 A. Helper Functions

reinterpret_cast<const long long*>(base_addr), vindex, 8);

¥
template <> inline __m256i _mm_gather (
const float xbase_addr, __m256i vindex) {
return _mm256_castps_si256 (_mm256_i32gather_ps(base_addr, vindex, 4));
¥
template <> inline __m256i _mm_gather (
const double xbase_addr, __m128i vindex) {

return _mm256_castpd_si256 (_mm256_i32gather_pd (base_addr, vindex, 8));

}

template <> inline __m128i _mm_gather(
const int32_t xbase_addr, __m256i vindex) {
return _mm256_i64gather_epi32(base_addr, vindex, 4);
}
template <> inline __m128i _mm_gather(
const uint32_t xbase_addr, __m256i vindex) {
return _mm256_i64gather_epi32 (
reinterpret_cast<const int32_t*x>(base_addr), vindex, 4);
}
template <> inline __m256i _mm_gather (
const int64_t xbase_addr, __m256i vindex) {
return _mm256_i64gather_epi64 (
reinterpret_cast<const long longx>(base_addr), vindex, 8);
}
template <> inline __m256i _mm_gather (
const uint64_t xbase_addr, __m256i vindex) {
return _mm256_i64gather_epi64 (
reinterpret_cast<const long longx>(base_addr), vindex, 8);
}
template <> inline __m128i _mm_gather(
const float xbase_addr, __m256i vindex) {
return _mm_castps_sil28(_mm256_i64gather_ps(base_addr, vindex, 4));
}
template <> inline __m256i _mm_gather (
const double xbase_addr, __m256i vindex) {
return _mm256_castpd_si256 (_mm256_i64gather_pd (base_addr, vindex, 8));

}
Hendif

A.3.5 Constants

The generateLaneFactors functions load constants needed by the vectorized k-ary
search.

Listing A.13: Definition of generateLaneFactors

template <typename IndexVector, typename IndexType>
IndexVector generateLaneFactors();

template <> inline __m128i generateLaneFactors<__m128i, intl6_t >()
{ return _mm_set_epil6(8, 7, 6, 5, 4, 3, 2, 1); }

template <> inline __m128i generateLaneFactors<__m128i, int32_t >()

(O BN R @)

11
12
13
14
15
16
17
18

A.3. SSE/AVX Intrinsic Wrappers 111

{ return _mm_set_epi32(4, 3, 2, 1); }
template <> inline __m128i generateLaneFactors<__m128i, int64_t >()
{ return _mm_set_epi64x (2, 1); }
#ifdef USEAVX2
template <> inline __m256i generateLaneFactors<__m256i, intl16_t>() {
return _mm256_set_epil6 (16, 15, 14, 13, 12, 11, 10, 9,
8, 7,6, 5, 4, 3, 2, 1);
¥
template <> inline __m256i generateLaneFactors<__m256i, int32_t >()
{ return _mm256_set_epi32(8, 7, 6, 5, 4, 3, 2, 1); }
template <> inline __m256i generateLaneFactors<__m256i, int64_t >()
{ return _mm256_set_epi64x (4, 3, 2, 1); }
#endif

112 A. Helper Functions

Bibliography

[BBHS14] David Broneske, Sebastian Brefl, Max Heimel, and Gunter Saake. To-

[BBS15]

[BFJ02]

[BKSS17]

[Bot62]

[Canl7]

[CDY7]

[Dufg8]

[Giel6]

ward hardware-sensitive database operations. In Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT), pages 229
234, 2014. (cited on Page 2)

David Broneske, Sebastian Bref}; and Gunter Saake. Database scan variants
on modern CPUs: A performance study. In In-Memory Data Management
and Analytics (IMDM), pages 97-111. Springer, 2015. (cited on Page 7)

Gerth Stelting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious
search trees via binary trees of small height. In Proceedings of the Symposium
on Discrete Algorithms (SODA), pages 39-48. Society for Industrial and
Applied Mathematics (STAM), 2002. (cited on Page 92)

David Broneske, Veit Koppen, Gunter Saake, and Martin Schéler. Accelerat-
ing multi-column selection predicates in main-memory—the elf approach. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 647-658. IEEE, 2017. (cited on Page 95)

Hermann Bottenbruch. Structure and use of ALGOL 60. Journal of the
ACM (JACM), 9:161-221, 1962. (cited on Page 14)

Fabio Cannizzo. Fast and vectorizable alternative to binary search in O(1)
applicable to a wide domain of sorted arrays of floating point numbers. https:
//arxiv.org/abs/1506.08620V2, March 2017. (cited on Page 91 and 92)

Michel Cekleov and Michel Dubois. Virtual-address caches part 1: problems
and solutions in uniprocessors. volume 17, pages 64-71. IEEE, 1997. (cited

on Page 5)

Tom Duff. Website, August 1988. Available online at http://www.lysator.
liu.se/c/duffs-device.html; visited on May 9th, 2017. (cited on Page 29)

Fabian Giesen. SSE: mind the gap! Website, April 2016. Available online
at https://fgiesen.wordpress.com/2016/04/03 /sse-mind-the-gap/; visited on
April 18th, 2017. (cited on Page 9)

https://arxiv.org/abs/1506.08620v2
https://arxiv.org/abs/1506.08620v2
http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html
https://fgiesen.wordpress.com/2016/04/03/sse-mind-the-gap/

114

Bibliography

[GRT7]

[GRGS0]

[HP11]

[Int16a]

[Int16b]

[JBB*10]

[KCS*10]

[Khul2]

[Kieb3]

[KM17]

[Knu9g]

Gaston H. Gonnet and Lawrence D. Rogers. The interpolation-sequential
search algorithm. Information Processing Letters, 6(4):136-139, 1977. (cited

on Page 95)

Gaston H. Gonnet, Lawrance D. Rogers, and J. Alan George. An algorithmic
and complexity analysis of interpolation search. Acta Informatica, 13(1):39-
52, 1980. (cited on Page 92)

John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, fifth edition, 2011. (cited on Page 4)

Intel 64 and IA-32 Architectures Optimization Reference Manual, November
2016. (cited on Page 3, 4, 10, and 82)

Intel 64 and TA-32 Architectures Software Developer’s Manual, December
2016. (cited on Page 7, 9, 56, and 59)

Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely Jr., and Joel
Emer. Achieving non-inclusive cache performance with inclusive caches:
Temporal locality aware (TLA) cache management policies. In Proceedings
of the International Symposium on Microarchitecture (MICRO), pages 151—
162. IEEE, 2010. (cited on Page 4)

Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep
Dubey. FAST: Fast architecture sensitive tree search on modern CPUs and

GPUs. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 339-350. ACM, 2010. (cited on Page 92)

Paul-Virak Khuong. Binary search is a pathological case for caches. Web-
site, July 2012. Available online at https://www.pvk.ca/Blog/2012/07/30/
binary-search-is-a-pathological-case-for-caches/; visited on June 30h, 2017.

(cited on Page 91)

Jack Kiefer. Sequential minmax search for a maximum. Proceedings of the
American Mathematical Society (AMS), 4(3):502-506, 1953. (cited on Page 16)

Paul-Virak Khuong and Pat Morin. Array layouts for comparison-based
searching. Journal of Experimental Algorithms (JEA), 22(1):1.3:1-1.3:39,
2017. (cited on Page 91 and 92)

Donald Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, second edition, 1998. (cited on Page 14, 15, 16, 17,
and 91)

https://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/
https://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Bibliography 115

[Les83]

[Pri71]

[Pulll]

[SGLOY]

9985]

[SSH11]

[Tan05]

[ZAF07]

[ZDJ04]

[ZF15]

[ZHF14]

[ZR02]

R. Lesuisse. Some lessons drawn from the history of the binary search al-
gorithm. The Computer Journal, 26(2):154-163, 1983. (cited on Page 15)

C.E. Price. Table lookup techniques. ACM Computer Surveys (CSUR),
3(2):49-64, June 1971. (cited on Page 92)

Matt Pulver. Binary search revisited. Website, September 2011. Available
online at http://eigenjoy.com/2011/09/09/binary-search-revisited/; visited
on June 30h, 2017. (cited on Page 91)

Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. k-ary search on
modern processors. In Proceedings of the International Workshop on Data
Management on New Hardware (DAMON), pages 52-60. ACM, 2009. (cited

on Page 10, 15, 16, 18, 20, 21, 23, and 92)

Nicola Santoro and Jeffrey B. Sidney. Interpolation-binary search. Informa-
tion Processing Letters, 20:179-181, 1985. (cited on Page 95)

Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken: Imple-
mentierungstechniken. MITP, third edition, 2011. (cited on Page 4)

Andrew S. Tanenbaum. Computerarchitektur. Strukturen - Konzepte -
Grundlagen. Pearson Studium, fifth edition, 2005. (cited on Page 7)

Mohamed Zahran, Kursad Albayraktaroglu, and Manoj Franklin. Non-
inclusion property in multi-level caches revisited. volume 14, page 99. ISCA,
2007. (cited on Page 4)

Ying Zehng, Brian T. Davis, and Metthew Jordan. Performance evaluation
of exclusive cache hierarchies. In Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 89-96.
IEEE, 2004. (cited on Page 4)

Steffen Zeuch and Johann-Christoph Freytag. Selection on modern CPUs. In
In-Memory Data Management and Analytics (IMDM), pages 5:1-5:8. ACM,
2015. (cited on Page 91)

Steffen Zeuch, Frank Huber, and Johann-Christoph Freytag. Adapting tree
structures for processing with SIMD instructions. In Proceedings of the In-
ternational Conference on Extending Database Technology (EDBT). Open-
Proceedings.org, 2014. (cited on Page 10)

Jingren Zhou and Kenneth A. Ross. Implementing database operations using
SIMD instructions. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 145-156. ACM, 2002. (cited on Page 15)

http://eigenjoy.com/2011/09/09/binary-search-revisited/

116 Bibliography

Hiermit erklére ich, dass ich die vorliegende Arbeit selbstdndig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 26. Juli 2017

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Processor Architecture
	2.1.1 Memory Hierarchy and Caches
	2.1.2 Branch Prediction and Predication
	2.1.3 SIMD Instruction Sets

	2.2 Search Algorithms
	2.2.1 Sequential Search
	2.2.2 Dichotomic Search
	2.2.2.1 Binary Search
	2.2.2.2 Fibonaccian Search

	2.2.3 k-ary Search
	2.2.4 Linearized k-ary Search Trees
	2.2.4.1 Searching in Linearized Trees
	2.2.4.2 Range Scans

	3 Sequential Search
	3.1 Implementation
	3.1.1 Scalar Sequential Search
	3.1.2 Vectorized Sequential Search

	3.2 Optimizations
	3.2.1 Branch Elimination
	3.2.2 Loop Unrolling

	3.3 Evaluation
	3.3.1 Evaluation Environment
	3.3.2 Branch Elimination
	3.3.3 Loop Unrolling
	3.3.4 Vectorization

	3.4 Summary

	4 Binary Search
	4.1 Implementation
	4.1.1 Scalar Binary Search
	4.1.2 Scalar Uniform Binary Search
	4.1.3 Vectorized Binary Search
	4.1.4 Vectorized Uniform Binary Search
	4.1.5 Offset Binary Search
	4.1.6 Fibonaccian Search

	4.2 Optimizations
	4.2.1 Branch Elimination
	4.2.2 Prefetching
	4.2.3 Loop Unrolling

	4.3 Evaluation
	4.3.1 Evaluation Setup
	4.3.2 Branch Elimination
	4.3.3 Prefetching
	4.3.4 Loop Unrolling
	4.3.5 Vectorization
	4.3.6 Exact Match Search
	4.3.7 Offset Binary and Fibonaccian Search
	4.3.8 Cache Utilization

	4.4 Summary

	5 k-ary Search
	5.1 Implementation
	5.1.1 Scalar k-ary Search
	5.1.2 Scalar Uniform k-ary Search
	5.1.3 Vectorized k-ary Search
	5.1.4 Linearized k-ary Search Trees

	5.2 Optimizations
	5.3 Evaluation
	5.3.1 Scalar k-ary Search
	5.3.2 Scalar Uniform k-ary Search
	5.3.3 Branch Elimination
	5.3.4 Vectorized k-ary Search
	5.3.5 Exact Match
	5.3.6 Linearized k-ary Search Trees

	5.4 Summary

	6 Comparison of Sequential, Binary and k-ary Searching
	7 Related Work
	8 Conclusion and Future Work
	A Helper Functions
	A.1 Bit Scans
	A.2 Mathematical Functions
	A.3 SSE/AVX Intrinsic Wrappers
	A.3.1 SSE/AVX Comparisons
	A.3.2 Mask Evaluation
	A.3.3 SSE/AVX Arithmetic
	A.3.4 AVX2 Gather Loads
	A.3.5 Constants

	Bibliography

