University of Magdeburg

School of Computer Science

OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

Databases
and
Software
Engineering

Master’s Thesis

Analysis of Hashing Techniques for Efficient Group-Based
Aggregation

Author:

Balasubramanian Gurumurthy

September 19, 2017
Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
M.Sc. David Broneske

Department of Computer Science

Prof. Dr.-Ing. Thilo Pionteck

Department of Electrical Engineering and Information Technology

Gurumurthy, Balasubramanian:
Analysis of Hashing Techniques for Efficient Group-Based Aggregation
Master’s Thesis, University of Magdeburg, 2017.

Abstract

Hash-based aggregation strategy is used for performing grouped aggregation queries.
However, this strategy has high processing time for result computation. In this work,
we explore the use of code optimization strategies to reduce the execution time. we
introduce a way to perform insertion along with probing in the underlying hashing
techniques. We also exploit the SIMD capability of modern hardwares to speed up
the hashing technique operations. In our work, we evaluate the performance of scalar
and vectorized execution of hashing-based aggregation with cuckoo hashing and linear
probing as underlying hashing techniques. We use different dataset distributions for our
evaluation. We also evaluate the impact of group size on runtime for computing grouped
aggregation. Finally, we provide our inferences on the evaluation results obtained.

v

Acknowledgement

First, I would like to thank Prof. Gunter Saake for providing me this opportunity
of writing this thesis under his supervision. I extend my deepest gratitude to my
advisor David Broneske, whose door were always open whenever I ran into trouble. His
guidances and expertise steered me in the right direction. I thank him once again for
his patience and constant availability during the whole tenure of this thesis.

Further, I would like to thank my parents, my brother, my family for their continuous
support and trust on me during my year of studies.

I would also like to take this opportunity to thank my friends and colleagues for their
continuous encouragement. Special mention to my TCS and Deutsche Telekom team-
mates, who were ready to help me whenever I needed help.

Finally, special thanks to all my Magdeburg friends who were always there for me
and provided me constant care. I would also like to thank my roommates: Sreeram
Jagannathan and Nivin Joseph for their tolerance of my shenanigans. Finally, I thank
everyone who guided me in writing this paper. This work would not have been complete
without you all . Thank you.

vii

To my grandparents, for providing a colorful childhood

VIiI

Contents

List of Figures xii
List of Algorithms xiii
List of Code Listings XV
1 Introduction 1
2 Background 5
2.1 Query Compiler 5
2.1.1 Parser 6

2.1.1.1 Relational Algebra 6

2.1.1.2 Relational Algebra Tree 9

2.1.2 Optimizer 9

2.1.2.1 Logical Optimization 10

2.1.2.2 Physical Optimization 10

2.1.2.3 Cost Based Estimation 11

2.2 Query Executor 13
221 TupleataTime., 13

2.2.2 Operatorata Time 13

2.2.3 Vectorized Processing [ZB12] 14

2.3 Pipeline Processing o o 15
2.3.1 Pipeline Breakers oL 15

2.4 Group Based Aggregation 16
2.4.1 Hash Based Aggregation 17

2.5 Hashing Techniqueso o 17
2.5.1 Chained Hashing 18

2.5.2 Linear Probing o 20

2.5.3 Cuckoo Hashing 21

2.6 Single Instruction Multiple Data (SIMD) 23
2.6.1 Arithmetic Operation 24

2.6.2 Bit Manipulationo oo 24

2.6.3 Comparison Operation 25

3 Scalar and Vectorized Hash-Based Aggregation 27

X Contents
3.1 Cuckoo Hashing 27
3.1.1 Table Structure 27

3.1.2 Scalar Probing 28

3.1.3 Scalar Insertion 29

3.1.3.1 Imsertion Cycle 29

3.1.4 SIMD Probing 31

3.1.5 SIMD Insertion 32

3.2 Linear Probing 32
3.2.1 Table Structure 32

3.2.2 Primary Grouping 33

3.2.3 Scalar Probing oo 33

3.2.4 Scalar Insert 33

3.2.5 SIMD Probing 34

3.2.6 SIMD Insert 34

4 Vectorized Hash Based Aggregation - Implementation 37
4.1 Cuckoo Hashing 37
4.1.1 Hashing Function 38

4.1.2 SIMD Probing 39

4.1.3 SIMD Insertion 40

4.2 Linear Probing 41
4.2.1 SIMD Probing 41

5 Runtime Analysis of the Hashing Techniques 43
5.1 Ewvaluation Setup 43
5.1.1 Dataset Distributions 43

5.1.2 Evaluation Environment 44

5.2 Cuckoo Hashing Evaluation 44
5.2.1 Imsertion 44

5.2.2 Probing 46

5.3 Linear Probing Evaluation 47
5.4 Comparison of Probing in Cuckoo Hashing and Linear Probing 48
5.5 TImpact of Group Size 49
5.6 Evaluation Result, 50

6 Related Work 51
7 Conclusion 53
8 Future Work 55

Bibliography 57

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

0.1

Query compiler 6
Relational algebra tree oL 9
Tuple-at-a-time processing 13
Operator-at-a-time processing 14
Vectorized processing modelo 14
Query pipeline boundaries L 16
Chained hashing oo 18
Chained hashing - insertion 19
Linear probing 20
Linear probing- insertion L. 21
Cuckoo hashing oo 22
Cuckoo hashing- insertion 23
Table structure - cuckoo hashing based on [Ros07] 28
Cuckoo hashing - probing 0oL 29
Cuckoo hashing - insertion cycle example 30
Aggregation over SIMD cuckoo probing [Ros07] 31
Linear probing - table structure 32
Linear probing - primary clusters 33
Linear probing - insertion example 34
Linear probing - SIMD probing with count aggregation 35
Cuckoo hashing insertion - dense unique random values 45

xii List of Figures
5.2 Cuckoo hashing insertion - sequential values 45
5.3 Cuckoo hashing insertion - uniform random values 46
5.4 Cuckoo hashing probe - total runtime 46
5.5 Cuckoo hashing probe - SIMD v scalar processing time 47
5.7 Linear probe - SIMD v scalar processing time 47
5.6 Linear probe - total runtime 000 48
5.8 Probe time for all techniques 49
5.9 Impact of group size Lo 49

5.10 Group size with combined hashing techniques 50

List of Algorithms

N O Ot e W N

oo

Hash based aggregation
Chained hashing - insert L.
Chained hashing - probe oo
Linear probing - insert L o
Linear probing - probe
Cuckoo hashing - insert L.

Cuckoo hashing - probe oL

Cuckoo hashing - scalar probe

Cuckoo hashing - scalar insert

List of Code Listings

4.1
4.2
4.3
4.4

4.6

Data definition 37
Bucket and table structure oo 38
SIMD hashing function 000 38
SIMD probing 39
SIMD insertion 40

Linear probing - SIMD probing 41

xvi List of Code Listings

1. Introduction

Faster query processing is an important part of database management system (DBMS).
However, faster execution of the query depends on the type of query being executed and
various other factors [ADHW99]. For instance, grouped aggregation queries are com-
puted using a two-pass processing [GMUWO0]. This process consumes a lot of CPU
time. However, this time delay can be improved using code optimization strategies. It
is shown that, code optimization strategies can be used to speed-up selection query pro-
cessing [BMS17]. Similar strategies can be used optimize the group-aggregate queries.
In this thesis, we explore the different code optimization strategies that can be applied
to optimize execution of grouped aggregation queries.

Grouped aggregation in query processing

In general, a given query is passed through various translation and optimization steps
and then it is converted into executable code. These operations are fragmented into
pipelines with multiple operations within each pipeline for execution. These pipelines
are executed using a stream-based processing model [DK97]. This model executes the
operations inside a single pipeline in one step forwarding intermediate results from the
operation to another without storing them in memory. This avoids the memory access
for intermediate operations and the data flow between operators reduces processing
time. However, the flow in pipeline is obstructed by functions known as pipeline break-
ers [Neull]. These functions materialize their results only after all intermediate data
are collected. This obstructs the data flow in the pipeline. Typical example for pipeline
breaker is aggregate function where the resultant aggregate is not forwarded until all
the intermediate results are processed. This stops the flow of data in pipeline thereby
creates stalls . These stalls due to aggregate functions decreases the efficiency of query
processing and increases execution time [Neull].

1Stall - Delay in the data flow

2 1. Introduction

Resolving stall of data while aggregation improves the efficiency of grouped aggrega-
tion queries. Furthermore, the number of stalls in process pipeline increases with the
amount aggregate functions used in a query. Hence, the complexity of a query increases
with number of aggregates in it. Moreover, aggregate functions are often coupled with
grouping of data when using a GROUP BY clause in a query. This subjects the interme-
diate results in the data flow to be grouped based on the given criteria, and aggregates
are found for these groups. Grouping creates further stalls in the data flow. Thus,
grouped aggregation queries are delayed due to multiple stalls created due to grouping
and aggregation of data. This increases the overall query processing overhead and re-
duces efficiency. These stalls can be reduced by optimizing the executable code used to
materialize the results. Thus, optimizing the executable code impact the efficiency of
performing grouped aggregation queries.

Hash limitation

From the technique given in [SZ96], aggregation is performed along with insertion of
value into their respective group. Since, aggregation is done along with grouping the
stall due to aggregation is replaced by stall due to grouping. Grouping in grouped
aggregation queries is performed using hashing techniques. A hashing technique has
one or more hash table with a specific number of buckets. Each bucket may have
multiple slots in which a value is stored. A value to be inserted is hashed to get a
key. This key points to the bucket in which the value hs to be stored. There can be
multiple slots within the bucket. In some cases two data items are given the same slot
in hash table. This is called collision. These collisions are responsible for stalls due
to grouping. Collision forces the hashing techniques to find an alternative position to
store the collided value before processing the next data item. This is done by a collision
resolution function. This function takes considerable time in finding the right position
to store value in the hash table [MC86] stopping the data flow until the current data
item is stored in its slot.

Moreover, collisions also impact probing for a search value in the hash tables. In an
ideal hashing technique, all the values are stored in their slot and are directly accessed.
But, collisions displace the value to another slot. This leads to searching of value in the
hash table increasing processing time. Hence, faster execution of grouped aggregation
queries depends on efficiency of underlying hashing techniques and their collision reso-
lution mechanism. Thus, the stalls created by grouping can be reduced by optimizing
execution of the underlying hashing technique.

Collision resolution

Hashing techniques are differentiated based on the collision resolution mechanism used.
In chained hashing technique, overflow values® are stored in a linked list in the same
bucket. In the worst case, probing may lead to linear search of all stored values in sin-
gle bucket increasing processing time. Open addressing techniques are another way to

2overflow value - value whose slot is already occupied

resolve collisions. In these methods the overflow values are inserted in alternative loca-
tions of the same hash table. These techniques promise constant size of values to search
as the hash table size is constant. Linear probing [Lit80] and cuckoo hashing [Dil14] are
part of the open addressing techniques. It is shown that these methods are efficient in
insertion and probing of write once read many(WORM) workloads. As analytical data
are mostly read only [RAD15], we examine in this thesis the impact of using code opti-
mization strategies to these two hashing techniques for processing grouped aggregation
queries: linear probing and cuckoo hashing.

Linear probing technique stores values in a list. If the slot pointed to by the key of
a value is occupied, the value is stored in the next free location available in the same
hash table. Now, probe for this value is then done by performing linear search from the
slot previously pointed to by the key until the search value is found. In case an empty
slot is encountered during linear search, the value is not found in the table. Thus, the
stall in this technique is due to performing linear search while searching an empty slot
during insertion and while probing the search value. In case of cuckoo hashing, the
values are stored in multiple hash tables. If the slot pointed to by the key of insert
value is occupied in the first table, the value already present in the slot is swapped with
the insert value. This swapped value is then hashed to get the key that points to a slot
in the next table. This guarantees constant probing time for cuckoo hashing. However,
probing of a search value is done in sequence for all hash table slots. In worst case, the
slots are probed until the last hash table. Hence, this method also has an overhead of
searching linearly for the search value. Thus, these methods resolve collision by adding
overhead for probing a value [Ros07]. We investigate in the thesis, the use of code
optimizations to improve these probing limitations available in the hashing techniques.
We also argue, that improving execution of these techniques can speed-up the process
of grouping, further leading to faster execution of the grouped aggregation query itself.

Contribution of the thesis

e In the thesis, we investigate the code optimization Single Instruction Multiple
Data (SIMD) acceleration on the above mentioned hashing techniques. SIMD
enables data parallelism by exploiting machine hardware. This feature can be used
to perform probing in cuckoo hashing and linear probing faster [JA17]. In [Ros07],
the author presents the way to use SIMD in cuckoo hashing to perform probing.
Similarly, SIMD can be adapted to execute grouping along with aggregation in
the technique. Similar method can be used to perform aggregation using SIMD
on linear probing as well.

e In the thesis, we also present a way to reuse probing codes for insertion of a
value in the hashing techniques. This reduces the two step process of hashing
insertion and probing to one linear process. We introduce the technique called
insertion while probing where the insertion in the hashing technique is combined
with probing. During insertion of a value, the value is hashed and the slot pointed
by the key is compared for empty space. If the slot is empty, the value is inserted.

4 1. Introduction

Similarly while probing, the search value is hashed and the key pointed slot is
probed for the search value. Thus in both the insertion and probing functions
comparison of values is performed. Hence, these two can be combined into a
single process. Insertion is performed if the search value is not available in the
hash table while probing for the value. We detail the code strategy for the above
mentioned hash techniques in this thesis.

e As mentioned earlier, aggregation can be performed along with insertion [SZ96].
There are few aggregate functions such as count, min, max etc., that can be
computed on the-fly [GMUWO0]. Each value inside the hash tables are stored
as value-payload pairs with the group identifier as value and its corresponding
aggregate as payload. This also removes the overhead of storing multiple copies
of same value in the bucket. We introduce in the thesis, the way to incorporate
direct aggregation along with probing by insertion technique for both the hashing
techniques.

Overall, in this thesis we examine the efficiency and reduction of stall in pipeline by
applying code optimization techniques for hashing techniques. We investigate usage of
SIMD to reduce the data stall created while probing in hashing mechanisms. We also
explore the possibility of using code optimization strategies such as, direct aggregation
and insertion using probing to speed-up grouped aggregation. Finally, we compare and
present results on efficiency of these optimization strategies applied on both hashing
techniques.

Structure of the Thesis

In Chapter 2, we discuss the basics of query compilation and later explains the usage
of hashing techniques to perform DBMS operations. We also detail the functional
details of the hashing techniques used. The chapter also provides the necessary SIMD
functions used. In Chapter 3, we explain the conceptual details of adapting the hashing
techniques for aggregate-grouping. We also detail on the use of SIMD for accelerating
the execution. We present the implementation details for incorporating SIMD codes
into the hashing techniques in Chapter 4. The comparison results of execution of scalar
and SIMD accelerated hashing are presented in Chapter 5. We provide details of related
work in Chapter 6 and our conclusion in Chapter 7. Finally, we detail the future work
that can be done in Chapter 8.

2. Background

The query given by an user is processed by various components to finally produce the
results. These components are broadly divided into two systems known as the query
compiler and the query executor [GMUWO0]. We discuss in this chapter, the of pro-
cessing group-aggregation queries in these two systems. We also provide an overview of
the hashing techniques used to perform grouping and the ways to adapt them for aggre-
gation. The fundamental concepts discussed in this chapter are referred from [DK97].

The chapter is divided as follows. We detail the two systems mentioned above in
Section 2.1 and Section 2.2. These strategies for executing query are introduced in Sec-
tion 2.3. In Section 2.4, we explore the group-aggregation query processing in general.
The hashing techniques used for grouping data is discussed in Section 2.5. Finally,
in Section 2.6, we explain the necessary SIMD functions used to optimize the hashing
techniques.

2.1 Query Compiler

The query compiler consumes a high-level user query and provides the executable codes
necessary to perform the query. It has two main components, the parser and the
optimizer. The parser converts the given query into an internal format and the optimizer
produces an efficient execution plan for the given query.

Figure 2.1 shows the general processing steps of the query compiler. The detailed
description of the different components are given below,

6 2. Background

Query

Logical Optimization

h

h 4

Cost Based
Optimization

| Physical Optimization | Optimizer

Execution Plan

Figure 2.1: Query compiler

2.1.1 Parser

The parser reads the query and checks for correctness of syntax and also for the equality
of relation and column names. This evaluated query is then converted into an internal
representation called the parser tree [GMUWOO0]. This tree is a combination of relational
algebra operators. The details of these operators are discussed below.

2.1.1.1 Relational Algebra

Relational algebra is used to denote the various operators used in a query. The given
query is broken into simple query bocks and converted into a relational algebra tree.
This simple query block consists of SELECT-FROM-WHERE (SFW) statement, with
a GROUP BY clause if available [DK97]. Queries to a DBMS have some arbitrary level
of nesting. These queries are split into simpler blocks from the outer nested to the
inner and are recursively converted into their corresponding tree structure. The basic
relational algebra operators matching operations in SFW block are [Cod70],

e Projection

Selection

e Join

Union and Difference

Aggregate and Group By

2.1. Query Compiler 7

Projection - 7

The projection operator is used to return attributes values defined in a query. The
operator is noted as,Tauributel, Attribute2, Attributes... (RRelation). Attributes are the column
name given in the query to retrieve the values from tables.

Consider, the relations STUDENT and FACULTY storing student and faculty infor-
mation respectively. The structure of the relations are given as,

STUDENT(ID,NAME, AGE,GRADE_POINT, FACULT_ID — FAULTY _ID)

FACULTY (FACULTY ID,FACULTY_NAME)

Consider, the query to select the name of all the students. In SQL, it is written as

SELECT NAME
FROM STUDENT;

is translated as,

WNAME(STUDENT)

Selection - ¢

Selection operator is used to select the tuples that satisfy a particular predicate. The
operator is noted as, 0pyegicate(Relation). Predicate is the conditional logic given in
the query to retrieve the desired tuples and the Relation is the table mentioned in the

query.

For example, the query to select all the students having grade point below 2.0 is written
as,

SELECT *
FROM STUDENT
WHERE GRADE_POINT < 2.0;

and is translated in relational algebra as,

0GrADE POINT<2.0(STUDENT)

Join -

Join is used to combine two relations based on a common attribute from both the
relations. This operator is denoted as, Tablel < Table2.

Considering the query to get name of a student along with the faculty name of the
student. Then the query is,

8 2. Background

SELECT NAME, FACULTY_NAME
FROM STUDENT
NATURAL JOIN FACULTY;

This is translated as,

STUDENT =< DEPARTMENT

Union and Difference - U and —

Union and difference are binary operators. They are used to combine two relational
predicates. These merge results of two queries into single result. These operators are
written as, Tablel U or — Table2.

For example, the query to list out all the student name along with all the faculty name
is,

(SELECT NAME

FROM STUDENT)
UNION

(SELECT FACULTY_NAME
FROM FACULTY)

and is translated as,

WNAME(STUDENT) U 7TFACULTY,NAME<FACULTY)

Group By and Aggregation - v

Aggregation functions occur in SELECT clause and are usually coupled with a GROUP
BY clause. These two operations are interpreted and implemented together. These two
are represented together as, Yoo, 449 (Relation) where Col is the column by which the
values are grouped and Agg is the aggregation function to be performed.

Consider the query to retrieve the average grade point of all students in each depart-
ment,

SELECT FACULTY_ID, AVG(GRADE_POINT)

FROM STUDENT

GROUP BY FACULTY_ID;

This is translated as,

YpEPT 1D;4vG(GRADE POINT)(STUDENT)

2.1. Query Compiler 9

2.1.1.2 Relational Algebra Tree

After each operation in the query is translated into their respective relational algebra
operators, these are combined to form the relational algebra tree. The leaf nodes of the
tree comprises of the relation names and the internal nodes have the algebra operations.
Branches are added to the tree in case of binary operators.

For example, consider the selection of all the student with their respective department.
The query is written as,

SELECT S.NAME, F.FACULTY_NAME
FROM STUDENT
NATURAL JOIN FACULTY;

The query has projection along with a join operation. This is represented in tree
structure as shown in the Figure 2.2,

T Mame.D.Mame

B

S.DEPT_ID = D.FACULTY _ID

STUDENT FACULTY

Figure 2.2: Relational algebra tree

In figure, leaf nodes are different relations used in the query- STUDENT and FACULTY.
All the internal nodes represent the operations to be performed- join and projection.

2.1.2 Optimizer

The query given by user is optimized for faster execution using optimizer. There are
various optimization steps carried out in this component. First, the given structure is
simplified into an equivalent one using set of rules(i.e., logical optimization). Each node
in the reduced tree is then replaced with their corresponding physical algorithm. For
example, join operation is replaced with the hash join or the nested loop join algorithm.
These optimization strategies results in availability of various equivalent query struc-
tures and ways to execute the resultant operators. Out of these different strategies,
the best possible strategy is selected (cost-based selection). This final execution path
is then processed to produce desired result.

10 2. Background

2.1.2.1 Logical Optimization

Logical optimization reduces number of operations to be performed in a query. A
expression in the relational algebra tree can be converted into an equivalent one with
less operations using a set of algebraic rules reducing redundancy. This reduces query
execution time. The rules re-write the given query to provide a logical plan with faster
execution time. The most commonly used operations in DBMS are SELECTION and
PROJECTION. Below listed are the possible optimization techniques used to provide
logical optimal path for selection and projection queries.

e Cascade of o: Conjunctive selection conditions can be broken into cascade of
individual selections.

Tp1 A p2 A p3.. A pn)(R) = 0p1(0p2(-..(0pn(R)...))

e Commutativity of ¢ : The order of selection conditions can be changed.
0p1(0p2(R)) = 0p2(0p1(R))

e Cascade of 7 : In case the set of attributes are same or the set of the outer pro-
jection are a subset of the inner one, everything except the last one can be ignored.

Ta1 (T2 (oo (Tan(R)...)) = ma1(R)

e Commutative o and m : The operators are commutative given that the predi-
cate in selection has the same attribute given in projection.

T(0c(R)) = 0¢(Ta1,02,03...an(R))

The resultant tree from logical optimization reduces the execution time by having less
operators to execute. However, the efficiency of processing itself depends on the use of
right algorithm for the operators. This selection of right method to perform operation
is done in physical optimization.

2.1.2.2 Physical Optimization

Each logical operator in relational algebra tree is executed using various algorithms.
Each of these operator in the tree implements one step in the query execution. There
are physical operators for operations not available in the relational algebra tree(eg:
scanning).Also, different algorithms implement a single logical operator. The algo-
rithms operate faster depending on the data. For example, Merge-sort join algorithm
combines two tables faster, if the values in table are already sorted. Hence, selection
of right algorithm based on data present is essential for faster processing. The possible
implementations for few basic operations [DK97] are presented below:

2.1. Query Compiler 11

Selection

Selection is the process of searching values from the given set of tuples that satisfies the
given criteria. Below are some of the common selection algorithms [DK97] used,

e Linear Search - This algorithm retrieves all the records from memory and tests
if the given selection criteria is satisfied. This is also known as brute force algo-
rithm(refer book - fundamental of db). In this method all the data is subjected
to selection criteria linearly and the tuples satisfying the predicate are forwarded.

e Binary Search - This algorithm is used if the underlying data are sorted and
the selection condition contains equality condition. This is more efficient than
linear search as each iteration reduces the search space into half. Every step in
the iteration, half of the data are only searched.

e Using a hash key - This is used if equality condition is given to a key value
attribute that is stored as hash value. This method directly computes the position
of the key using hashing mechanisms rather than searching for the value. This
algorithm retrieves at most one record.

Projection

Projection operation is easy to implement if the tuples are tagged with a key. In this
case, "the result of the operation is equal to the number of tuples in the relation”
[DK97]. if duplicates are available in the given relation the tuples are sorted first and
then duplicates are removed. The tuples can also be hashed to eliminate the duplicates.
This duplicates are removed only if the DISTINCT clause is present as by default SQL
returns duplicates for projection.

Aggregation

In [DK97, GMUWOO0] Elmasri and Garcia-Molina explain the methods to compute
aggregates over set of values. Based on the underlying data structure and the query
used, different ways are used to calculate results. For example, if data are stored in B*-
tree structure, then maximum value can be found by following the right most pointer
to reach the right most leaf of the tree.

2.1.2.3 Cost Based Estimation

The availability of different approaches to execute a query leads to explosion of paths
that can be taken for execution. Hence, the best execution path has to be decided
before start of the execution. The cost of executing the different approaches may
differ from each other based on various properties.For example, as mentioned in the
previous section, there are different algorithms that can be executed to perform join.
The strategy with lowest cost is defined as the best plan to be executed. Also, finding
the right execution will itself requires considerable CPU time. Also, there can be lot of

12 2. Background

ways to execute the same query and estimating costs for all the paths is not feasible.
For example, in case of join order optimization, the number of paths to join results
increases with number of tables present in the join statement. Evaluating cost for all
the paths consume more time than producing actual result. Hence, cost estimation
must to restricted to only few feasible approaches. The basic optimization technique is
to search for a solution in the search space that minimizes the cost function.Finding the
best optimal path is not feasible due to its complexity. Different aspects are considered
for computing costs. Below are the components in case of disk based DBMS [DK97],

e Access cost to secondary storage - The transfer cost of data blocks from disk
to memory. This is also known as disk I/O cost(refer book - fundamental DBMS)

e Disk storage cost - The cost of storing intermediate files generated during exe-
cution.

Cost based on execution of operations,

e Computation cost - The cost of performing in-memory operations. This is also
known as CPU cost.

e Memory usage cost - Usage cost of memory buffers in main memory.
e Communication cost - Transfer cost of moving the results from database ter-

minal to client.

These costs are estimated using predefined cost functions. Based on the data available
in the database, cost estimate on the data are prepared. These estimates are provided
as input to cost function to get the cost values. The estimates can be improved by,

e Histogram - Provides approximation of real distribution

e Parameterized function - Function that parameterizes the real distribution of
data.

e Sample estimates - Selectivity is estimated from randomly selected sample.
Based estimates and cost functions, best possible path is selected. Once all the transla-

tion and optimization of query is done, the generated executable code is executed using
the query executor.

2.2. Query Executor 13

2.2 Query Executor

Query executor processes the executable codes based on the path given by the query
compiler. The processing model selected by the query executor is defined by the DBMS
engine. Typically, there are two processing models normally used for query execution,

e Tuple at a time [Gra90]

e Operator at a time [MKBO09]

These processing models are explained in detail below.

2.2.1 Tuple at a Time

This is also known as the volcano model. In this model, each operator processes one
tuple at a time and forwards the results to the next operator available. Figure 2.3 shows
execution on the tuple-at-a-time processing model. Each operator requests for a tuple
to process using the next() call. The intermediate results from the current operator are
placed in a buffer in order to be processed by the next operator. This method exploits
the pipeline level parallelism and it yields partial results with remaining tuples still in
process. Also, this model does not require all the records in memory to start processing.

Intermediate Intermediate
Results »~—————— Results
Tuples Operator 1 Operator 2 Operator 3 Results

next) ——————— next()

A

Figure 2.3: Tuple-at-a-time processing

Multiple operations are interleaved in this model for processing. The combined opera-
tions footprint is very large and may not fit into instruction cache. This leads to cache
misses. The operators also call multiple next() increasing the functional call overhead.
Also in case of functions like hashing, large intermediate results are generated and the
results might not fit the data cache leading to data cache miss [AMDMO7].

2.2.2 Operator at a Time

In operator at a time processing, each operation processes all the input tuples before
forwarding the results to the next operator. Figure 2.4 represents operator at a time
processing model. In each step, the intermediate results are fully processed. Hence,
no partial results are returned during the execution. The results are not returned to
the user until all the results are materialized. Therefore, this model has sequences of
statements rather than interleaving multiple operations for execution. The advantage
of this model is that each operator is executed once per execution cycle leading to

14 2. Background

less instruction cache miss. This is because one operation resides in the cache at any
instant. Inter-operator and intra-operator parallelism is used to speed the processing
of this model.

Intermediate
Tuples

Intermediate
Tuples

Data Results

T ioeladg
Z loeladg
£ imelado

Figure 2.4: Operator-at-a-time processing

Processing of multiple tuples by single operator creates tight loops. This is optimized
using features of modern compilers such as, loop unrolling, vectorization (using SIMD).
However, the complete input data might not fit into the cache. This leads to the
multiple access of memory for further processing. This requires repeated scan of data
from memory. Also, the intermediate results may not fit into cache leading to further
increasing the overhead of memory access. The data cache miss problem is reduced by
vectorized processing model.

2.2.3 Vectorized Processing [ZB12]

Vectorized processing model combines the above mentioned models. This model pro-
cesses the data in volcano-style iteration with bulk of data and forwarding this set of
intermediate results during next() call. The vector ! is selected so that it is big enough
to perform parallel processing and also small in order to fit in the cache. Figure 2.5 is
an example for vectorized processing model.

Intermediate Intermediate
vector vector

Results fREsults >
> »
Tuples Operator 1 Cperator 2 Operator 3 Results
< -
next) ~—— @ nextf)

Figure 2.5: Vectorized processing model

This model exploits both the pipeline level parallelism and the data level parallelism.
The volcano-style processing provides partial outputs from the different operations.
This execution of operations over vector of data can be accelerated using modern hard-
ware features such as SIMD. But, interleaving of operators while execution still leads to
instruction cache miss reducing the efficiency of processing. This instruction cache miss
is reduced by processing input data in pipelines. This processing model is explained in
detail below.

lyector - Size of data to be processed

2.3. Pipeline Processing 15

2.3 Pipeline Processing

Executing each database operators linearly produce lot of intermediate results from each
operation. This creates an overhead of storing these values and retrieving them for the
next operation in sequence. This overhead is reduced by grouping the operations. This
reduces the number of partial results being stored. These grouped operations are exe-
cuted as a single instruction. This process model is called pipelining processing [DK97].

Different set of operations can be combined to provide results without changing the
nature of the operations. For example, selection operation can be combined with pro-
jection and the results are not altered. The result from selection are directly propagated
to projection. This flow of values in the pipeline is not always constant. There are few
functions that blocks this flow of values. They are called pipeline breakers.

2.3.1 Pipeline Breakers

In [Neull], Neumann and et al, refers an operator as a pipeline breaker if the function
needs all the intermediate results from the previous operator to perform its operation.
In other words, these operators requires the results from previous operation to be stored
into memory before starting their process. An operator is called a full pipeline breaker
if it materializes the complete tuples before forwarding to next operators [Neull].

For example, consider querying for grade point average students from different faculties
with more than 100 students,

The query is written as,

SELECT F.FACULTY_NAME, AVG(S.GRADE_POINT)

FROM STUDENT AS S NATURAL JOIN (SELECT COUNT(STUD_ID) AS
STUDENT_COUNT, FACULTY_NAME, FACULTY_ID

FROM FACULTY

GROUP BY FACULTY_NAME, FACULTY_ID) AS F

WHERE F.STUDENT_COUNT > 100 AND S.DEPT_ID = F.FACULTY_ID;

The translated query looks and the corresponding pipeline boundaries are shown in
Figure 2.6.

The pipeline-1 in Figure 2.6 has its flow obstructed by the aggregate grouping function.
The function, COUNT(STUD_ID) materializes its result and stores it in memory before
providing to next operator. Similarly the data has to be materialized for calculating
group average for GRADE_POINT attribute.

The data flow in a pipeline is always obstructed by the pipeline breakers in it. These
pipeline breakers can be optimized for faster execution by processing values quicker and
propagating results to next operator. The algorithms for group-aggregation queries can
also be optimized to perform their operations faster.

16 2. Background

TEFACULTY_NAME, AVG(S.GRADE_POINT

: l
o]
PIFACULT¥ #85S!DEPT ID =
EFAGHLTE .

OSTUDENT, EQUNT > 100
I
STUDENT ol
]
:
i
!
I COUNT(STUD_ID), FACULTY_NAME FACULTY_ID
!
]
1

FARULTY

Figure 2.6: Query pipeline boundaries

2.4 Group Based Aggregation

SQL provides the ability to perform aggregation over a set of attributes in the given
relation. Five aggregate operations are performed in SQL,

e Min
e Max

o Avg

Count

e Sum

These aggregate functions are commonly combined with a GROUP BY clause to perform
the aggregate for each set of values within group. Grouping and aggregation func-
tions are implemented together for faster processing [GMUWO0]. Group-aggregation is
computed using two strategies: sort based and hash based aggregation [DK97].

The sort-based aggregation uses various sorting strategies available to first sort the
input tuples. The tuples are sorted by the attribute given in the GROUP BY clause.
Then, the aggregation function is executed over these sorted tuples. It takes two passes
to calculate aggregation for groups with one pass for sorting with and another for
computing aggregates for the groups.

Another way of performing group-aggregation is hash based aggregation. In this paper,
we use the hash based grouping strategies to efficiently execute group-aggregation.

b =R B NV

©

10
11

2.5. Hashing Techniques 17

2.4.1 Hash Based Aggregation

Basic idea of the hash based aggregation strategy is to use the different hashing tech-
niques available to group input tuples and perform aggregates for the groups. First,
all the tuples are hashed into their respective buckets. This can be performed by a
hashing function chosen based on the grouping attribute given in the GROUP BY clause.
The function groups the input tuples of same group in a single bucket. There can
be multiple groups present in a bucket. Once the tuples are grouped, aggregation is
performed.

1 represents the basic operation of hash based aggregation. First, the process(lines 1 to
7) perform hashing over all the tuples using the group by attribute as hashing variable.
Then, the process (lines 8 through 11) performs the aggregation for each groups within
every buckets in the hash table.

Algorithm 1: Hash based aggregation
Data: Tuples
Result: Aggregates
while Tuple are available do
read current tuple;
key = hash(tuple);
if bucket[key] is free then
| bucket[key] = value;
else
L CollisionResolutionMechanismy();

for each bucket do

for each group do
Perform aggregate;
return value;

As we can see, the hashing mechanisms are one of the main factors affecting the effi-
ciency of the group-aggregation functions. In the below section, we discuss in detail the
different hashing techniques used in performing group-aggregation.

2.5 Hashing Techniques

Hashing techniques are used to perform different applications in DBMS [DG85]. These
techniques accelerate searching of a value and reduces the search space. These tech-
niques use hashing functions to produce a key based on the given value. This key
represents a bucket to store the inserted value. In some case, there can be two val-
ues hashing to provide a same key resulting in pointing to the same bucket. This is
called collision. The hashing techniques resolve collision in different ways. The differ-
ent hashing techniques and their collision resolution mechanisms are discussed in below
sections.

[T N

(=]

18 2. Background

2.5.1 Chained Hashing

Chained hashing [CLRS91] uses linked lists to store values. Each bucket has the head
of a lined list and the values are stored into this node. If there is an overflow, the value
is inserted by appending a new node to the linked list. This provides dynamic memory
allocation for buckets. The basic structure of chained hashing is given in Figure 2.7.
For overflow value, a new node is created to store the value in the corresponding linked
list.

ko —{ k1 | k2

K3

@]

ke —» K1 | k8 | ko |

Figure 2.7: Chained hashing

Insertion

The insertion algorithm for chained hashing is given in Algorithm 2. First, the insert
value is hashed using the hash function (line 1). The key returned from the hash
function is then used to select the bucket. If no value is present in the bucket, the value
is directly added to the head of the linked list (lines 2 to 5). If value is available in the
head, the current value is appended to the linked list (line 7).

Algorithm 2: Chained hashing - insert

key < hash(Data);

if bucket[key] = NULL then
head < CreateLinkedList();
head < data;
bucket|key| < &head;

else
L append(bucket|key], value);

For example, let us consider the hash table shown in Figure 2.8(a). The hash function
used is h(x) = %N, where N is size of the hash table (in the example N=5). To insert
7, the value is hashed to the key 2. The position 2 is free and the value is stored. In
case of 12, the key is again 2. Hence, the value is stored in a new memory location and
the address is linked with the previous value as represented in Figure 2.8(b).

Lo =T L B N VU CR

2.5. Hashing Techniques 19

a) Chained Hashing - Before Insertion b) Chained Hashing - After Insertion

Figure 2.8: Chained hashing - insertion

Probing

Probing in chained hashing has two steps. The pseudo-code in algorithm 3 shows the
probing process of chained hashing. First, the value to be probed is hashed to find the
corresponding key. This key represents the bucket on which the value might reside.
The values in the bucket are probed for the expected value using linear search. Search
provides the value if present, else returns null.

Algorithm 3: Chained hashing - probe

key < hash(Data);

if bucket[key] /= NULL then
head < bucket[key];
result <— LinearSearch(head, Data);
return result;

else
| return NULL;

For example, To probe the value 12 from hash table available in Figure 2.8(b), the value
is hashed first. The resultant key is 2. Then linear search is performed in the bucket
2 until the value is found. In this case, two memory spaces are probed in order to find
the value.

The simplicity of the technique comes with several disadvantages. In worst case all the
values reside in a single bucket. This leads to performing linear search for each probe.
In fact, linear search of value has the time complexity of O(n). This increases the time
to perform probing.

Dynamic memory allocation in linked list also introduces overhead to access the memory
location. Each value is stored in different locations in a linked list, leading to additional

1
2

® N O vk ®

©

20 2. Background

memory accesses for searching a value in it. This issue is addressed by open addressing
techniques [MC86]. These methods store one value in each bucket location. Overflow
values are stored in the same hash table by searching for different location in same table.
Since, memory access degrades the efficiency of further operations open addressing
techniques are more suitable for DBMSs [Lit80]. In this thesis, we discuss the open
addressing techniques cuckoo hashing and linear probing and the ways to adapt them
for faster aggregation.

2.5.2 Linear Probing

The data structure of linear probing allows to store one value per slot [Knu97]. There
can be multiple slots in a bucket. In case of overflow, the insertion value is inserted
in the next empty slot available in the data structure. The slot for the value is found
by performing linear search until an empty position is found. The hash table for this
techniques is implemented using an array data structure to store values. In Figure 2.9,
we show an example of a partially filled data structure used in linear probing. The
empty spaces in the table can be used to store collided values.

k1l k2 k3 | kd kS k6 K7

Figure 2.9: Linear probing

Insertion

The algorithm for linear probing insertion is given in Algorithm 4. Similar to chained
hashing method, the insertion value is first hashed and the corresponding position in
hash table is found (line 3). If the slot is already occupied, linear probing is done (lines
7 to 9) on the hash table to find the next empty slot and the value is stored in the slot.

Algorithm 4: Linear probing - insert
if Hashtable full then

L return false;

key < hash(Data);
if bucket|keylisfree then
| bucket[key] < Data;
else
while current slot not empty do
L Goto next slot;

insert;

S A W N

2.5. Hashing Techniques 21

For example, consider inserting the value 12 into the partially filled table given in
Figure 2.10(a). The hash function result for the values is given as 2. Since the location
is already occupied by the value 7, linear probing is performed to find the next free slot
to insert the value. In this case, the value 12 is stored in slot 3 as given in Figure 2.10(b).

a) Before insert

b) After insert

Figure 2.10: Linear probing- insertion

Probing

Probing follows the same function as insertion. The algorithm to probe is explained in
Algorithm 5. Search value to be probed is hashed to get the key and the corresponding
bucket is probed for value (lines 1 to 3). If the value is not found in the slot, linear
search is performed until the value is found (lines 5 to 7). The algorithm assumes that,
value is present in table.

Algorithm 5: Linear probing - probe

key < hash(Data);
if bucket|key] = Data then
‘ return true;
else
while value/current_slot] != key do
L current_slot++;

return value[current_slot];

If all the spaces are occupied, the array size is increased and all the values are rehashed.
The technique also suffers the same disadvantage of chained hashing. In worst case,
the whole table is probed for the search value. Using the example in Figure 2.10(b), to
probe the value 12, linear search is performed from slot 3 (given by hash function).

2.5.3 Cuckoo Hashing

Cuckoo hashing uses multiple hash tables to store values [DK12]. This function uses
N hash functions and each corresponds to N hash tables. This function uses multiple
hash tables as an alternative to store the overflow values. This technique also provides
constant look-up time while probing. The general structure of cuckoo hashing is shown
in Figure 2.11

22 2. Background

Data
hi{x) h2(x)
¥ ¥
K1
K5
K3
kd K2

Figure 2.11: Cuckoo hashing

All the hash tables can be of same size or of different sizes. Also, the bucket in each
table can hold multiple entries. Each table has its own hashing function.

Insertion

The general algorithm to insert a value is given in Algorithm 6. The insertion value
is hashed with the first hash function to store the value in first hash table (line 2). If
the key slot is occupied, then the value already present in the slot is evicted and the
insert value is stored in the slot. Afterwards, this evicted value is hashed by the next
hash function to store it in the next hash table (if present) (line 1 to 4). This process
of eviction and storing of value is done iteratively until all the values are stored.

Algorithm 6: Cuckoo hashing - insert

while value!/=null do
key < hash(i,Data);
swap(Data, table(i, key));
i+ +;

For example, consider inserting a value into the cuckoo hashing tables shown in Fig-
ure 2.12(a). The hash functions used in the example are hl(x) = x%5 and h2(x) =
floor(x/5)%5 respectively. To insert the value 3, it is first hashed using hash function
h1(x) providing the key as 3. However, the slot 3 is already occupied by the value 43.
The value 43 is swapped with the value 3. Now, the value 43 is rehashed with function
h2(x) and the value is stored into the slot in hash table 2 as given in Figure 2.12(b).

2.6. Single Instruction Multiple Data (SIMD) 23

5 5
11 11
22 22
43 3 ey M
64 64
a) Before insertion b) After insertion

Figure 2.12: Cuckoo hashing- insertion

Probing

Probing in cuckoo hashing has near constant look up time. The general algorithm to
probe a search value in cuckoo hashing is given in Algorithm 7. To probe a value,
the search value is hashed by all the hash functions(line 1 and 2). The slots of the
corresponding keys provided by hash functions are probed in their respective tables.
The search value is present only in one of these probe positions and result is returned
in case value is found(line 3 and 4). Else, the probed value is not found.

Algorithm 7: Cuckoo hashing - probe

while i /= Total no. of hash functions do
key < hash(i,Data);
if search_value = table(i, key) then
L return true;

return false;

For example, to probe the value 11 in the hash tables available in Figure 2.12(b), the
value is hashed by both functions h1(x) and h2(x) providing the keys (1,1) respectively.
These slots are probed in the tables respectively to get the result.

The overall performance of these two techniques can be improved by using modern
processors, mainly using SIMD. For example, SIMD can be used to perform the same
hashing function over multiple data. The efficiency of the hashing techniques can be
improved using SIMD [JA17] [MSL*15]. In Section 2.6, we detail the SIMD operations
that can be adapted to perform the hashing operations.

2.6 Single Instruction Multiple Data (SIMD)

SIMD enables processing of several data items in parallel by exploiting data level par-
allelism. In this thesis, we use the SSE instruction set for x86 architecture to perform
the SIMD operations. This instruction set uses 128- bit registers to perform operations

24 2. Background

on data thereby, processing 128 bits in one clock cycle. This functionality of SIMD can
be used to accelerate various DBMS operations [ZR02] [PRR15].

In below sections, we explain in detail the SIMD functions® necessary for performing
the hashing techniques detailed in above sections. These functions are categorized as,

e Arithmetic operation
e Bit manipulation

e Bit comparison

Also, we limit ourself to data stored as type __m128i. This type holds four 32-bit
integers to be processed in parallel.

2.6.1 Arithmetic Operation

Hash calculation in the hashing techniques requires performing arithmetic operations
over given input. The SSE instructions to perform these operations are,

_mm_add_epi32(m128i a, m128i b) adds four 32-bit values in one cycle. This packs
the registers with four 32-bit values adding to 128-bit.

_mm _sub_epi32(m128i a, m128i b) is used to subtract four 32-bit values in one
cycle.

_mm_mul epu32(m128i a, m128i b) multiplies two lower 32-bit values from two
64-bit values. This provides a 64-bit value as output.

2.6.2 Bit Manipulation

SIMD can be used to perform bit manipulation by combining multiple values. For ex-
ample, a set of values can be collectively shifted or rotated. Below are the functions
that are useful in performing the hashing techniques.

_mm shuffle epi32(_m128i a, int imm) shuffles four signed or unsigned 32-bit
integers based on given imm value. Here, imm serves as the mask using which the
shuffling is performed.

_mm_andnot_sil28(_m128i a, _m128i b) is a bit manipulation operation that

performs (A)&B on two 128-bit values and produces the result.

-mm _and_si128(_m128i a, _m128i b) performs bitwise AND operation on the
given two 128-bit values. This is useful for executing bitwise AND over multiple values.
For example, two sets of four integers packs can be performed bitwise AND operation.

Zreferred from https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

2.6. Single Instruction Multiple Data (SIMD) 25

_mm or_si128(_m128i a, _m128i b) executes bitwise OR operation on given 128-
bit values. This function can be exploited the same way as bitwise AND operation.

_mm_movemask epi8(_m128i a) returns an integer by selecting the most significant
8-bits from the values in a.

_mm_extract_epil6(_m128i a, int immgy) this function extracts 16-bit integer from

a using the integer mask given in imms8.

2.6.3 Comparison Operation

Comparison of values is performed for both insertion of a value and for search of a
value. The function to compare values is,

_mm _cmpeq_epi32(_m128i a, _m128i b) compares four signed or unsigned inte-
gers and provide the result as 1 for equality of bit and 0 for inequality. The end result
of the operation is a series of Os and 1s.

26

2. Background

3. Scalar and Vectorized
Hash-Based Aggregation

Hashing techniques group data based on a hashing function and this can be easily ex-
tended to perform grouped aggregation [SZ96]. Also, Kenneth Ross in [Ros07] explains
several ways to exploit the modern hardware feature-SIMD to probe a value in the
cuckoo hashing technique. This SIMD search in cuckoo hashing can be extended to
perform also the aggregation functions. SIMD can also be used to probe a value in
the linear probing. When grouping is done in parallel using SIMD, it is advisable to
directly aggregate values while grouping [SZ96]. In this chapter, we explore the pos-
sibility to perform direct aggregation while grouping using cuckoo hashing and linear
probing methods. We also attempt to accelerate the grouped aggregation process using
SIMD. We adapt the work of Kenneth Ross in [Ros07] to probe values in cuckoo hash
tables using SIMD to perform aggregation directly while grouping.

3.1 Cuckoo Hashing

In this section, we discuss the conceptual design of cuckoo hashing technique adapted for
SIMD probing and direct aggregation. We explain the cuckoo hashing tables structure
modified for SIMD in Section 3.1.1. We explain in Section 3.1.2 the mechanism to probe
value in the modified table structure. Also, we detail the way to insert a new value
into the hash table bucket in Section 3.1.3. Finally, we explain the extension of scalar
probing and insertion using SIMD acceleration in Section 3.1.4 and Section 3.1.5.

3.1.1 Table Structure

Cuckoo hashing technique store values in multiple tables. Hence, the technique needs
at least two hash tables to perform insertion of a new value. The basic structure of
the table is given in Figure 3.1. Each table holds two value-payload pairs per bucket.

(<IN T U VN

28 3. Scalar and Vectorized Hash-Based Aggregation

This is due to the use of SSE2 instruction set for SIMD. SSE2 has 128 bit registers and
can accommodate at most 4 integer values as we are restricting to integers (32*4 = 128
bits). Depending on the SIMD instruction set and the data type used, the table bucket
size can be varied. To use SIMD efficiently, the values are packed together followed by
packed set of payloads. The advantage of this method is explained in Section 3.1.4.
This data structure is used in both scalar and vectorized version of cuckoo hashing
techniques.

Table 1 Table 2
Value _ |
Pack -« Walue 1 Value 2
Bucket
Payload , |
Hadk < Payload 1 Payload 2

Figure 3.1: Table structure - cuckoo hashing based on [Ros07]

3.1.2 Scalar Probing

The probing module for cuckoo hashing is implemented along with the aggregation
mechanism. This technique branches the execution either to insertion of the new value
or perform aggregation on the existing value. In this thesis, we consider count as our
aggregation function to be performed over the groups. While probing for a values, each
value in the selected bucket is checked for equality with the search value. If they are
equal, the corresponding aggregate payload is incremented.

The general steps of cuckoo probing is given in Algorithm 8. The value to be probed is
hashed by all the hashing functions. Each slot identified by the hash result is probed
in linear fashion until the result is found as mentioned in Figure 3.2. Once the value is
found, resultant of comparison is used to determine the aggregate. Insertion is executed
if the value is not present in any of the slots.

Algorithm 8: Cuckoo hashing - scalar probe

for i in no. of tables do
key < hashFunction(i,Data);
Bucket = Tableli,key];
for j in BucketSize do

if Bucket[j|.key == Data then
L L Bucket[j].value4++; return;

insert(Data);

b =R T NN CR

3.1. Cuckoo Hashing 29

Hash Slots

——————— a

I e e
Table 1 Table 2
Value | Value

a

———————— >

Payload | Payload

b - -

Figure 3.2: Cuckoo hashing - probing

3.1.3 Scalar Insertion

Faster probing in cuckoo hashing is traded for high insertion time. Once the search
value is not found in the tables, the value is inserted along with its corresponding
aggregate payload. The mechanism to insert a value-payload pair in the table is given
in Algorithm 9

Algorithm 9: Cuckoo hashing - scalar insert

Aggregate < InitialValue;
i+ 0
while value # NULL do
slot «— Hashli|(value);
value < shift(hashtable[i][slot].key,value);
aggregate < shift(hashtable[i][slot].value,aggregate);
P (i) %2;

The value and aggregate payload to be inserted are initialized into a temporary variable
and the process to find the correct position for the pair is started. Using the first hash
function’s result, the position in table 1 is determined. The pair is inserted into the
bucket available in the location. If the slot has no free space, the oldest value-payload
pair is evicted and the current pair is stored. This can be done by shifting the values
inside the bucket so that the oldest value is evicted. This evicted pair is inserted in its
corresponding position in next table. This process is looped until no value-payload pair
is available for insertion.

3.1.3.1 Insertion Cycle

The eviction of a value-payload pair from a bucket may lead to constant eviction of
pairs between the tables. This may form an insertion cycle. In the case of two tables,
the oldest pair from table 1 is evicted and stored in temp space. This pair in the temp

30 3. Scalar and Vectorized Hash-Based Aggregation

space might evict another pair in table 2. Now, This second pair might again evict a
pair from the same bucket in table 1 in which the first pair was stored forming a cycle.

For example, Consider the table as below with hash functions h(x) = x %10. Suppose,
if pair (5,1) is to be inserted, it will be given the slot 0. This evicts (2,2) from the table
1. Now, value pair (2,2) is inserted into the second table. The slot given for the pair
is 0 again, which evicts (4,1). Again, the value pair (4,1) hashes to slot 0 in table 1
forming a cycle. This creates endless swap of pairs between tables.

Table 1 Table 2 Table 1 Table 2

a) (5,1) swaps (2,2) from Table 1 b) (2,2) swaps (4,1) from Table 2
4 1
1 {‘ 1
Table 1 Table 2 1 Table 1 Table 2
5 1 2 3 5 4 2 3
0 0
1 1 2 1 1 1 2 1
1 1 1 1
c) (4,1) swaps (5,1) from Table 1 d) Loop in swapping

Figure 3.3: Cuckoo hashing - insertion cycle example

The insertion cycle can be suppressed by limiting the number of swaps for a single
insertion. A counter is set to keep track of number of swaps being carried on. After a
given set of swaps are made, the iteration is stopped and cycle resolution is performed.
Insertion cycle can be resolved in two ways. When the cycle is detected, all the table
structures can be changed and values are rehashed. The tables can be increased of their
bucket size, more buckets can be added and finally, number of tables can be increased
along with hashing function. Although this method increases execution time effective
cardinality estimators can limit the number insertion swaps there can be.

3.1. Cuckoo Hashing 31

3.1.4 SIMD Probing

Using SIMD, all the values in a bucket can be probed instantly. This is done by
modifying the table structure to suit SIMD execution. We use the splash tables struc-
ture [Ros07] for our SIMD implementation. A row in this data structure store buckets
of same key from two different tables. The array positions 0,1 stores bucket from table
1 and positions 2 and 3 holds table 2 bucket of the same slot. During SIMD probing,
each probe is done on buckets in same row from table 1 and 2.

SIMD MULT M1 Mz

Search Key K SIMD COPY

Prass

SIMD CMP-EQ ‘ | SIMD CMP-EQ |

MASK

SIMD SUM

SIMD SUM
SIMD OR

all mask are 0

INSERT

Figure 3.4: Aggregation over SIMD cuckoo probing [Ros07]

The mechanism of SIMD probing in cuckoo hashing is given in [Ros07]. This process flow
is tweaked to adapt for aggregate computation. Figure 3.4 shows the process flow for
aggregate computation while hash probing. In cuckoo probing implementation [Ros07],
search value is first duplicated into SIMD registers. Then the hash multipliers are mul-
tiplied with the values to get keys. This resultant value is again multiplied with table
size to get the slot locations. SIMD MULT provides the values in slots mentioned in
the Figure 3.4. The values available in the slots are compared for equality with the
search value and set of mask values is returned. Since the comparison masks are series
of 0s and 1s representing equality or inequality of values the masks from comparison is
added to the payloads to perform aggregation. If all the values in the mask are zero,
insertion is performed.

32 3. Scalar and Vectorized Hash-Based Aggregation

3.1.5 SIMD Insertion

SIMD insertion is similar to scalar insertion. The hash function is executed using SIMD
and provides the slots for both the tables in one clock cycle. Since two buckets from
the two different tables are present in one slot, extra execution is done to select the
values from a single table to be used for insertion. These extracted bucket is then used
to swap values to accommodate the new entry. This is done using controlled shuffling
in SIMD.

3.2 Linear Probing

we detail in this section the design of SIMD accelerated linear probing and direct ag-
gregation on the hashing technique. In Section 3.2.1 we detail the model of the hash
table and its bucket structure used for performing linear probing. in Section 3.2.2, we
explain the primary grouping problem present in linear probing and the ways to prevent
it. Scalar probing in the given table structure is explained in Section 3.2.3 and insertion
of data in Section 3.2.4. Finally, we detail the SIMD accelerated linear probing and
insertion mechanisms in Section 3.2.5 and Section 3.2.6.

3.2.1 Table Structure

The value-payload pairs are stored in linear arrays for linear probing mechanism. SIMD
can be used to search multiple values in sequence in the arrays thereby providing faster
results. Probing of data is the crucial part in this method and insertion also follows
the same process flow. So, this method is made as an extension for probing in this
technique. We use structure of arrays to store the value-payload pairs in the hash
tables. The values and payloads are stored in a separate arrays of SIMD data type.
The arrays hold packed values and payloads respectively, since multiple values can be
stored in one SIMD data type variable. The value and its corresponding payload are
stored in the same index in the two arrays for easier access.

Value 1 | Value 2 | Value 3 |Value 4

| “alue pack] Walue pack [Value pack |

| Payload pack | Payload pack [Payload pack |

.-
¢

\
‘ \

Payload 1 Payload 2 Payload 3 |Payload 4

Figure 3.5: Linear probing - table structure

3.2. Linear Probing 33

3.2.2 Primary Grouping

The efficiency of linear probing degrades with the formation of primary clusters [Smi04].
These clusters are formed if more values hash to the same slot. This hashing of values
to the same slot increases the distance from the desired slot forming a cluster of values
for the same location. For example, consider a hash table of size 6. Using the hashing
function h(x) = x % TABLE_SIZE, the values 1,11,21,31 and 41 will hash to same
location: 1. For the value 1, the value is stored in the desired location. But, in case
of the other values the distance between the desired value increases linearly forming a
cluster as shown in Figure 3.6. These clusters are removed by using Knuth’s hashing
function [Knu97] which provides good dispersion of values within a hash table.

Desired
Location

Figure 3.6: Linear probing - primary clusters

3.2.3 Scalar Probing

First, the corresponding slot is computed by hashing the given search value. Then,
the slot provided is probed i.e. the search value is compared with each value in the
bucket linearly for equality. In case all values in the bucket are unequal, the next slot
is probed. Iteratively all slots in the table are probed until search value is found or an
empty location is found.

If the search value is found, the necessary aggregation is performed. The corresponding
payload of the value in the bucket is updated with the necessary aggregate value. For
example, the resultant from comparison of equality of bucket values and the search
value can be used to sum up the count as the test yields either 0 or 1.

In case probing pointer reaches the end of the table, probing is started from slot 0 of
the hash table. The hash table is full when the search again probes the hashed slot.
In this case, the bucket and table sizes can be increased and the value-payload pairs
are re-hashed to accommodate new pairs. Similar to cuckoo hashing the cardinality
estimators from DBMS can be used to define the table size so that no overflow of value
occurs.

3.2.4 Scalar Insert

Insertion in linear probing is done when an empty location is found while searching
for a value. The empty slot represents unavailability of the search value in the table.
Since an empty location is the nearest to the hashed slot, the new value along with its
corresponding aggregate payload is stored in this location.

34 3. Scalar and Vectorized Hash-Based Aggregation

10 | 20 | | 2|11 |4 | | | 10 [20 | | 211 | M | | |

t 13 N [[T 1]l] 6o [6] [[1
0 1 2 0 1 2

a) Partial hash table b) Table after probing for 21

w0 | 20 | | 211 |4a 3 | | | 10 [20 | | 211 (4 3| oa | |

13 [] s [s]6]5s [t 1]] s 8 (s 1] 1] []
0 1 2] 1 2

c) Table after insertion of 31 d) Table after insertion of 91

Figure 3.7: Linear probing - insertion example

Consider performing sum aggregate on series of values using the partially filled table
given in Figure 3.7(a). The hash function used is h(x) = x % 3. If 21 is the next value
in the sequence to be aggregated, the value is hashed and the slot is given as 1. Linear
probing is done in this bucket and the corresponding value is incremented as the key is
already present in the table. The updated table is given in Figure 3.7(b). If the value
31 comes next, hashing functions gives the slot 1 again. Linear probing hits an empty
space in the bucket, the value is stored in the location with its corresponding aggregate
payload initialized as in Figure 3.7(c). Finally, in case of the value 91, the hash key
is 1. The value is again searched in bucket 1 and now it is full. The next bucket is
probed and the first location is found to be empty. The value is stored in the location
and aggregate is initialized. The final hash table is given in Figure 3.7(d)

3.2.5 SIMD Probing

Similar to cuckoo hashing, the bucket with four values can be processed faster with
SIMD acceleration. The mechanism is given in Figure 3.8. The value to be probed is
duplicated and loaded into a SIMD variable. Using the hash function the slot to be
probed is determined. Instead of comparing equality for keys value-wise in the probe
bucket, the values inside whole bucket is loaded into a SIMD variable. These variables
can be used to compare four values at one clock cycle. The two SIMD variables are
compared and the resultant value is checked for equality of search value.

Similar to scalar process, the comparison value can be used directly to perform aggre-
gation. The result has a set of 0 or 1 masks given by the comparison operator. The
packed payload set is loaded into another SIMD variable and the resultant mask from
comparison is subtracted to it to perform the aggregation. The mask value is subtracted
because the resultant value is either 0x0000 or OxFFFF. The process is stopped if value
is found in the probed bucket.

3.2.6 SIMD Insert

If the value is not available in the current probed bucket and also an empty space is
encountered, insertion is performed. This function follows the same procedure as scalar
insertion. The new value can be either inserted by directly finding the position using

3.2. Linear Probing 35

1

S Hashing
Function
Search key K COPY

e Table slot

Key | Key | Key | Key vi | vz | w3 | va KL | K2 | K3 | Ka

SIMD COMPARE

Result R1 R2 R3 R4 SIMD ADD Slot++
A

Values are not
equal
Insert Compare #
Empty
location

found

Value equal

Stop

Figure 3.8: Linear probing - SIMD probing with count aggregation

the comparison vector or the value can also be inserted by using shifting operations in
SIMD. This is done by shifting all the values in bucket by one slot in the table. No
preexisting value in the bucket is evicted due to shifting operation as the new value
replaces an empty location available in the bucket.

36

3. Scalar and Vectorized Hash-Based Aggregation

4. Vectorized Hash Based
Aggregation - Implementation

Based on the design details of hashing techniques, the hashing system is implemented
in C++. The implementation is done for GCC compiler version 4.9.2 and the SIMD
features are implemented for SSE2 instruction set. We use count as the aggregate
function to be performed.

4.1 Cuckoo Hashing

Based on the table structure in Section 3.1.1, a SIMD variable can hold multiple val-
ues. This is implemented by using a union of different basic data types as given in
Listing 4.1. Using this, any one of the primitive data type can be used to store values
within the hash table.

typedef union {

—ml28i v;

unsigned int ui[4];

signed int si [4];

unsigned short us|8];

signed short ss[8];

} vec _attribute__ ((aligned (16)));

Listing 4.1: Data definition

Based on the size of bucket various information can be stored. The basic structure of a
bucket and the hash table is given in Listing 4.2. This hash table bucket holds a single
pack of values and their respective payloads. The hash table is constructed with user
defined number of buckets.

38 4. Vectorized Hash Based Aggregation - Implementation

typedef struct {
_m128i keys;
_m128i payloads;
} entry;

entry hashtable[HSIZE| __attribute__ ((aligned (128))); \\HISIZE — hash table size
Listing 4.2: Bucket and table structure

4.1.1 Hashing Function

The SIMD-based hashing function is implemented as below. Knuth’s values for the
hashing function are stored in a SIMD variable and SIMD multiplication is called.
Once the process is started, the function setM() function is executed. This sets the
initial values for the hashing function. Now, once the hash() function is called, the
hash values in the variable m0 and the search value, k are multiplied and the result is
again multiplied with size of the table. Since, SIMD multiplies low unsigned 32 bits
from packed 64 bit integers, the modulo results of two values are available in the lower
32 bits of the results. These lower 32 bits are then extracted using kextract () function
representing the slots.

#if (HSIZE <= 65536)

#define kextract(hvec,size) _-mm_extract_epil6(hvec,size)

#else

#define kextract(hvec,size) (_mm_extract_epil6(hvec,size) | (_mm_extract_epil6(
hvec,size+1)<<16))

#endif

void setM(){

m.uif0] = 1300000077;

m.uif2] = 1145678917;

m0 = m.v;

thsize = _mm_set_epi32(HSIZE,HSIZE, HSIZE, HSIZE);

}

_inline _m128i hash(__m128i k)

{
_m128i h;

h = _mm_mul_epu32(m0,k);
h = _mm_mul_epu32(h,tbsize);
return h;

¥
Listing 4.3: SIMD hashing function

4.1. Cuckoo Hashing 39

4.1.2 SIMD Probing

For probing, the search value must by converted from basic type to SIMD variable type
i.e. the given value is replicated and stored into the SIMD array. Listing 4.4 shows an
excerpt of the SIMD probing technique. The replicated search value is hashed using the
SIMD hashing function and the slots to probe in the hash tables are determined. Each
slot is extracted using the kextract () function, and the value in the slot is compared
with the search value. The resultant mask from the comparison is then added with the
payloads available in the slot. The SIMD function __mm__cmpeq__epi32() provides -1
in case of a match. Hence, the payload values are subtracted with the resultant masks.

_inline int SIMDprobe(unsigned int key){

k=_mm_cvtsi32_si128(key);
k=_mm_shuffle_epi32(k,0);

foffset0 = kextract(h,2);

slot0 = hashtable[foffset0 |. keys;

tmp0 = _mm_cmpeq_epi32(k,slot0);

hashtable| foffsetO |. payloads = _mm_sub_epi32(hashtable[foffset0].payloads,
tmp0);

foffsetl = kextract(h,6);

tmpl = _mm_andnot_sil28(tmp0,tmpl);
hashtable[foffsetl |. payloads = _mm_sub_epi32(hashtable[foffset1].payloads,
tmpl);

int maskval = !((_mm_movemask_epi8((__m128i)tmp0)) || (
_mm_movemask_epi8((__m128i)tmpl)));
return maskval;

Listing 4.4: SIMD probing
Since we use splash tables for our implementation of cuckoo hashing, the probing of a

value is done for values available in same slot for both the tables. Hence, there might
arise a situation where the hash function might provide the same slot for both tables.

40 4. Vectorized Hash Based Aggregation - Implementation

In this scenario, the aggregate value would be added twice. To eliminate this error,
we use the _mm_andnot_si128() function. This function performs B AND (A). This
function ensures that value of aggregate is not changed by the second slot’s probing if
the value was updated during the probe of the first slot. The maskval returned by the

probe function is used to determine if an insertion has to be performed.

4.1.3 SIMD Insertion

The insertion in cuckoo hashing has indeterministic time. This is due to the insertion
cycle. The Listing 4.5 shows the part of insertion mechanism used. The insertion is done
within a FOR loop to make sure the insertion cycle is cut-off. In our implementation, the
limit is set to 1000. Apart from that, the insertion FOR loop is also stopped if no other
value, payload pairs are evicted. Eviction of values is done using the shuffling function
available in SIMD. Insertion of value-payload pair alternates between table 1 and 2.
This is indicated by count value. If count%?2 is 0, table-1 is selected, else table-2. First,
the values and payloads present in the slot given by hash function is pointed by integer
pointers to select each value-payload within the bucket. Depending on the table we are
currently inserting the shifting of values must be done. Since this function shifts all four
values in the SIMD register, the shuffling function-_mm_shuffle_epi32(value,mask)
is used with respective mask to shift only the desired values. For shifting values in table
2, mask value 225 is used and mask is set as 180 to shift values in tablecount 1. Finally,
We insert the valuer and payload pair.

int SIMDinsert(unsigned int searchKey){
for (count=0;((count<1000)&& (key!=0));count++){

h = hash(k);

int xvalkey = (intx) &hashtable[foffset |. keys;
int xval = (int*) &hashtable[foffset]. payloads;

hashtable| foffset |. payloads =_mm_shuffle_epi32(hashtable[foffset |. payloads
1225);
hashtable[foffset]. keys =_mm_shuffle_epi32(hashtable[foffset |. keys,225);

valkey[(2xcountPercent)] = key;

4.2. Linear Probing 41

val [(2xcountPercent)|] = payload;
key = tmpk;
payload = tmpp;

}

if (count >= 1000){
//printf ("count : %d\n”, count);
return —1;

}

return count;

}

Listing 4.5: SIMD insertion

4.2 Linear Probing

Linear probing utilizes a similar physical structure for table as cuckoo hashing table
structure. Hence, the code in Listing 4.1 and Listing 4.2 are reused for data definition
and table structure. But, the access to the buckets and insertion of values into them
are performed differently.

4.2.1 SIMD Probing

In Section 3.2.5, it is given that insertion in linear probing is done along with prob-
ing itself. Hence, insertion is included within the implementation of probing for the
technique. The code excerpt for linear probing using SIMD is given in Listing 4.6.

int VectorProbe(unsigned int key){

unsigned int foffset = hash(key);

slot = hashtable[foffset |. keys;

k = _mm_set_epi32(key key key key);
tmp = _mm_cmpeq_epi32(k,slot);

if (_Lmm_movemask_epi8(tmp)){
hashtable[foffset]. payloads = _mm_sub_epi32(hashtable[foffset].payloads,

tmp);
return 1;

42 4. Vectorized Hash Based Aggregation - Implementation

_m128i zeroPos = _mm_cmpeq_epi32(mask0,slot);
int resMove = _mm_movemask_epi8(zeroPos);

if (resMove){

hashtable| foffset |. payloads = _mm_bslli_si128(hashtable| foffset]. payloads
4);
hashtable| foffset |.keys = _mm_bslli_si128(hashtable[foffset |. keys,4);

//Place the key in first position

int xvalkey = (intx) &hashtable[foffset . keys;
int xval = (intx) &hashtable[foffset]. payloads;
val [0] = 1;

valkey [0] = key;

return 2;

}

foffset =foffset ++;
return —1;

}

Listing 4.6: Linear probing - SIMD probing

Probing starts with executing the hashing function to get the key. The bucket in the
position is probed for the search value. There are three outcomes for this process.

e The value is found in the bucket. Then, the comparison mask is added with
payloads of the bucket and the process is stopped.

e The value is not in the bucket and is full. In this case, the slot value is incremented
and probing is done again with the new bucket.

e At least one null value in the bucket. The value is then inserted into the first
empty location available in the bucket by moving all the values and payloads one
slot towards right.

5. Runtime Analysis of the Hashing
Techniques

Faster processing of hashing technique can be determined by their runtime. This es-
timate of the hashing technique runtime is done with different dataset distributions.
The hashing techniques are tested of their efficiency for both scalar and vectorized
implementation. This is executed to determine the speed up gained by SIMD accel-
eration. We use count as the aggregation function for all the evaluation scenarios. In
Section 5.1, we detail the execution environment and the setup necessary for evaluating
the hashing techniques. We also explain the different dataset distributions used for
evaluation. We provide our analysis about the cuckoo hashing evaluation results in
Section 5.2. Then, we present the results for linear probing in Section 5.3. We pro-
vide a comparative analysis of both techniques based on the results in Section 5.4. We
also provided a comprehensive discussion on the impact of group size in execution of
grouped aggregation in Section 5.5. Finally, we provide our conclusion in Section 5.6.

5.1 Evaluation Setup

The datasets given as input to the hashing techniques ranges from one to fifty million
records with step size of five million. These dataset are evaluated for twenty iterations
and the average of the results are used. We determine the execution time taken for the
techniques in our evaluation. We explain the different distributions used for evaluation
in Section 5.1.1. The details of the execution environment used for our evaluation is
discussed in Section 5.1.2.

5.1.1 Dataset Distributions

The hashing techniques are tested with three different data distribution sets. Two of
these distribution sets have only unique values to be grouped and aggregated. These
datasets are used to test the insertion mechanism of both the techniques. The distri-
butions used are,

44 5. Runtime Analysis of the Hashing Techniques

Dense unique random distribution

As the name suggests, the data in the dense unique random value distribution are all
unique and are densely populated. This random distribution of unique values leads to
scattering of values. The values in this distribution are generated using the generator
explained in [GSET94]. For generating a value in the distribution, We select a prime
number(P) greater than the dataset size(n) and a random generator(G)' . New value
is generated by performing value(i) = G* mod P.

Sequential distribution

Sequential distribution generates series of values, creating a sequence of given order. In
our evaluation, we used a arithmetic progression generator with step size(S). A value
in the series is generated by, value(i) =i * S.

Uniform random values

All data in uniform random distribution have the same probability. Generation of each
value in this series is random and does not depend on the previous value generated.
The values are generated using, value(i) = rand().

5.1.2 Evaluation Environment

All the evaluations are ran on a machine running CentOS Linux version-7.1.1503 with
Octa core Intel Xeon E5-2630 v3s- 2014. The machine has 1024GB RAM for processing
and memory.

5.2 Cuckoo Hashing Evaluation

Cuckoo hashing has an indeterminate insertion time. Hence, we have split the execution
time for cuckoo hashing into insertion time and probing time. The analysis is performed
to determine the general impact of insertion and probing in cuckoo hashing. We also
compare the execution time needed for scalar and vectorized cuckoo hashing for both
insertion and probing. In Section 5.2.1 we detail the results for cuckoo hashing insertion
and in Section 5.2.2 we discuss the results for probing.

5.2.1 Insertion

The insertion time taken for scalar and vectorized cuckoo hashing for the given distri-
bution sets are plotted in the charts. Since cuckoo hashing is prone to insertion cycles,
there could be potential outliers forming the insertion loop and deteriorating the exe-
cution time. Hence, our test script record only the runtime for successful insertion.

IFor dispersion of values in the distribution

5.2. Cuckoo Hashing Evaluation 45

Dense unique random values

For dense unique random distribution of values, the insertion time increases with in-
crease in unique values as shown in Figure 5.1(a). Figure 5.1(b) shows that insertion
is nearly constant for both scalar and vectorized cuckoo hashing. Also, we see SIMD
acceleration is nearly 1.5 times faster than scalar insertion. The insertion time im-

pacts the overall execution for this distribution as the values are unique and insertion
is executed for every values.

Cuckoo hashing - Insertion Cuckoo hashing - Insert single value

Dense unique random values Dense unique random values

000000045
0.0000004 M

A4 0.00000035

00000003

0.00000025 =~ Scalar insertion
00000002 —_———— % _+ SMDinserion
000000015

00000001

0 ~m- scalar insertion
~+—SIMD insertion

Time (in Millisecs)
Time (in Millisecs)

0.00000005
3

5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000 5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000

Data size (in Millions) Data size (in Millions)

a) Total insertion time b) Insert time - individual value

Figure 5.1: Cuckoo hashing insertion - dense unique random values

Sequential values

Figure 5.2(a) details the insertion of sequential values. The chart shows a similar
runtime as dense unique random distribution. Figure 5.2(b) plots the insertion time
taken to insert single value. This time is a constant with scalar insertion time as 0.2
microseconds and SIMD based insert is 0.4 microseconds. Hence, the speed up of SIMD
acceleration is factor of 2 over scalar insertion. The hashing function disperses the insert
values and stores them without many swaps.

Cuckoo hashing - Insertion Cuckoo hashing - Insert single value

Sequential values Sequential values
E)

16
1

~@- Scalar insertion

0.00000025 —m- Scalar insertion
~&— SIMD insertion

0.0000002 —&— SIMD insertion

10

Time (in Millisecs)
Time (in Millisecs)

0.00000015
0.0000001
0.00000005

o
5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000 5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000

Data size (in Millions) Data size (in Millions)

a) Total insertion time b) Insert time - individual value

Figure 5.2: Cuckoo hashing insertion - sequential values

Random values

In case of random distribution of values with constant number of groups the insertion
time is given in Figure 5.3. The total time taken to insert all the values (Figure 5.3(a))
shows linear growth. As the number of groups is given as a constant, the values within

46 5. Runtime Analysis of the Hashing Techniques

each group increases with increase of total data size leading to the linear growth of time.
Also, the insert time for single value (Figure 5.3(b)) is showing a minute increase with

data size. As the values are randomly generated, the possibility of collision is higher.
Thus the insertion runtime increases with unique data.

Cuckoo hashing - insert

Cuckoo hashing - Insertion Random values
0.45
Random values
0.4 .__.__..__.—-—-——I—I——"
u
035
)
03
10 0.25
02 =8 Scalar Insertion
% —e— SIMD Insertion
Time (in Milisecs) 0.15
0.1
0.05

-~ Scalar insertion
~+—SIMD insertion

Time (in Millisecs)

5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000

- FELELTES S

Data size

Total insertion time

Insert time - individual value

Figure 5.3: Cuckoo hashing insertion - uniform random values

5.2.2 Probing

We use probing for path selection in the hashing techniques. Hence, the probing mech-
anism is done for all the values to be processed. The graph in Figure 5.4 shows a linear
growth of runtime with increase in values and is constant for all the distributions.

Cuckoo hashing - probe Cuckoo hashing - probe

Dense unigue random values Sequential values

—a— scalar probing

—¢— SIMD probing

8 =@ scalar probing
6
Time (in Millisecs)
4
2

—e— SIMD probii
Time (in Millisecs) L

PEESEEPES LSS

Data size Data size

a) Dense unique random distribution b) Sequential distribution

Cuckoo hashing - probe

Random values

20 —8— scalar probing

—e— SIMD probi
Time (in Millisecs))

Datasize

¢) Uniform random distribution

Figure 5.4: Cuckoo hashing probe - total runtime

5.3. Linear Probing Evaluation 47

We also see from Figure 5.5, the SIMD has nearly the same speed as scalar probing
mechanism. This is the maximum speed up that can be achieved as we probe two values
in SIMD based probing.

Cuckoo hashing - probe

SIMD speed-up
1.4

12

1
0.8 - | Scalar-SIMD ratio
0.6+ |
0.4
0.2+ |
o

Sequential Values
Dense Unique Random Values Uniform Random Values

Figure 5.5: Cuckoo hashing probe - SIMD v scalar processing time

Thus, we conclude in this section that SIMD acceleration provides faster results in
cuckoo hashing with speed-up in both insertion and probing components. In the fol-
lowing, we analyze the execution results for linear probing mechanism.

5.3 Linear Probing Evaluation

Linear probing has no special mode for insertion. Insertion in linear probing takes
constant time as we insert the value in the empty location found by probing. The
results plotted for linear probing is shown in Figure 5.6.

We found that SIMD provides very less acceleration compared to scalar linear probing.
The SIMD speed-up is nearly the same as its scalar counterpart. This is shown in
Figure 5.7.

1.02

1.018 +
1.016 +
1.014 +
1012

1.01+ | W Scalar-SIMD ratio
1.008 +
1.006

1.004

Dense unique random values Sequential Values Uniform Random Values

1.002

Figure 5.7: Linear probe - SIMD v scalar processing time

48 5. Runtime Analysis of the Hashing Techniques

Linear probing Linear probing

Dense unique random values Sequential values
14 16
12 14
10 12
10

=8~ Scalar probing
=8 SIMD probing

=8~ Scalar probing
8 == SIMD probing

in Millisecs)
in Millisecs)

(i
(

Time
Time
o N & oo

5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000 5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000
Datasize Datasize

a) Dense unique random distribution b) Sequential distribution

Linear probing

Random values

=
5

—m— Scalar probing
o= SIMD probing

Time (in Millisecs)
ocrNwAGO~N®D O

5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 45000000
Data size

¢) Uniform random distribution

Figure 5.6: Linear probe - total runtime

The SIMD version of linear probing suffers from the overhead of preparing the values
for SIMD processing. In scalar version, the values are directly processed without any

preprocessing step. This leads to faster processing in scalar probing technique than
vectorized technique.

5.4 Comparison of Probing in Cuckoo Hashing and
Linear Probing

Figure 5.8 depicts the combined graph of linear and cuckoo hash probing. We see
probing in both the techniques are nearly having same execution time for distributions
with unique values.

In case of distribution with multiple duplicate values, the performance of cuckoo hashing
drops. Also, the cuckoo hashing insertion is ignored in the comparison and still it works
slower than linear probing. Based on the results, it is clear that linear probing is faster
than cuckoo hashing for both scalar and SIMD accelerated executions.

Cuckoo hashing suffers high processing time due to its insertion. While linear probing
can store values until the whole hash table is full, cuckoo hashing can form insertion
loops with free spaces available in the tables. Also, from the evaluation results it is
found that SIMD has good speed-up in cuckoo hashing but SIMD does not affect the
execution time in linear probing due to other overheads.

5.5. Impact of Group Size 49

Probing Probing

Dense unique random values Sequential values

~B— Linear probing — scalar

g —e— Linear probing — SIMD. g :i _—:—- E::: z:’;:ﬁ - Ssclrag

= Cuckoo hashing — scalar H 8 Cuckoo hashing — scalar

1 o g o ol
a) Dense unique random distribution b) Sequential distribution

Probing

Random values

- —m— Linear scalar probing
g 2 = Linear SIMD probing
£ o
s % Cuckoo hashing — scalar probing
R —i— Guckoo hashing ~ SIMD probing
s
2
g

2

o

¢) Uniform random distribution

Figure 5.8: Probe time for all techniques

5.5 Impact of Group Size

The hashing techniques are fed datasets with varying group sizes. Increase in number of
values in a group decreases the number of inserts being carried out. Figure 5.9 depicts
the impact of group size in the hashing techniques.

Varying group size Varying group size

Cuckoo hashing Linear probing

—a—Scaiwr CH
——siMDCH

e
——SIMDCH
Tme (nMilisecs) 002 Tme (nMitisecs)

PSPPI ORI AP PR PRI PP IEPPOPIPS P PEEODORHIP AL RERIEPEIERPRRI OSSP

Data size (%) Datasize (%)

a) Cuckoo hashing b) Linear probing

Figure 5.9: Impact of group size

From the results, we find that the cuckoo hashing implementation works faster than
linear probing for datasets having number of groups less than 50% of total values. The
high runtime within this range is due to the high insertion rate in these datasets. In
case of linear probing, we find a near constant results for scalar and SIMD versions.

50 5. Runtime Analysis of the Hashing Techniques

Varying group size Varying group size

§8 8 8 ® 8

PEEPID PR IPA SR ERIPPOLECCLRLIES PP

Datasize (%) Datasize (n%)

a) Probing b) Probing and insertion

Figure 5.10: Group size with combined hashing techniques

On analyzing the combined results of both the hashing techniques, we find that in case
of only probing cuckoo hashing works faster than linear probing for group size less than
54%. This is given in Figure 5.10. The slower linear probing speed is due to the high
insertion rate in this range. Comparing the total runtime for both the techniques, we
see that the SIMD cuckoo hashing and both scalar and SIMD versions are having same
runtime until group size of nearly 55%. The scalar cuckoo hashing takes more time for
execution for group size less than 50% as there are many values to be inserted.

5.6 Evaluation Result

In this section, we provide our overall inference on the results. Based on the results,
it is evident that the insertion in cuckoo hashing is an overhead. Although the SIMD
accelerated approach for insertion provides a considerable speed-up in cuckoo hashing,
probing in cuckoo hashing is not providing any significant impact in the execution time.
This is due to the extra overheads available in preprocessing the values to fit the SIMD
execution.

From the results for linear probing, the execution is auto-vectorized by the compiler
for efficient execution. Also, the SIMD version of linear probing also has penalty in
adapting the values for SIMD processing. Hence, the linear probing does not have high
impact due to SIMD acceleration.

Finally from our analysis of varying group size, we found that