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Abstract

The constant evolution of the field of metaproteomics creates vast quantities of
data. The ample amounts of new data provide the opportunity to study organic
samples by analyzing the contained proteins thoroughly. There are already existing
software tools used to identify peptide sequences, such as X!Tandem, Mascot, and
Andromeda, but there is a lack of tools able to work with experimental data in
real-time. We present a new protein identification software - Cassiopeia. It uses
the same evaluation mechanism used in the open-sourced Max Quant product -
Andromeda, and produces similar results. Our evaluations show how the scoring
algorithm is used as a cross-validation mechanism, integrating it into an existing
cloud environment, able to process mass spectrometry data as a stream. Cassiopeia
is a part of an already existing protein search engine - MStream, which uses fast
data architecture and is deployed onto existing SMACK stack environment.
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1. Introduction

The study of proteins in living organisms provides an exciting opportunity in learn-
ing how cells behave and interact with their surroundings in different environmental
conditions [PF17]. The presence of proteins gives insight into possible organisms
behavior. Proteins can be used as features, indicating the presence of viruses or
bacteria. They can help distinguish the presence of diseases so that appropriate ac-
tions can be taken. The biological field concerned with the study of proteins is called
proteomics [AMO03]. Proteomics concerns itself with the composition of one single
organism. Distinguishing between many organisms is subject of metaproteomics.
Both research fields are done with the help of mass spectrometers [WS07]. Mass
spectrometers attempt to analyze the structure of an organism by subjecting the
organic compound to an analysis. Organisms are composed of proteins, which are
amino acid chains [SSM58]. Amino acids are chemical compounds consisting of dif-
ferent chemical elements and follow the rules based on chemistry to bond with other
amino acids [Nus81]. A protein can be divided into sub-proteins, so-called peptides.
A visual representation of the whole structure may be seen in Figure 1.1.

Mass spectrometers measure biological samples and produce mass spectra as output
[AMO3]. In Figure 1.2 the workflow of a metaproteomic experiment is displayed.
Step 1 shows the biological preparation of an organic sample. The step includes the
acquisition of an organic sample, purification, separation, and possible other pre-
processing steps. The sample is then fed into a mass spectrometer, which measures
the data and records the measurements and stores the result into storage, repre-
sented by step 2. Performing an experiment measurement typically lasts around two
hours, depending on the sample size and the environment variables, which need to
be configured. [HSZ"17]. The transformation of results into electronic format is the
digitization of the experiment outcome. In step 3 the raw data from the experiment
is converted into a suitable format, usable by a protein identification software. The
experiment results can be then used by a protein identification process [NPPCC99].
The protein identification generally is composed of a protein knowledge database,
which describes known protein sequences and additional meta information. A soft-
ware tool analyzes the data and attempts to identify known chemical compounds,
represented by step 4. The data generated by the mass spectrometer is then analyzed
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Figure 1.1: Visual representation of amino acids, peptides and proteins. Each circle
color represents different amino acid. Chains of amino acids construct a peptide and
groups of peptides form a protein.

and compared against the protein database. The best matches can be validated, and
in the end, conclusions can be drawn. There a couple of known protein identifica-
tion software tools present, such as Mascot [NPPCC99], Andromeda [CNMT11],
X!Tandem [BCC*08] and more. The final step 5 is the validation of the correctness
of the results, in order to guarantee that the evaluation can be trusted.

The state of the art protein processing tools rely on having the whole data set
on which analysis will be performed beforehand. For the analysis to be thorough,
analytics need the whole volume of experimental data present. Most of the current
software tools are not explicitly set up to work with parts of the experiment result
and to produce valid results. A single mass-spectrometry experiment can also last
a while, based on the time needed to prepare for the measuring step. This limits
analysts as they need to wait until all measurement information is ready for the
next stage. After the experimental data is gathered, it is transformed into a format,
since each algorithm differs in implementations. This transformation step usually
lasts another hour (step 3 from Figure 1.2). The transformed experimental data is
also substantial in size, directly correlating to the experiment, and the processing
time ends up taking another couple of hours [HSZ*17]. In the end state of the art
tools can begin working with data after at least a couple of hours have gone by for
the measurements, digitalization, and conversion (steps 1, 2 and 3 in Figure 1.2)

Some of the most known existing protein identification software tools, such as An-
dromeda, X!Tandem and Mascot ([CNMT11], [BCCT08], [CB03]), work with the
transformed data in batches. The encapsulation of experimental data into batches
is done so information can be processed in chunks and to offer eventual paralleliza-
tion of work. Although efficient for areas, where the data may be already available
beforehand, this approach fails to accommodate use cases, where the results need
to be analyzed on the fly. An example situation would be a clinical trial, where
breakthroughs may offer significant immediate gains of knowledge, and it is most
beneficial to know about them as soon as possible. The real-time analysis presents
a problem, which requires the design and implementation of a new pipeline, able to
handle real-time data, instead of waiting for the whole measurement to complete.

Our paper focuses on an already existing solution by Zoun et. al ([RZS18]) in
handling streams of data on the fly, where experiment data is transformed and ana-
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Figure 1.2: Flow of a mass spectrometer analysis [RZS18]. The steps are as follows:
1. Biological preparation; 2. Measurement by a mass-spectrometer; 3. Conversion
of data; 4. Identification of sample; 5. Validation of results
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lyzed in near real-time. The existing solution uses X!Tandem ([BCCT08]) as protein
identification software and is deployed on an environment using SMACK ([All13])
environment. If we want to improve the analyzing process, only one search engine
may not be enough. The system will benefit from an additional scoring approach,
which can be used as a cross-validation mechanism. We focus on adding another
open-source protein identification software to the identification step: Andromeda
[CNM*11]. We intend to complement the existing solution by adding a second
scoring mechanism. The usage of a second protein search tool will be used to cross-
validate any results, thus increasing the confidence in the results and validating the
software performance and reliability.

The original Andromeda algorithm has a validated, tested, and peer-reviewed perfor-
mance. Therefore the scoring method will be enough Should we be able to recreate
the results and be able to analyze the data on the fly with a streaming architecture
using fast data [Wam19] we will enable the analysis of data in real-time. Addition-
ally, a new software tool could be used as a measure of cross-validation for protein
identification. Achieving high scores on guesses obtained by multiple independent
tools will boost the confidence rating of a match.

Goal of this Thesis

In this paper, we will present our new protein identification software: Cassiopeia.
Based on the open-sourced stand-alone Andromeda, developed by MaxQuant, we
attempt to integrate our new solution into a MStream environment. The MStream
platform has previously been developed by Zoun et. al in [RZS18], as a proof of
concept for the near-real-time analysis of tandem mass spectrometry data. The
main goal is to provide answers to the following questions:

e How do the results of Cassiopeia compare against Andromeda and is the new
tool supplying correct evaluations?

e Are Cassiopeia scoring results an improvement on the overall results produced
by MStream?

e [s the performance of Cassiopeia better than MStream state of the art?

Structure of the Thesis

This work is structured as follows: in Chapter 2 we give all the needed background
knowledge to understand the biological terms, the software architecture concepts,
and history of the evolution of the protein identification software. In Chapter 3
we will present our concept for Cassiopeia, the goals and the target results. In
Chapter 4 we will present the concrete technologies used to implement the concept.
After that we will present our achieved results and will discuss what knowledge we
gained in Chapter 6. Finally, we will sum up our work by covering the viability
of our software, the correctness, and its efficiency when compared to other protein
identification software, while taking into account the environment in which the tool
is deployed.



2. Background

In our work, we present a new protein identification software. Its purpose is to
analyze metaproteomic data measured by mass spectrometers. In this chapter, we
cover the technological concepts of the underlying biological knowledge discussed in
this paper. We also cover the inner workings of the Andromeda software and how
it evaluates potential peptide matches.

2.1 Mass spectrometry

Protein analysis by MS has been gaining increasing popularity with the years. Pre-
viously the best results were obtained from small sets of proteins in an isolated
environment. With the years passing by and people using already gained knowl-
edge, the process has improved. Having access to better hardware and technology
processes further sped up the knowledge gain in this field. It is still proving to be a
difficult task because the structure of proteomes has significant and highly variable
complexity. The number of proteins outnumbers the number of proteins in a species
proteome vastly when compared with the corresponding genome. This is made pos-
sible by the ability for different protein splicing, presence of sequence polymorphisms
and in general, the ability to accumulate proteins in various manners.

In the previous section, we covered the data-working process. In this chapter, we
will focus on the what the data is representing. First, we will go over the biolog-
ical concepts regarding metaproteomics, and then we will briefly describe how we
measure them with the mass spectrometer.

2.1.1 Metaproteomics and mass spectrometry

A protein is a chemical compound composed of a sequence of amino acids [Sar92]. An
amino acid is an organic molecule with known properties; they are the main building
blocks of organic structure. There are roughly 500 naturally occurring amino acids
[WMS83] but in the term of biochemistry we consider only 22 different types of
amino acids. We do this because organisms are always built by the combination of
these 22 amino acids, a table of them can be seen in Table 2.1. Each amino acid
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is represented by a different letter abbreviation and has a different mass property.
In a computational environment, an amino acid chain is represented as a string,
composed out of those letters. A protein is any sequence composed of more than 30
amino-acids; otherwise, the chain is regarded as a peptide. An example of a peptide
would be the string "AEFVEVTK”. This peptide will have a mass influenced by
the sum of the masses of all present amino acids. Based on the mass-spectrometry
experiment, some of the organic compounds may be modified. On top of that the
modifications can be two types:

e fixed modifications: they represent a specific amino acid, that is modified in
the experiment environment. Usually, a modification is added instead of one
of the 22 available, where the default mass property has a modified value. Any
protein strings, containing the modification will use its altered mass instead of
the default one.

e variable modifications: they again represent some amino acids that are mod-
ified in the context of the mass-spectrometry analysis. They do not directly
replace the default mass property but instead result in an amino acid chain
that has two different masses: one with the default mass and one with the
modified value. For example, if we have a variable modification on Alanine,
the peptide "AEFVEVTK?” will have two different masses.

Additionally, the same peptides may be arbitrarily present in many proteins. Those
can be treated as biomarkers to identify the presence of already known proteins
[HBST93]. Identified peptide sequences are used to build protein sequence databases,
which are later used to find the presence of known organic mixtures in an unknown
sample. The scientific area, which is tasked with the finding of peptides, is named
proteomics.

2.1.1.1 Proteomics and Metaproteomics

The biological field of proteomics is concerned with the study and identification of
proteins expressions [AA98]. Its goal is to correctly classify protein structures and
changes in their compositions occurring naturally over time or caused by environ-
mental effects. The main benefit of the proteomic study is the ability to identify
known proteins [BW99]. Those proteins can be the building blocks of a bacteria
[VRST08], be a biomarker for the presence of an illness [PA06] or a byproduct of a
chemical process [WGST09].

Metaproteomics is an extension of the field of proteomics [MRMLO7]. The added
difference is the more significant scope of research, where it could perform exper-
iments on samples of whole microbial communities. This is especially useful for
areas like biogas plants [HKRBI15] or research on human gut bacteria composition
[VRST08]. The field has been steadily gaining pace in terms of applicability in recent
years, thanks to the technological advances in mass spectrometry instrumentation,
creating more and more data and enabling more in-depth studies.
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Amino acid

Letter abbreviation

Average mass (Dalton)

Alanine A 89.09404
Cysteine C 121.15404
Aspartic acid D 133.10384
Glutamic acid E 147.13074
Phenylalanine F 165.19184
Glycine G 75.06714
Histidine H 155.15634
I[soleucine I 131.17464
Lysine K 146.18934
Leucine L 131.17464
Methionine M 149.20784
Asparagine N 132.11904
Pyrrolysine O 255.31
Proline P 75.06714
Glutamine Q 146.14594
Arginine R 174.20274
Threonine T 119.12034
Selenocysteine U 168.053
Valine \Y 117.14784
Tryptophan W 204.22844
Tyrosine Y 181.19124

Table 2.1: List of the proteinogenic amino acids, the building blocks of protein and
peptide sequences.
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2.1.1.2 Mass spectrometry

Mass spectrometry (MS) experiments are carried out on the organic samples. The
samples are turned into their gas aggregate states and then ionized [AMO03]. The
effects are observed with a mass spectrometer. A mass spectrometer has an ion
source and a mass analyzer which measures the mass-to-charge ratio (m/z) of the
ionized sample. The count of present ions is taken as the final result, expressed
in the sample’s molecule mass and molecule formula. An example can be seen in
Figure 2.1. The goal of the mass analyzer is to measure the sample with regards to
sensitivity, accuracy of the mass measurement, and high resolution. These properties
provide information in the form of ion mass spectra, derived from the peptide frag-
ments (tandem mass or MS/MS spectra) [AMO03] [PMO00] [AGO1] [MHPO1]. Tandem
mass spectrometers split the protein sample into peptide fragment ions and store
the resulting fragment ion spectra [AGO1]. The observed fragment ion spectra are
generated by a process named collision-induced dissociation. During it, the peptide
ion is fragmented and then analyzed in an isolated environment. This second stage
is used to recognize familiar bio-markers to identify known or unknown peptides.
The main benefit of tandem mass spectrometry is the extensive sequence informa-
tion obtained on the whole protein chain. The means of extracting information by
splitting is also straightforward when considering the overhead for splitting proteins
and purifying the resulting samples [HYS*86]. The sample can be inspected without
requirements of it to be purified and in a highly homogeneous state. This represents
step 1 from Figure 1.2.

2.1.1.3 Data formats used in mass spectrometry

Measuring the data is the first step of protein identification. The measurements are
then digitized and stored into files for future usage. The information provides links
between the proteins and their coding genes which ties together the physiology and
genetics of a microorganism. Information can be encoded in different file formats,
either proprietary or open formats [Deul2]. An open data format allows the usage of
the data by any tool, suited for said format, whereas proprietary ones are typically
used for specific models of mass spectrometers or in a company. Open formats can
be further separated as:

e officially recognized standard - gone through official peer reviews and multiple
refinements

e de facto standard - without official recognition but commonly used by many
protein identification tools

e other standards

A typical open official format in which the information is stored is the Mascot
Generic File (MGF) format [MTS*04], an example can be seen in Listing 2.1.

The data encoded in MGF format describes individual spectra. These spectra, or
also called peaks, can be used as indicators for the presence of peptides. From
the observation of peptides, we can deduce possible original proteins present. To
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100

Relative Intensity

m/z

Figure 2.1: Mass spectrum result. The x-axis represents the mass to charge ratio
and the y-axis is the relative intensity of the measured signal strength from the
sample. High intensity values indicate possible presence of corresponding amino
acid sequences. [Ree88|
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BEGIN IONS
TITLE=Spectrum000101 AEFVEVTK +2 y— and b—series
PEPMASS=308.16757 2000000
CHARGE=3+
RTINSECONDS=100
SCANS=25000

36.52588 100000 1+
74.06009 100000 1+
101.04717 100000 1+
124.58392 100000 1+
174.11813 100000 1+
201.08703 100000 1+
224.11559 100000 1+
238.63943 100000 1+
288.17363 100000 1+
338.17109 100000 1+
348.15544 100000 1+
388.69493 100000 1+
447.22386 100000 1+
576.26645 100000 1+
675.33486 100000 1+
END IONS

Listing 2.1: MGF format example, used to encode a single spectrum or also called
peak. In this example the peptide sequence is present. The sequence can be obtained
from the analysis of the "PEPMASS” and the mass-to-charge ratios represented by
the triples of numbers.

check if the experimental data indicates a peptide or protein presence, we construct
theoretical spectra. We construct them by using a peptide sequence database. This
database contains the amino-acid sequence information of proteins. The sequence
database can be encoded in different formats, but the general concept is to represent
a protein structure as a string of amino acids elements. The same information can
also be encoded in other formats, for example APL (Listing 2.2). The information
present in the MGF format is also present in the APL file, although some differences
are present. For example, APL states the type of fragmentation used for deriving
this peptide. A common fragmentation used is HCD fragmentation [L.Q13], which
is for short for high-energy collision dissociation. The fragmentation is used to split
proteins into peptides and can be used as an identification method, since different
fragmentation types follow strict patterns in producing amino acid sub-sequences.

Mass also has intensity, where different intensity levels signal the presence of ions
located in the mass spectrometer [Dom06]. Low intensities can be assumed as noises
of the signal. For example, in Listing 2.2, we have some tuples of masses with in-
tensities. Higher intensities mean higher probability for meaningful particles. Lower
intensities have a more significant probability of being noise. We look into the mz
value is the monoisotopic weight of the ions in a peptide. The Cassandra database
contains an ordered by mass list of known peptides. We expect to be supplied with
a peptide which has a similar mass of the peak, where the closer - the better.

For example, we can consider the FASTA format example of a two protein entries
seen in Listing 2.3. We can observe two distinct organic compounds, and to be
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peaklist start
header=Precursor_13428
mz=401.7435005663026
charge=2
fragmentation=HCD
224.105 9.0

236.774 9.0

310.843 9.0

343.664 9.0

562.914 9.0

570.607 9.0

850.545 9.0

929.528 9.0

1385.651 9.0
peaklist end

Listing 2.2: APL format example used to encode a single spectrum. It contains the
mass-to-charge ration, the charge and tuples of mass-intensity values. The fragmen-
tation type used to obtain this peak is also present under "fragmentation”

precise: a header, containing some protein-specific information and an amino-acid
chain sequence. We can use this protein string to obtain a set of peptides, usable by
the mass spectrometer. We split the proteins with rules, consequences of the presence
of an enzyme or other experimental factors. For example, when a particular amino
acid is present in the protein sequence, we can utilize a rule to split the chain at the
amino acid [SCHO1]. After having split the protein chain, the matching can begin,
where real-world results are compared with theoretical values. The picture seen in
Figure 2.3 describes this process.

In the upper part, there is visualized the real-world preparation and analysis of or-
ganic samples. Before an organic compound is subjected to a metaproteomic anal-
ysis, it is purified, so only proteins remain. Having done that, they are subjected
to enzymes and other environmental properties, specific to the experiment, so the
protein amino acid chains break down into peptides. This is done by the process
of proteolysis [DS10], which is the breakdown of protein chains into its derivatives.
The natural process of proteolysis is slow but can be sped up by the introduction
of enzymes, called protease. For example, a common protease is Trypsin [RLLKO06],
a serine protease, which is commonly found in the digestive systems of many verte-
brates. Trypsin cleaves peptide chains at specific amino acids, which are predefined.
This means the protein chain will be cut and the resulting sub-chains, an example
can be seen in Figure 2.2. In the picture a protein is subjected to an enzyme which
will alter the protein structure and produce two distinct peptides.

The enzyme cleaves the protein in specific positions, producing peptide strings. Each
enzyme contains different rules, deciding at which position the peptide string will
be split. For example, for Trypsin enzyme, the cleavage rules are the letters K
and R, representing Lysine and Arginine. Should an amino acid chain contain those
letters, the peptide will be considered in an array of substrings of the original organic
compound. The enzyme also contains a restriction set of amino acids, which impede
the split process as an extension to the rule.
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Figure 2.2: The hydrolysis of protein (red) by the effects of water (blue) [RLLKO06].
The properties of water manage to split the peptide into two at a specific amino acid
site. By Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org
/w/index.php?curid=42390219

The end products are fed into the mass spectrometer, which measures the properties
of samples in sequence and outputs a result for each measurement. This process,
called protein sequencing [Met10], can be mimicked and applied to the sequence
database. By applying the same rules, that are set to for the experiment phase,
the resulting peptide set should be the same. In the bottom part of Figure 2.3,
we attempt to do the same process but with software. We analyze a preexisting
set of known protein chains and apply the same rules that should, in theory, occur
in the real world experiment. We implement the rules that are a consequence of
the presence of a digestive enzyme and factors in additional experimental setup
properties. The rule set is then applied to the proteins, which are represented
as strings of characters, encoding the exact amino acid sequence. The output is a
peptide data set with theoretical properties, derived from the sub-string representing
their amino acid sequence.

Having obtained a theoretical match for a single mass spectrometry spectrum, we
evaluate the similarities of both real and theoretical spectra. Due to the real-world
experiments being subjected to noise, fluctuations of the measuring digital signal,
presence of contaminants or unforeseen environmental influences, it is challenging to
have precisely the same properties with the theoretical counterpart. A good analogy
for the comparison would be a picture of the object on a piece of paper and the object
in real life - no matter how close the picture looks like the original, it lacks a whole
dimension at least. The upside of this consequence is that excellent matches will
less likely be wrongly classified.
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2.2 Protein identification

In the real world, samples are rarely pure, and the presence of contaminants is to
be expected. When analyzing a sample, ideally, the sequence database used should
contain the composition of the protein, which is expected to be found. This is
also a challenge, especially in the area of metaproteomics, where a set of various
organisms are present. Identified possible peptides from the MS measurements are
also often not contained in the knowledge base. The process of matching is finding
the peptide from a spectrum, which has the highest probability to be a match, for
the theoretical spectrum. The real-world samples may differ a bit or significantly
from their theoretical counterparts [MBR™13]. Finding better ways to study samples
and the ability to improve the matching phase has been a continuous driving force
in the improvement of the metaproteomic field.

With improved experimental setups, the ever-increasing computational power and
newly found architectures and algorithms for analysis result in the increase of the
available data for analysis. Despite all the progress, there still remain problems to
be solved, the most Important ones, as described in [SM19], are as follows:

e difficulty in choosing representative sampling and protein extraction methods

e issues with selecting appropriate proteomic workflows and experimental set-
tings

e item lack of tools and guidelines for optimal use of data analysis methods
for identifying, annotating, and quantifying proteins to resolve community
function accurately and to compare heterogeneous samples across time and
space robustly

>sp|P02769|ALBU_BOVIN Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4
AEFVEVTKLVTDLTK

>sp|Q6GZX4|001R_FRG3G Putative transcription factor 001R

O0S=Frog virus 3 (isolate Goorha) GN=FV3—001lR PE=4 SV=1
MAFSAEDVLKEYDRRRRMEALLLSLYYPNDRKLLDYKEWSPPRVQVECPKAPVEWNNPP S
EKGLIVGHFSGIKYKGEKAQASEVDVNKMCCWVSKFKDAMRRYQGIQTCKIPGKVLSDLD
AKIKAYNLTVEGVEGFVRYSRVTKQHVAAFLKELRHSKQYENVNLITHYILTDKRVDIQHL
EKDLVKDFKALVESAHRMRQGHMINVKYILYQLLKKHGHGPDGPDILTVKTGSKGVLYDD
SFRKIYTDLGWKEFTPL

Listing 2.3: FASTA format example. In this listing there two proteins described, a
header is given after the ">’ symbol, describing the protein, followed by its compo-
sition, represented by an amino-acid chained expressed as a string. Typical usage of
this format is for a protein sequence database

2.2.1 Protein identification software - state of the art

A protein identification software needs to analyze vast amounts of metaproteomic
experiment data obtained by mass spectrometry measurements. As input, the sam-
ple is digitized and may be encoded in different file formats. After this step, the
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Figure 2.3: Process of matching peptides. An assumption is built from theoretical
protein composition and the theoretical values are compared with the spectra mea-
sured by a mass spectrometer. Theoretical values are calculated in ideal condition,
while in the real world the presence of noise and contaminants is to be expected.
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data may be used after converting it to a format, complying with the software, used
to find known organic structures in the sample. This represents the third step in
Figure 1.2.

Identifying proteins has been achieved by several different algorithms, such as Mas-
cot [NPPCC99], Andromeda [CNM*11], X!Tandem [BCC*08], Sequest [Tab15] and
others. Each differs in the approach towards recognizing a sample. However differ-
ent these methods follow the same idea. First, there is a need to analyze the sample.
Protein sequence databases have been built by analyzing proteins and methodically
applying splitting (cleavage) rules, digesting the proteins into smaller parts - pep-
tides.

During the splitting, the probability of a peptide occurring in a protein is measured,
since a single peptide may be present in more than one protein. This knowledge
base allows scientists to compare theoretical peptide with real-world experiment
data. Masses are matched and scored with varying probability by analyzing the
sample and counting the found known elements. If the recognized peptides are the
building blocks of some know proteins, a guess might be deduced. This guess has
various levels of confidence, based on the number of shared features a sample has
to a theoretical peptide. Following a probability approach is beneficial in this case
because the decision for significance can be obtained based on a set of rules. Those
rules may have arbitrary complexity, mimicking the mass spectrometry experiment.

Matching a peptide and a spectrum produces a score based on a scale. The scale
differs between algorithms, however the lower the probability of a match being found,
the higher the assigned score will be. The significance of the match is also influenced
by the data set being observed and the available protein knowledge base. Naturally,
more knowledge leads to better assumptions, but this also means that a sample
with a particular mass may also have much more candidate peptides or proteins.
Additionally, the resulting mass might be just a result of chance, so the probability
is further adjusted with constraints. For example, we might have identified 6 out
of 10 known peptide masses, which belong to the same protein. Let us assume the
probability for that would be a 107°. The chance may seem extremely small, but
if we take into account that nowadays, sequence databases have well over million
records in them, the scenario of finding a match by chance is quite significant. A
common threshold for an observation to be made by chance is the probability of less
than 5%. This means that for a data set consisting of 107 entries, the number of
essential matches would be 5 x 107?. The resulting number is too small and varying,
so it has been widely established to accept results with a score of —10Logo(P) as
a significant match [NPPCC99]. A match with a higher score represents a protein
which is a better fit for the sample, and typically suitable matches have scored higher
than 70.

The state-of-the-art protein identification software tools rely on having a complete
digitized mass spectrometry experiment data before analysis begins. Depending on
the tool and use case, knowledge bases represent a reference, for the experimental
data is also built on the fly. This is decided based on the use case and the expected
presence of know peptides. In the work by Zoun et. al. [RZS18], data is being pro-
cessed as soon as results are digitized. This leads to a near-real-time data analysis,
and this is also the target behavior of our own tool Cassiopeia. By using the already
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validated and used in real-life open-source software Andromeda algorithm, we will
implement its scoring function but process the data as soon as it arrives. Before
diving deeper into the concept of our new proposed protein identification approach,
we will take a look into the standalone Andromeda [CNM™11] software.

2.3 Andromeda

Andromeda is a probabilistic peptide search engine. Input data are mass spectrom-
eter experiment results. Analyzing proteome data Andromeda achieves performance
rivaling that of Mascot, which is commonly referred to as the gold standard when
dealing with peptide identification, seen in the Andromeda paper [CNM™11]. This
tool is also extensible, configurable, and open-sourced, it can work with simple
protein data or one which contains arbitrary complex modifications present. An-
dromeda has a primary goal of providing flexibility when working with arbitrarily
high fragmented mass accuracy, is capable of assigning and scoring intricate patterns
of post-translation modifications, and works with data sets of any size.

The search process of Andromeda is as follows:

1. The search process begins with the construction of the protein and peptide
sequence databases. Initially, the data set is given in a format, typically in
a human-readable one like FASTA. This represents the theoretical database,
which will be used as a comparison for the real world results. The current
implementation transforms a sequential protein database into parts and creates
indexes for easier access during the evaluation phase. This is done in three
steps and can be seen in Figure 2.4.

(a) The first phase sorts the proteins by name and iterates over the whole
presented set, creating indexes where each index points to a protein. The
proteins are then broken down into peptides by applying environment-
specific rules. These mimic the real-world experiment and what the the-
oretical outcome should be when a protein chain is put under specific
conditions. Those conditions may be the presence of a digestive enzyme,
which splits the protein at certain points, for example on encountering a
specific amino acid.

(b) The second part of the sequence database preparation is the ordering of
the resulting peptide set by the string representation of their amino acid
chains. A protein is represented as a string. Therefore, a peptide would be
a sub-string. By using lexicographical ordering, the peptides are stored,
and indexes are created for the allocations of the ordered peptides.

(¢) The last step is the ordering of the peptides by mass. This is a straight-
forward approach unless the experiment expects modifications. The mod-
ifications alter the masses of peptides by applying rules, where the weight
of one or more amino acid elements might be altered. This results in the
creation of a peptide with original mass and one for each possible modi-
fied mass. In the end, the whole set is ordered, stored onto storage, and
indexed again.
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2. The second step is the iteration of the present spectra. For each spectrum,
we look up a corresponding peptide. This is done by looking for peptides
with masses, which are in range of one the known peptides in the knowledge
base. The range is calculated by a predefined tolerance, stating what kind
of deviation from the peptide mass is acceptable. This is configured for each
experiment, based on the environment used. If no suitable peptide is found, the
spectra is skipped. Otherwise, it is transformed and submitted for evaluation.

3. The next step is the evaluation, where a spectrum is passed in, together with
a theoretical peptide, which is deemed as a possible occurrence. We consider
individual peaks in the spectra and include them in the evaluation. In the end,
the probability of a match is scored and a result emits.

4. The last step is the storing of results. Usually, scores under a certain threshold
are omitted. Should the score be high enough, the peak is classified as the
recognized peptide and stored together with the origin protein, from which
the peptide has originated.

The search process boils down into three simple steps - pre-processing, evaluation of
feasibility for the spectrum to be present in the protein knowledge base and scoring
the correlation between the peak and the theoretical peptide. The three steps are
easily separated and have good granularity, which makes possible the delegation of
each processes to separate functions. In Cassiopeia we have designed the architecture
to be separate the areas of concern for each of the three tasks, with the idea of
processes in parallel and in an immutable context. The next section describes the
core idea.

2.4 Fast data

Currently, a single metaproteomic experiment takes around two hours to complete
and produces up to 40 GBs and larger mass spectrometry data output [MBK™18].
This amount of data is the average produced by a metaproteomic experiment [SABT08].
The sample is split, measured, and digitized, which may result in data sets of con-
siderable sizes. One device can be managed by a local tool, but for a central solution
with multiple devices, horizontally scalable architecture is needed.

The data quantity presents challenges when attempting to analyze it with conven-
tional means. Architectures have been invented to deal with data sets of considerable
sizes [PC15]. This encourages the usage of efficient algorithms for big data sets in
handling the number of research results. In recent years, the term Big Data has be-
come a buzz word for dealing with data sets composed of from gigabytes to petabytes
and higher. The increasing popularity of problems dealing with vast quantities of
data has sparked a lot of new approaches and is continuously evolving [Wam19].

There have been a couple of approaches in dealing with large amounts of data, by
treating them either as batches or streams of data [MZK17]. The most common and
most straightforward approach is to transform the data into pieces, which are easy
to work with. The data set is split into batches, small enough to allow the usage
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Figure 2.4: Steps used in building the protein sequence database used as knowledge
base in Andromeda [CNMT11]. There are three distinct steps performed when
building the index, a)sorts the proteins by name performs the initial splitting of
proteins into peptides by applying experiment specific cleavage rules and writes the
results onto storage while keeping an index file. Step b) sorts the peptide sequences
by their strings and stores those into index files. The last step c) sorts the peptides
by mass, while again keeping an index file showing where the data is allocated on

the storage.
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of usual functionality, which has already been used but has troubles when dealing
with larger data sizes. Additionally, this enables possible parallelization.

Splitting the data however comes also with a drawback - we introduce additional
overhead for splitting the big data and wrapping it into smaller chunks. This impedes
real-time processing since the batching process takes some time, however small,
which dilutes the data freshness.

Some use cases require to work with new data as soon as it is produced, and having
a time offset could make the end cost too much for this approach to be a viable one.
A simple example would be a stock exchange, where stock values vary each second.
People buy servers close to the stock market itself because the latency of a couple
of milliseconds may be the difference between loss and profit. In this scenario, a
pre-processing step would not be feasible.

A second approach would be to treat the big data set as a stream of data. In this
case, we could treat the data as a log [Wam19]. The received data is being handled
at the moment of arrival, accepting potentially infinite data streams. This is what
we call fast data. In the following sections, we give a brief overview of the Big Data
evolution history, the emergence of Fast Data, and then we compare the traditional
batch-based with the relatively new streaming approaches.

2.4.1 History of Big Data

After the creation of the internet, the resulting amounts of newly introduced in-
formation were not expected. Existing tools were not prepared for handling the
constant introduction of new and existing knowledge. The internet was consistently
supplying new information by allowing users to publish known and unknown knowl-
edge. This happened in parallel to many different domains. The sheer volume of
data was not expected to be of this magnitude [CO98]. This means that a need
for reliable, highly available, and robust was present. The opportunity led to the
emergence of the Big Data concept - unprecedented amounts of data are available
and ready for utilization. As stated in [Wam19], in its core, the architectural design
of Big Data can be represented by three components:

e Storage — the data has to be stored somewhere in a way that its fault-tolerant,
minimizes transfer latency and to have the capacity to grow

e Compute — to use what is stored

e Control plane — managing and monitoring the resources dedicated to the task
of handling data

These three layers were the core of Big Data. On top of it, other components were
later introduced, but the idea remained the same. Big Data systems are divided
into two general forms: databases and more general environment. An example of a
database would be the non-relational databases, such as NoSQL, that were storing
information in an agreed format. The concept was implemented in Apache Hadoop,
which is an open-source software for reliable, scalable, and distributed computing.
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The environment provides more significant flexibility in terms of usage at the cost of
bigger management overhead. Additionally, in 2007, the Dynamo paper [DHJT07]
created many new NoSQL databases, using different data formats, such as XML,
JSON, key-value storage, and others.

Different implementations had different trade-offs. Eric Brewer came up with a theo-
rem describing said limitations, called CAP theorem. Working with distributed data
systems brings a trade-off between consistency, availability, and partition tolerance.
In 2002 Seth Gilbert and Nancy Lynch from MIT published a proof of Brewer’s
statement under "Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services” [GL02]. In summary, the theorem postulates that
a network shared-data systems can only guarantee two of the three properties with
the following properties:

e Consistency — every node in a distributed database network will return the
most recent successful write. Each client accesses the same view of the data.

e Availability — every node responds for all read and writes operations in a timely
fashion. The focus here is to guarantee that absolutely all requests respond in
a manner, attempting to avoid timeouts.

e Partition tolerant — the system always stays available, even in case of node
failures. Should one element fail, there will be at least one to provide suitable
substitution of functionality.

Abiding the rules from the above properties, there are three combinations, where at
least two of the features will be according to the requirements. A system may be
seen in the Figure 2.5:

e Consistent and Partition Tolerant (CP) — the system will always be consistent
and distribution tolerant, but no guarantees for availability can be made.

e Consistent and Available (CA) — consistency and availability are guaranteed,
but there is no support for partitioning. These systems most often are single
database servers.

e Available and Partition Tolerant (AP) — the environment is available and par-
tition tolerant but not consistent.

The implications brought by the CAP’s theorem made dealing with data from the
always-on internet functionality to accept eventual consistency in exchange for better
availability, fault tolerance, storage capabilities and latency minimization brought
by partition tolerance. Eventually, SQL as a query language started catching up
to NoSQL ones, due to the steady query optimization improvements. Nonetheless,
loading the whole data was not feasible. Fast Data and streaming technologies were
iterative results from technological advances in the field. The earlier approach was
to split the data and use batches, a methodology present in the Hadoop tools suite.
In the next section, we give a brief overview of how this was actually implemented.
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Figure 2.5: CAP Theorem

Metric Sizes and units
Data sizes per job TB to PB
Time between data arrival and processing | Minutes to hours
Job execution times Seconds to hours

Table 2.2: Batch-mode systems [Wam19]

2.4.2 Batch-Mode architecture

In Figure 2.6 the standard Hadoop architecture used for batch operations is visu-
alized. In the figure, the areas separated by dashed rectangles show the logical
subsystem separation.

The resources may be shared across physical systems. The data is persisted into
distributed file or database systems like Hadoop Distributed File System [Fouc]
(HDFS) or other cloud or local based SQL or NoSQL tools — they are adjusted
according to the scope of the problem being tackled. Current technologies to ease the
work with data are, for example, Flume [Foub] for log operations and Sqoop [Foue]
to ensure database interoperability between the nodes. Analysis jobs implemented
in Spark or MapReduce [Foud] are run on the worker nodes. The final result is that
we have the following performance in batch-mode systems:

2.4.3 Lambda architecture

Lambda architecture [BH] can be seen as a intermediate step between batch-mode
and streaming architectures. The concept was first introduced by Nathan Marz in
2011 in his post "How to beat the CAP theorem” [Mar|. It encompasses the ability
to work with bulky data, for which processing time does not play too big of a role,
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Figure 2.6: Hadoop Batch architecture

while also having a layer, which can be used for real-time processing. In essence, it
is as a hybrid model with three layers:

e Batch layer: usable for large-scale analytical processes
e Speed layer: to work with newly arrived data in minimal time

e Serving layer: providing a query/view capability, managing both the speed
and batch layers.

The goal of Lambda architecture is to provide a robust, fault-tolerant system while
providing capabilities to work across the whole spectrum of data sizes. It provides
ability to process data for Online analytical processing (OLAP) [CCS93], targeting
huge data sets with possibly long-running calculations, while also being able to work
with data in real-time, for tasks requiring low latency read and write operations. An
example flow can be seen in Figure 2.7. The numbers in the picture describe the
flow of data in the system and are as follows:

1. New data entering the system that is submitted to the batch layer and speed
layer.

2. The batch layer manages the master data set, which is an immutable collection
of data to which only addition of new data is allowed. It also pre-computes
batch view results.

3. The serving layer is reading data from the batch layer, indexing batch-views
for fast querying.

4. Speed layer is used to compensate for the high latency of new updates by the
serving layer. It deals only with recent data only.
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Figure 2.7: Lambda architecture workflow [BH]. Label 1 shows new data entering the
system, 2 contains the batch layer with the master data set in it, 3 shows the serving
layer managing incoming queries, 4 denotes the speed layer, showing intermediate
progress for queries in real-time, 5 describes any incoming queries, which might
target either the batch or serving layers.

5. Queries can be issued towards the serving and the speed layer, allowing work
with batch-views and real-time data.

One could theoretically implement a fast data environment using a lambda architec-
ture. The architecture however has some issues. The implementation of both batch
and speed layers are separate and treat the data differently. This means the same
logic might need to be implemented twice. The serving layer also needs to be able
to handle two sources of data, which imposes additional overhead.

The field dealing with Big Data has also improved throughout the years. Previ-
ously there were no reliable strategies in working with data in a streaming context.
Streams of data were treated as sub-batches, and there were no valid approaches to
dealing with infinite streams. The assumption was that the streaming calculations
might only be an approximation of the results and to have a complete and definitive
answer, batches would always be needed. This has changed; the new strategies in
dealing with unbound data can be seen in the posts by Tyler Akidau in his "Stream-
ing 101: The world beyond batch” [Akil5] and ”Streaming 102: The world beyond
batch” [Akil6]. The lambda architecture played an essential role in the dealings
with infinite streams of data.

2.4.4 Streaming Technologies

There are many different approaches in implementing a batch-mode system, but
the implementation will always lack the ability to provide the absolute most recent
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Figure 2.8: Fast data (streaming) architecture

data. The data will always lack freshness. Streaming workflow tracks the data live.
This means that the processes or jobs analyzing data are running in near-real or
real-time. This process can also be kept alive for as long as needed.

Streaming also introduces new semantics for analytics [ACCT16]. For example, in
one of the most common data processing language SQL the usage of windowing.
Window functions perform calculations over data, while not mutating the observed
data set - the data is immutable. In contrast to that, using an aggregate function
mutates the transformed data, while window functions keep the original data state.
Since we are working with streams of data, we can not be certain when and if an
end will come. Performing aggregating functions on the whole available data set will
always mean that the operations are conducted on an incomplete knowledge base.
This means that the analytic process might miss some yet to be introduced important
features, outliers or even terminal states. A balance between the correctness of data
and the need to analyze the data must be struck. In Figure 2.8 a sample streaming
architecture is shown:

In contrast with the batch-mode system architecture seen in Figure 2.6 more ele-
ments are present. The elements in the Figure are numbered, and their functionality
is as follows:

1. Input streams can have various sources of origin, such a socket connection
or reading from a file. The data is represented in an acceptable data format
and should be consumed in the same fashion. In our scope, the data is the
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output from the mass spectrometer measurements and fed into Kafka topics
using Kafka producers [Krell]. Kafka helps in handling the data and making
it scalable, reliable, takes care of the partition distribution and durability of
the data. It also provides control over how the data should be distributed
across the network, where and how it should be stored, and while caring for
the load balancing.

2. REST (Representational State Transfer) [BBO8] represents immediate pay-
loads with data for processing or configurational actions to the Kafka cluster.
The usual use case here is the triggering of events changing the state of pro-
cessing. Working with REST includes more overhead for working with records
of data and web socket connections are preferred for feeding new data into the
system. Nevertheless, this protocol allows a bit more flexibility in the means
of communication.

3. A suite of microservices is used as a form of control and management mecha-
nism [AAE16]. The applications here are endless; this allows for an extension
of the normal workflow by introducing adapters, services, and external means
for communication or storage. Whatever is needed for the given task can
be added as functionality — from parameter control to state changes in the
analytics.

4. Apache Kafka [Krell] is a distributed system, and it lives in a ZooKeeper (ZK)
container. It provides the needed log processing to achieve the streaming be-
haviour. In its essence, Kafka is a distributed messaging system. It obfuscates
the means to keep track of where the message is currently physically stored, it
manages different domains of information in the form of topics and simplifies
the implementation process. The ZooKeeper container helps Kafka in caring
for how and where the data from Kafka will be stored. Additionally, the cluster
used to supply the environment may also be used for other processes.

5. Using Kaftka Connect data can be persisted from Kafka to long-term, persistent
storage. For example, newly identified peptide sequences may be stored for
future reference. The arrow in the Figure 2.8 is two-way because data from
the persistence layer may be fed into the Kafka flow.

6. The Kafka cluster provides the data and makes it ready for processing. Work-
ing with the information is done by streaming engines, which can be Apache
Spark, Apache Flink, or other implementations, such as a micro-service archi-
tecture. There is quite a lot of flexibility in the architecture. The Flink and
Spark tools can be thought of like software which deals with jobs. Data is
passed with instructions of what needs to be done, and the task will be done
somewhere in the future. Apache Beam also inspires them in providing a con-
siderable analytical toolset. The other option to just use Akka [NART19] or
Kafka streams brings less functionality out of the box but also less processing
overhead. However, any implementation will have low latency as a feature.

7. The processing engine has access to already persisted information while having
the ability also to introduce new entries. This is useful since it might skip the
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Metric Sizes and units: Batch | Sizes and units: Streaming
Data sizes per job TB to PB to PB MB to TB
Processing time Seconds to hours Microseconds to minutes
Job execution times Minutes to hours Microseconds to minutes

Table 2.3: Streaming systems

process of sending results first to the Kafka cluster or any similar approach,
but instead store the information and send a reference of the newly written
data.

8. Initially streaming was thought of to be implemented by incorporating mini-
batches while using Apache Spark and Beam. The batching process leads to
bigger latency since there were defined periods when the batching should take
place, and when the result would be sent. Although a drawback, this can be
used to fit into expensive calculations which can be useful when the latency is
not a primary concern.

9. Although the architecture is tailored towards streaming capabilities, the option
always remains to await sufficient information to wrap it into a batch and work
like a batch-mode architecture, the flexibility for that is present.

10. All this architecture can be located arbitrarily: it can be on a physical server
in the near vicinity or deployed in the cloud. Different tools can manage the
cluster resources; flexibility is present yet again.

A comparison between batch-mode and streaming architecture can be seen in Ta-
ble 2.3. We can see that the processes in streaming take less time due to the different
distribution of processes. Generally, the approach is more granular and focused on
continues analysis of smaller chunks of data for smaller time frames. This is useful
for any domains, which target working with data in real-time.

2.5 SMACK stack

Working with streams of metaproteomic data requires much data to be processed. A
single sample can be composed of multiple proteins, which can be further split into
smaller building blocks - peptides. The size of the original data plays an exponential
role in the final result set. On top of that, the protein sequence database hast to be
built by applying the same protein cleave rules, used in the real mass spectrometer
experiment. The theoretical protein set gets split into an even higher quantity of
peptides since it usually contains an even bigger set of proteins because it needs to
be used for the identification of unexpected peptide occurrences.

In this chapter, we covered an already possible computational concept, which may
enable a fast and near real-time [RZS18] performance - fast data. The streaming
approach of a fast data architecture enables the analysis of newly analyzed data
as soon the measurement results are digitized. In this section, we take a look into

a possible environment, which may enable the usage of a fast data approach - a
SMACK (Spark, Mesos, Akka, Cassandra, Kafka) stack.
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Figure 2.9: SMACK (Apache Spark, Mesos, Akkaa, Cassandra and Kakfa) [ER16a]
overview. The graphic shows the roles and connections between each component
from the technological stack.

2.5.1 SMACK definition

The acronym SMACK describes the following five technologies:

e Apache Spark - plays the role of the engine
e Mesos - represents the container

e Akka - encompasses the model

Cassandra - is used for the data storage

Kafka - relays messages and is a broker

The SMACK stack represents a concrete implementation of an architecture. The
above-described technologies are all open-sourced and readily available to developers.
The main task of the architecture is to provide an extensible and scalable solution
for tackling large quantities of data. Additionally, any solutions, implemented with
this technology stack, work as a distributed software. The geographical location
of any servers, on which the implementation is located, can be anywhere as long
as it minimizes latency and maximizes throughput. It is also scalable, where com-
putational power is directly linked to the computational power dedicated to the
supporting hardware. Having these properties makes this architecture ideal for the
usage in a cloud environment. An overview of how the individual technologies are
intertwined can be seen in Figure 2.9. In the following sections we give a brief
description regarding the role of each component in the SMACK stack.

2.5.1.1 Apache Spark

Apache Spark plays the role of processing engine in the architecture of SMACK. It
is used to analyze data in real-time and performs analytical workloads. It performs



28 2. Background

Driver Program

Spark Context

"

A 4

[ Cluster Manager ]

Worker Node ) Worker Node Worker Node )
Executor Executor Executor
[ Task ] [ Task ] [ Task ] [ Task ] [ Task ] [ Task ]
N o A s/

‘-._._._-_-_-—-__ ___-—-_-_-_._._._!'
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poorly when considering OLTP (Online Transactional Processing) tasks and is suited
for aggregations and other analytical tasks. There are other alternatives to it, the
most common one being Apache Hadoop or Apache Flink. It boasts 100 times
faster performance on batch and streaming processes [VMJ16] however, compared
to Hadoop. This has been achieved by a new state-of-the-art Directed Acyclic Graph
Scheduler.

Additionally, the Spark engine is very tolerable regarding the supported languages.
In contrast to Hadoop, which accepts only Java code, programs may be developed
in Scala, Python, Java, R or SQL. This simplifies the development cycle, giving
flexibility towards new implementation. If the solution has high enough granular-
ity, components may be implemented parallelly by separate teams of people, using
different programming languages but working with the same engine.

Spark takes care of the infrastructure and the running of the processes of a program.
It can also be used as a data science tool, able to handle massive data sets and
perform operations on them. It works with resilient distributed data sets (RDDs)
[CM15], which provide fault tolerance, efficiency, speed, and in-memory data storage
[ER16b]. Additionally the RDDs enforce immutability so no side effects from parallel
running jobs may interfere. When running on a cluster, a spark driver program
delegates the work as jobs to its subsidiary worker nodes (Figure 2.10). This enables
scalability and is perfect for working in the cloud environment. Spark can work with
different types of cluster managers, but in the SMACK stack, Mesos takes care of
resource management.
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2.5.1.2 Apache Mesos

Apache Mesos [HKZ " 11] represents the abstraction layer over the available computer
resources, such as CPU speed, available memory, and storage allocation. It can work
with physical or virtual environments and plays the role of a distributed system
kernel. It manages available system resources and is build upon the Linux kernel
principles as abstraction guideline. In a distributed system finding the best approach
for execution is by no means an easy task [UAKI8]. A distributed system may
contain nodes on local machines and cloud environments. The work has to be split
in such a way that the subsequent worker nodes may be utilized as much as possible.
The resources should also be available to use while also providing reliability.

Mesos can be classified as a general-purpose cluster manager. It is used to manage
batch processes and others like streaming or one-time jobs. When deployed into
a data center, Mesos abstracts the resources available and directs the workload for
ongoing jobs. The architecture of Mesos is composed out of a master daemon, which
can handle up to 10,000 slave daemons [Foua]. The slaves manage software compo-
nents called Mesos frameworks, which hold the responsibility for task execution. The
master agent initially offers each slave daemon an option of resources and manages
to CPU, memory, and storage space in this way.

The framework running on top of Mesos container consists of two parts: a scheduler
that registers with the master in order to obtain resources and an executor process,
which performs the actual work. The master decides how much resources to delegate
to a worker node, and the node itself dictates the utilization of available resources.

2.5.1.3 Akka

Akka [NAR™] represents the model and run time for the distributed system of the
SMACK stack. It adds the actor model functionality to the SMACK stack. The
actor model is a mathematical model was first described in ”A wuniversal modular
ACTOR formalism for artificial intelligence”[HBS73] developed by Carl Hewitt, Pe-
ter Bishop, and Richard Steiger at MIT in 1973. Its purpose is to handle parallel
processing in a high-performance network. Traditional object-oriented program-
ming (OOP) has already been used as a tool to work with distributed data systems
[BGLIS|.

There are some downfalls to classical OOP when working in a multi-threaded sys-
tem in a distributed environment. For example, the encapsulation principle, one of
the four OOP principles [Blal3], is troublesome to adhere. Objects can guarantee
encapsulation only in a single-threaded environment. When working with multiple
threads with singletons|GHJV95], for example, we need to use locks [BB89]. Locks
are expensive CPU operation and inhibit the performance of the process because one
has to wait until their release, before working on the locked data. Additionally, it
introduces other problematic concepts: the deadlock and livelocks [Sif80]. Handling
these problems introduce additional overhead for dealing with them [HFV17].

Other problems for OOP design on distributed systems would be how the data
is stored. To simplify object properties are stored into the cache lines of a CPU
[CNLT08]. Most of those are local to the CPU doing the calculation in order to
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propagate the new changes to a new core or thread in an atomic fashion. A better
variant would be to keep the state locally and send data or events via messages.

Using an actor model helps mitigate some shortcomings of the traditional OOP ap-
proaches. We can adhere to encapsulation without resorting to locks. The actor
models also contain their state locally and communicate changes in the state via
messages. An actor can send an asynchronous message without blocking the process
execution. Sending a message does not await a response, in contrast to a method,
which role may be to provide a value upon which the future work is dependent.
Actors react to an incoming message independently, not mutating its state in a
multi-threaded environment. They process new messages sequentially with a queue,
ensuring a correct concurrent flow of the program. Instead of locks, they use syn-
chronization principles to ensure consistency. Having no blocking conditions, actors
are better suited for a fast data processing pipeline.

2.5.1.4 Cassandra

Apache Cassandra [Foul6] plays the role of a distributed database in the SMACK
stack. It is extremely fast and scalable, can be deployed over multiple data center
to ensure the resilience of the data and is very easy to use. Similar products are
DynamoDB [AWS], MongoDB [Mon], Redis [Lab] and others. The data contained
in Cassandra is in a NoSQL format. Using the NoSQL format makes any underlying
database to be without a schema, non-relational and cluster friendly, as described
in NoSQL distilled by Martin Fowled and Pramod J. Sadalage [SF13].
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Figure 2.12: Apache Kafka typical scenario [ER16b]. In the picture the connections
between heterogeneous systems to a common message publisher (Kafka) is presented.
External systems can read data published in topics of interest.

Having no data scheme, the data stored can be accessed easier and manipulated a
higher degree of freedom, compared to traditional SQL Databases. Cassandra also
implements the "no single points of failure” principle. This is achieved by having
redundant nodes and data stored. The architecture can be described as a ring hi-
erarchy of nodes, where each one fulfills the same role. Having data redundancy
supplies higher availability of data because it is much easier to maintain data repli-
cation [WLZZ14], when the copy of the data is present across other data nodes.

2.5.1.5 Kafka

As we stated previously at the beginning of the section, Apache Kafka [Krell]
plays the role of message broker in the SMACK environment. It provides a smooth
implementation for delivering messages across heterogeneous systems. Dealing with
Big Data generally poses two challenges: gathering the data and then analyzing it.
Message publishing is a way of tackling the first problem. Apache Kafka presents
a medium through which messages may be forwarded toward systems of arbitrary
type, so long they are configured in advance to be able to listen for new data.

The Kafka message broker needs to provide data in a non-blocking fashion and also
obfuscate any present and active subscribers for each topic. Its characteristics are
as follows:

e Distributed - The system is designed around a cluster concept to support a
distributed database system. It allows to grow the cluster horizontally, without
downtime.
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e Multiclient - 1t provides high interoperability, where clients using different
technologies may subscribe to the message broker.

e Persistent - Possessing its replication strategy Kafka guarantees persistence
with data access of O(1) performance

e real-time - Any messages published are made available in real-time and the
access can be instantaneous, limited only by the latency of the data center.

e Very high throughput - Being based in a cluster environment Kafka can handle
hundreds of 1/O operations per second from multiple clients. The only pre-
condition is a load-balancing strategy, ensuring constant availability and no
starvation of resources.

A typical Kafka architecture can be seen in Figure 2.12. There are multiple pro-
ducers, which can be of various types. All of them are generating messages and
publish messages towards the message broker. They can be services located on the
web or program services, used to log messages and perform communication by emit-
ting events in the form of messages. The consumer can be anything, suitable for
processing messages and able to subscribe itself for a topic. It can be a database or
a program, analyzing newly published data in real-time.

2.6 Summary

In this chapter, we covered the essential concepts that are needed to understand
the concepts and terminology covered throughout this paper. We cover the ba-
sics for the mass-spectrometry, the metaproteomic fields and how those fields can
generate vast amounts of data. We also covered the concepts of fast data and a
concrete implementation - the SMACK stack. In the next chapter we go over how
the above mentioned-concepts can be used to utilize Andromeda’s scoring algorithm
and implement it into a cloud-based environment, while keeping the original scoring
accuracy.
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In chapter Chapter 2, we have gone over the necessary steps needed for the protein
identification process. In this chapter, we go over the conceptual design of software
used for peptide identification. We present the use case scenario for our tool and
discuss what requirements are present and what kind of constraints may apply.
We begin by analyzing another protein search engine: the Andromeda stand-alone
solution [CNM*11]. We plan on utilizing its scoring algorithm and integrating it
in a fast data architecture, but an arbitrary software tool in this domain should be
able to be used, as long as it adheres to previously agreed format. We then look
then into what parts are needed for our use case to be beneficial.

We covered the process of protein identification in detail in chapter Chapter 2, sec-
tion Section 2.2. Based on the processes needed, the work of Zoun et. al. in the face
of the MStream protein analysis software [RZS18] and the Andromeda stand-alone
implementation [CNM™11] we propose a new combination of two approaches - using
the Andromeda scoring mechanism on a fast data architecture. As stated in Chap-
ter 2 and in the previous section, state-of-the-art protein identification tools require
the whole mass spectrometry experiment data set to be present on start. This is a
considerable bottleneck for analysis, especially if there is a need for real-time data
processing. In Andromeda, the scoring is also done in a batch manner, where peaks
are iterated sequentially. This means that during an evaluation, only a single core is
utilized. Nowadays, CPUs rarely have a single core, therefore a non-blocking, asyn-
chronous approach gives a significant increase in performance. Running locally also
is a constraint, since we have limited vertical computational power. Having a fast
data architecture, deployed on a cloud environment, promotes horizontal scalability,
limited only by available resources. The software represented by MStream provides
a concrete environment supplying such scalability and promoting availability and
resilience by reducing possible down-time.

3.1 Existing concept provided by MStream

The MStream provides a solution for the bottleneck imposed by the need of state
of the art protein identification software to have the whole experiment result batch
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Figure 3.1: Architecture of MStream [RZS18], analytic platform for real-time diag-
nostic of mass spectrometry data

before an accurate evaluation may be performed. The software by Zoun et. al.
is focused on streaming individual spectra from a mass spectrometer experiment
in near-real-time. Its architectural overview can be seen in Figure 3.1. The flow
is focused on finding peptide matches, validating them and storing good matches,
while allowing users to see the results in near-real-time.

The experiment run-time and the digitizing phase and the conversion of data, seen
as steps 2 and 3 in Figure 1.2, can be optimized if there is no need to wait for
the whole batch to be done. It is better to send intermediate results for analysis.
Raw data can be shipped for conversion as soon as a spectrum is generated. The
conversion can be then delegated to a process, which takes care of transforming
measurements in format, suitable for the protein identification software. If this is
done by a message queue, sent to an API or published to a message broker, the new
data can be distributed across data centers. This allows the results to be accessible
across systems, scale the accessibility of data, and minimize latency.

For the process of identification, shown as step 4 in Figure 1.2, we rely on having
a theoretical peptide, which should have features closely resembling the spectrum.
The theoretical peptide is retrieved from a protein knowledge base, composed out of
protein sequences string representations, put under the same theoretical conditions
as the original metaproteomic experiment, to which the same experimental rules are
applied. This produces sequences of peptides, which are sub-strings of the original
proteins. This takes time, dependent on the total number of proteins and the com-
plexity to recreate the experimental conditions. After composing the information in
a format, which is suitable for the used protein identification software, this database
might be reused for future experiments.

On a cloud environment, we are dealing with distributed management systems. The
scalability of the cloud and the state-of-the-art database technologies offer a new
and a better solution - having centralized storage for the protein knowledge base.
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The sequence database can be reused across experiments, as long as the environment
variables are the same, and can be updated with newly identified suitable peptide
matches. However, in order to have a good peptide sequence knowledge base we
need to be confident in the correctness of the results.

The general idea of MStream can be summarized as the following:

e Stream the analyzing phase: to find a way to stream results, produced by the
mass spectrometry experiment and to send it for processing and analysis as
soon as a part of the sample is complete. Publish the data in a manner which
is suitable to be accessed by a distributed system or systems.

e Newly added results need to be processed as a stream. The goal is to consume
results in real-time and analyze them as soon as available.

e Find a better way to supply a theoretical peptide, which possesses similar
features for the observed spectrum.

e Derived scores should also be submitted in a near-real-time. Ideally, newly
found peptides, which have a high score and not found in the existing protein
knowledge base, should also be included. In this step, we need to adapt An-
dromeda scoring function to the new environment and add to the MStream
pipeline.

3.1.1 Cassiopeia role in MStream

The solution provided by MStream is distributed across systems in a cloud environ-
ment and highly scalable. It could benefit from an improvement in the validation of
the results, which can be a role fulfilled by Cassiopeia. By introducing a new pro-
tein search engine, it can be used as a cross-validation mechanism. As long as both
methods for the scoring of peptide matches are good individually, the confidence will
also scale upwards. We propose the following extension of MStream architecture,
seen in Figure 3.2.

The difference from the original work of Zoun et. al. is that we can add additional
protein search engines, usable for cross-validation. In Figure 3.2 we have only two
distinct ones but in theory if additional ones are introduced they should be usable
too, as long as they adhere to the same standards. The main requirement is to have
a protein search engine, which has good performance, scalability and is able to be
validated. Cassiopeia should be able to accept a peptide and a spectrum and derive
a result object, which adheres to same standard imposed by the architecture so it can
be cross-validated with the results of other protein search engines. Deriving scores
does not mean much unless the results are validated and the outcome is reproducible.
Having a high score for certain peptides does not bring much if unrelated peptides are
ranked high. This architectural design should also be usable for a local environment
the concept is the same, although lacking in scalability.
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3.2 Cassiopeia concept

In Chapter 2 we introduced the open-sourced Andromeda protein search engine. The
goal of Cassiopeia is to implement its scoring function and to integrate it into the
existing MStream environment. It will be then used as a cross-validation mechanism
to verify the correctness of matched theoretical peptides with individual spectra
against the existing protein scoring mechanism. Therefore our new tool also to
comply with the architectural standards seen in Figure 3.1. In the picture, the
concrete technologies are shown, giving an overview of the used technology stack,
so Cassiopeia has to fit well with the used technologies. The current Andromeda
stand-alone software is written using Microsoft .NET. It is possible to wrap its
functionality and use it in the existing environment. However, it is not suitable
for working with streams of mass spectrometry data. It also requires to have the
whole spectra batch beforehand, together with a protein sequence collection for the
peptide knowledge base. Since the overhead for adapting the Andromeda software
could very well outweigh the benefits of its scoring functionality, we have decided to
use it instead as an inspiration for a new implementation of a protein identification
engine.

The first thing to consider was the programming language for the implementation
of Cassiopeia. Since we have an environment running Apache Spark jobs, we de-
cided that the Scala language is a suitable fit. Although any other language could
also be theoretically used to implement the Andromeda scoring function, we have
chosen Scala for its simplicity and ease of integration. More about the concrete
implementation and technologies is discussed in Chapter 4.

We showed a concept architecture where Cassiopeia is used in Figure 3.2. In it,
spectra are given as input with theoretical peptide matches, supplied by a protein
sequence database. Since it is integrated into an existing ecosystem, it has to conform
to the present predefined data formats. Additionally, the new scoring functionality
has to be validated with regards to the output of the original Andromeda software.
This means that the challenge of Cassiopeia is two-fold:

e To fit easily and efficiently in the existing MStream ecosystem

e To have validated output, completely matching the results of the Andromeda
software

3.2.1 Cassiopeia validation

Before we can use the new implementation of the Andromeda scoring algorithm,
we have to verify the correctness of the output. Andromeda has already evaluated
and known performance in the metaproteomic field. Implementing a new software
with a known to work algorithm brings nothing if the resulting output is not the
same as the original. To have an unbiased and good comparison, we have decided to
recreate the flow of the standalone Andromeda algorithm as closely as possible. We
have also attempted to introduce improvements, where possible. In Andromeda the
search of suitable peptides is boiled down to looking for a theoretical peptide, which
has a mass in an acceptable range of the inspected spectrum. A representation of
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the components can be seen in Figure 3.3. The protein knowledge base is built
from files in FASTA format, containing information for known protein sequences.
Those are processed sequentially and digested, by splitting the protein string into
sub-strings. This "digestion” mimics the effects an enzyme would have on a protein
in the real world, which ends up splitting the sequences into smaller sub-sequences.
The outcomes are analyzed and stored onto the persistent storage, where indexes
are also created for easier data traversal. The spectra are also loaded from a batch
and given as an input to the Andromeda search function. The evaluation performed
in it boils down to iterating each peak and looking for theoretical peptides, sharing
features of the spectrum. Found peptides are stored into a local cache data structure
for re-usability and to skip the same evaluations. The process finishes by scoring the
similarities between the theoretical peptide and the peak, then produces a result.
Before emitting a result, it goes through a filter, which is adjusted by application-
specific settings given on input. To validate the results, we have extended the default
result output to be converted into a peptide-sequence-object (PSM).

The goal of the validation is to ensure that Cassiopeia produces the same output as
Andromeda under the same conditions. If the algorithm is implemented correctly
and the same results are achieved, there is the possibility of improvement with
regards to performance. Although the stand-alone product of Max Quant has tested
results, the computing technology keeps improving. We generally followed the design
patterns used in Andromeda but also made some improvements, which we considered
beneficial. A diagram of the components can be seen in Figure 3.4. The structure
present is almost similar, however there are 2 noticeable differences - an in-memory
database has been used to store the peptides, and there are no filters on the output.
Instead of creating indexes and writing into files we the sequence knowledge base
is stored in memory. The spectrum iterator works with one additional file format -
MGF, which is the default standard used by MStream.

Additionally, we have skipped the filtration of the output and directly give back
a PSM object. Those modifications are implemented in this way because of the
real goal of this work is to provide an additional scoring mechanism to MStream.
Therefore we have kept only the crucial components, which benefit the cloud peptide
identification tool.

3.2.2 Cassiopeia Scoring

The goal of the scoring is to provide correct results with good performance and be
easy to integrate into the existing environment of MStream. For the scoring function,
we have stripped away the components dealing with batch data and the construction
of a peptide sequence database, resulting in a minimal set of elements, seen in
Figure 3.5. The only elements present are the scoring function, which evaluates the
possibility of a match between a spectrum and a peptide, supplied on input while
considering the set settings.

MStream does not rely on having the complete experiment batch beforehand. It
works with streams of spectra, following the fast data concept. Therefore for it is
best to implement the scoring mechanism as a function, which can be used on tuples
composed by a single spectrum and a theoretical peptide.
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Figure 3.3: Andromeda stand-alone components. We can see the input batches for
proteins in the form of FASTA, which create the sequence database and store it on
disk. The spectra are iterated sequentially and fed into the search function, using
the Andromeda scoring algorithm. Commonly considered theoretical peptides are
stored into a cache. The end output of a PSM object is an extension by us to enable
validation. Omne thing to note is the presence of a filter, controlling the resulting

output.
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Figure 3.4: Components of Cassiopeia. The structure is based on the one present
in Figure 3.3. Instead of storing the peptide sequence database onto hard disk,
we use an in-memory database. The spectra can be either APL or MGF formats,
and the settings given to the search function are the same as Andromeda’s. During
evaluation by Andromeda’s algorithm, peptides can also be stored into a cache
structure. The output is returned as a PSM object without filters.
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Figure 3.5: Cassiopeia scoring components. The present elements are a subset
of those seen in Figure 3.4, where only the required for the MStream integration
are kept. The input, consisting out of a spectrum and peptide, get passed along
with application-specific settings to the scoring function. The evaluation uses An-
dromeda’s algorithm to produce a PSM object
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In this way, for the validation, we can represent the mass spectrometry batch results
as stream and reuse the underlying scoring functionality for stream operations.

In Figure 3.2 the protein search engines communicate with a peptide sequence knowl-
edge base to obtain suitable possible matches. While the spectrum is supplied by
a mass spectrometer figuring out a good theoretical peptide sequence needs to be
computed. In MStream this is done by a functionality, retrieving peptide sequences
with similar properties to the peak given as input from an existing peptide knowl-
edge base. Andromeda builds its own protein sequence database, along with its
derivatives and iterates all theoretical matches in a tolerable range of the spectrum
attributes. We have covered the exact methodology in detail in Chapter 4. In the
end, scores are always derived from the tuples of the spectrum - theoretical pep-
tide. Therefore it is easy to implement the scoring mechanism to work for both the
validation against Andromeda and Cassiopeia’s integration into MStream when we
keep the scoring components decoupled. Accepting the same input also minimizes
the areas where errors could occur, should there be any deviations in the results.

If the results of Cassiopeia are validated and the scoring function is able to derive
good match evaluations based on the same input format used in MStream we can fit
our tool into the architecture shown in Figure 3.2. By using Scala as a programming
language our scoring function can be wrapped in a service, playing the role of a job.
Given that MStream uses Apache Spark ensures that our new protein identification
functionality fits perfectly in the existing ecosystem. Since the system is distributed
and located in the cloud, we have guaranteed horizontal scalability.

Having Cassiopeia scoring function hidden behind a standard scoring interface, con-
taining a method accepting an input of a spectrum and a peptide, can also promote
the usage of additional protein search engines, so long as they implement the inter-
face. This will obfuscate the concrete implementation of our new tool. Ideally, it
will provide better vertical scalability by utilizing the system resources better than
the stand-alone software, designed for 32 bit systems.

3.2.3 Cassiopeia Integration

The purpose of integrating Cassiopeia into the SMACK stack of MStream is to
provide flexibility for the evaluation and result validation of mass spectrometry
data. Adding the new scoring methodology will influence the existing architecture
of MStream by changing the normal flow of the following components, marked with
red squares in Figure 3.6. Introducing a second evaluation mechanism increases the
capabilities of the cloud solution. The validation is also changed since now there is
the option for cross-validating evaluated scores.

There are various choices and flows, presenting themselves by having one more tool
available for validation. We have visualized some of them briefly in Figure 3.7. The
process always starts with the arrival of new spectra, which needs to be analyzed.
Potential peptides are retrieved from the peptide sequence knowledge base and given
as input further down the line. Based on the pre-configured settings, there are
multiple approaches possible:

e Evaluate only with X!Tandem
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Figure 3.6: Influence of adding Cassiopeia into MStream’s SMACK environment.
There are now two Peptide Spectrum Match components, one indicating Cassiopeia
and the other - the defaul X!Tandem implementation or any other integrated peptide
identification software. The validation is also marked in red as the scores of multiple
searching tools can be used for cross-validation.

e Evaluate only with Cassiopeia

e Evaluate with X!Tandem and if good scores are obtained perform cross-validation
against Cassiopeia

e Evaluate with Cassiopeia and decide based on high evaluated PSMs to perform
cross-validation on top scoring peptides

e Run both X!Tandem and Cassiopeia, filter to common peptides, select top N
and validate the results

e Other configurations

All those options enable flexibility in dealing with different data sets. Depending on
the scores produced and the preconditions present the flow of the search algorithm
can be adjusted accordingly. This allows for optimization of the scalability and
the utilization of resources. The different tools available also allow for performing
different analysis while also increasing the confidence in the produced results, should

a PSM be ranked high.

3.3 Summary

In this chapter we presented a concept for the implementation of a peptide scoring
mechanism, which produces similar results as Andromeda. We have displayed the
individual components and what needs to be present for having correct results. We
also proposed improvements to the architecture by utilizing the increased perfor-
mance capabilities of state of the art technology. We also stripped down parts of the
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original Andromeda software, which are not beneficial for work in a cloud environ-
ment. The data manipulation was also adjusted to fit into the fast data architecture
environment in the face of working with stream data and not using batch files as in-
put. By abstracting the scoring mechanism, we intend to produce a solution, which
can be easily integrated into individual jobs in a cloud environment, maximizing
the utilization of available resources. In the next chapter, we delve deeper into the
concrete implementations for the validation against Andromeda and the integration
of our new scoring mechanism into the existing cloud architecture.
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4. Implementation

In the previous chapter we covered the main idea behind protein identification and
the challenges of state-of-the-art protein identification software. We presented a
concept which builds upon the Andromeda protein search engine and integrates
its scoring methodology in the MStream environment. The idea of our new tool,
Cassiopeia, is to use Andromeda’s scoring and use it as a cross-validation mechanism
for the already present peptide evaluation on a cloud environment, presented in the
work of Zoun et. al. The goal is to increase the confidence of results by validating
the output while also processing mass spectrometry experiment data as a stream in
a near-real time fashion.

In the Chapter 3 we presented the concept for Cassiopeia and how it can be used
to validate the correctness of peptide evaluations. We have mentioned that before
integrating it in the existing ecosystem of MStream the fist challenge to overcome is
to prove the usefulness of our new scoring mechanism. In this chapter we will offer
concrete implementations for evaluating the possible match between a theoretical
peptide, retrieved from a protein sequence knowledge base and a spectrum, supplied
from a mass-spectrometry experiment. Then we will show how we have compared
Cassiopeia’s results against the output of Andromeda.

4.1 Cassiopeia technology stack

We have decided to use Scala as a programming language to implement Cassiopeia.
This decision was made based on the existing technology stack used in MStream,
seen inFigure 3.1. In contrast to Andromeda .NET implementation it can be easier
to expose the scoring function with Scala since it is naively supported by Apache
Spark and there the overhead of wrapping the Andromeda scoring can be mitigated.

As described in Chapter 2 Andromeda processes a protein sequence knowledge base
by iterating the proteins and breaking them down by recreating the theoretical envi-
ronment of the mass spectrometry experiment. MStream has a Cassandra database,
containing a peptide sequence knowledge base. In both solutions they are used to
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IScorer Interface

score(peptide: Peptide, spectrum: Spectrum) : PSM

PSM

= peptide: Peptide
* spectrum: Spectrum
= score: Double

Spectrum Peptide
« title: String * pepString: String
+ charge: Int = mass: Double
« precursorMZ: Double
+ precursorlNT: Double

« specMZ: Array[Float]
* speclNT: Array[Float]

Figure 4.1: The IScorer interface. It produces a PSM object, which encompasses the
input object and adds an attribute for the result score. This is the interface used to
integrate Cassiopeia into MStream.
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evaluate a potential match for a spectrum. Based on that fact we have developed
our scoring function as an an implementation of the interface seen in Figure 4.1.

In the figure we can see three distinct objects and with the following usages:

e PSM - short for peptide-spectrum-match. This is the output used in MStream
[RZS18] and the output we use in Cassiopeia. It is composed out of the input
theoretical peptide, mass spectrometry spectrum and a value indicating the
probability for a match.

e Spectrum - the digitized information of a mass-spectrometry output. It encodes
the information of a single spectrum (Figure 2.1). The information contained
is a title, providing information regarding the protein, from which the peptide
is derived. There are also properties for the peptide charge, the mass of the
peptide encoded in the precursorINT. The precursorINT denotes the intensity
for the whole peptide. The two arrays specMZ and specINT are used to
encode the 2 dimensions of each individual peak, present in the spectrum ( in
Figure 2.1 for example each bin corresponds to one peak).

e Peptide - this object encapsulates the peptide amino acid sequence as a chain
of amino acids, each encoded with their corresponding characters (Table 2.1).
The mass is also present, where it could be unmodified - sum of the default
masses of all present amino acids or could have a different value, depending
on the mass spectrometry set up.

The objects used by Andromeda are a bit different than the ones presented in Fig-
ure 4.1, where the difference is only in the naming and the data type of individual
peaks (Double is used instead of Float). Hiding the functionality behind an interface
however simplifies the communication with external services and allows interchange-
able usage of different concrete implementation of said interface. Another thing
worth noting is that the mass spectrometry data is encoded in an APL (Listing 2.2)
format. The concrete implementation of the IScorer interface and the adjustment
of formats is represented in 1. In it we can see a method, which calls the IScorer
interface but accepts classes named WorkingPeptide and WorkingSpectrum. These
objects are used to note the differences in the validation and MStream calling the
[Scorer Score method.

Algorithm 1 Cassiopeia Scoring
1: procedure SCORE(workingPeptide : workingPeptide, workingSpectrum
WorkingSpectrum)
peptide <— CassiopieaPeptide. M ap(peptide)
spectrum <— CassiopeiaSpectrum. M ap(workingSpectrum)
score < IScorer.score(peptide, spectrum,)
return score
end procedure
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4.2 Cassiopeia architecture implementation

Cassiopeia is completely based on the Andromeda .NET stand alone software. This
means we have researched and adapted the original probabilistic algorithm found
in Andromeda. The configuration parameters present in Andromeda are kept the
same in order to keep to integrity of the algorithm. There are two distinguishing
changes to the original stand alone peptide search engine and those are the usage
of Scala with Apache Spark context and the addition of concurrent data processing
for the evaluation purpose. Another smaller change, which is worth mentioning is
the usage of in-memory database to store the protein sequence knowledge base, but
this plays a role only for the validation phase. The scoring is implemented in a way
which can be used interchangeably for validation and the integration as an protein
search engine in a cloud environment. A concept mock-up can be seen in Figure 4.2.

In the picture it the scoring function can be called by MStream or our validation
implementation. Since we covered the basics of MStream implementation in Chap-
ter 3 we will focus on the inner workings of the validation approach and how the
actual peptide is evaluated. The difference between the validation implementation
and the cloud one is that the first one works not with just a single pair, but a whole
data set of proteins. In the Cassiopeia Validation part of Figure 4.2 we have a spec-
trum iterator, which supplies the spectrum and a peptide database, which is store
in memory. The Andromeda software is building a knowledge base and indexing
known peptides, then storing them in files. This keeps track of already know amino
acid sequences but in the end relies on first having the data. The software expects
the complete information on the peak data set and known protein database.

4.2.1 Creating peptide in-memory knowledge base

In Figure 4.2 we see the two different software architectures, which will with Cas-
siopeia’s scoring function. Although the technologies are different they fulfill the
same roles. A comparison of the components can be seen in Table 4.1. We can wrap
the functionality into four distinct tasks, which need to be done in order to evaluate
if the peptide and the spectrum match. We have two task which are used for data
preparation and forward it as input to the scoring function. Since the scoring will
adhere to Figure 4.1 we need a spectrum and a peptide to retrieve and give as input.
The peptides are located in a peptide knowledge base, where they are ordered by
mass to have an optimal search structure. Although the information is stored in dif-
ferent manners, the idea is the same - to provide peptides, which masses resemble a
spectrum the most. This spectrum is supplied from the mass spectrometry example
result. In the context of MStream it is as a stream of data, published by a Kafka
producer. Andromeda requires the whole batch to be available before evaluation, so
to validate the correctness we iterate over each spectrum.

The peptide database is build on the fly for Cassiopeia. In Andromeda once created,
it can be reused, due to the data being stored in intermediate files. We covered in
Chapter 2 the details of how the sequence database is created. For the validation
of Cassiopeia we have followed the approach of building a knowledge base out of
a FASTA file, containing the protein sequences. Instead of writing into files we
have stored the information in-memory. Andromeda uses indexes, pointing to the
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Figure 4.2: Usage of IScorer scoring functionality for MStream and for the validation

of Cassiopeia against Andromeda
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Task MStream Cassiopeia validation
Retrieving peptides Cassandra database In memory database
Retrieving spectrum Kafka message Iterating over input spectra
Calling the scoring function Scorer Object Scoring Facade
Output PSM PSM

Table 4.1: Components roles and implementations between MStream and Cas-
siopeia’s validation

locations of entries, stored on disk. Due to the significant differences between 1/0
operations of the two types of memory, having it on the RAM omits the need to go
look up the information on the hard disk drive and materialize the object. Each entry
in the FASTA data is loaded as a resilient distributed dataset (RDD). We use a Spark
Context in Cassiopeia so we can work with datasets, allowing efficient processes.
Each protein sequence is inspected and peptides are derived out of it, based on the
predefined conditions, such as the digestive enzyme used, the fragmentation rules
or additional settings. Like Andromeda, Cassiopeia has a pre-configured knowledge
base, ordered by mass value so searches will take at most O(Nlog/N) time, when we
use binary search. MStream, Andromeda and Cassiopeia keep the peptides as an
ordered database, where the mass is the key and the value is the theoretical peptide.

4.2.2 Scoring algorithm

We have encapsulated the scoring algorithm under an interface (Figure 4.1) and the
overview can bee seen in Algorithm 1. This is to follow the separation of concern and
to follow the best practices to program against interfaces and not against concrete
implementations. This makes the changing of strategy scoring algorithms quite easy,
particularly for the cloud environment, where we might want to cross-validate the
evaluation of each peptide. The usage of Interface structures is also very flexible, al-
lowing to construct a Strategy pattern [GHJV95] for different classes, implementing
the IScorer interface.

4.2.2.1 Scoring for the validation

For the validation we first process the protein sequence knowledge, store it into
memory and then we begin iterating over the available spectrum data. The peaks
are in MGF format and get translated into a Spectrum object, seen as one of the
inputs in Figure 4.1. For each spectrum an according peptide is searched and this is
done by looking into the sequence database for peptide which are in tolerable range
from the spectrum mass. This is the purpose of having a database ordered by the
mass values of peptides, since we can just take a range of peptides. The maximum
tolerance for the deviation from the spectrum’s mass is decided by input settings,
which we will go over in the next section. In the end having a spectrum we iterate
over peptides which are bigger or equal than the spectrum mass minus the tolerable
deviation allowed for the mass. The function can be seen in Listing 4.1, where we
first check what type of unit we have configured for the tolerance used and then
return the according value. When we have narrowed down a spectrum and a couple
of peptides, which could be a fitting match we begin the scoring process.
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function Tolerance deltaMass (input: Double) : Double
if (unit == Dalton) {
return value
} else {

return value * (0.000001 * input)
}

N O Ok W N

Listing 4.1: Calculate delta of spectrum mass

Additionally, as described in Chapter 3 we have also implemented a cache structure
by using a Map object. The key of this map is the sequence of a peptide and the
contents of this collection are updated each time a new peptide is being passed
down for evaluation. The intent is to minimize the calculations when calculating
the individual properties and possible splits of peptides.

4.2.2.2 Scoring implementation

The actual score calculation is done by using the Andromeda formula (Figure 4.3).
The formula described works with a spectrum object and analyzes the present peaks
in a spectrum. We consider the peaks in chunks, as we split the whole spectrum
into ranges and then perform an optimization, where we look for peaks which may
correspond to a similarity present in a peptide chain structure. The peptide is de-
composed in an array which has the same dimension n as the spectrum. This is
done based on the fragmentation type used in the experiment to cleave the peptide
sequence. In general we recreate the theoretical processes, which would have hap-
pened during the mass spectrometry experiment and measure how similar results
we have. The less deviation there is from the theoretical peptide used as a reference
the better the resulting score.

In Cassiopeia the concrete implementation for both validation and the one used as
a cross-validation mechanism in MStream. The difference is only in handling the
environmental variables and some pre-processing, but in the end both implemen-
tation reuse the same scoring. The IScorer interface accepts peptide and spectrum
objects and uses the common scoring method getBestN(), which is the same for both
implementations and uses the formula described in Figure 4.3. A diagram for the
method may be seen in Figure 4.4. The input parameters in Figure 4.4 are spread
for the sake of clarity. We will go over each individual parameter as follows.

e peptide: input peptide
e spectrum: input Spectrum

e tolerance: this is a Tollerance object which is composed by a tolerance value
and tolerance unit. This unit may be Dalton or PPM. It is used to calcu-
late the accaptable deviation of a value used to decide whether a amount is
in tolerable range. This is defined by the user and is an input parameter.
The difference between the two is that for the tolerance PPM the delta is
calculated as toleranceV alue x (input x 107%) where the tolerance Value is the
configurable deviation of the tolerance and the input is the given mass for
which the acceptable fluctuation is calculated
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n = total number of theoretical ions
k = number of matching ions in spectrum
Approx. probability of getting
at least k matches by chance
()Y (e )"
s(g,loss) =—-10log = |1-—=
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.' Optimize inclusion of losses

s(g)= max s(q,loss)

loss = true/false

‘ Optimize g (peaks per 100 Da)

s =maxs(q)
p=2

Figure 4.3: Formula used to calculate the probability of a match. It is the same one
used in Andromeda [CNM™11]. The scoring involves an optimization of the number
of highest intensity peaks in a Spectrum. The peaks are considered in ranges of
100 Dalton units in the m/z interval and over the inclusion of modification-specific
neutral losses.
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CloudScorer

alllonFragmentation : Boolean
includeAmmonia : Boolean
includeWater : Boolean
higherCharges : Boolean
topX: Int

maxCombinations : Int

getBestN(peptide: Peptide,
spectrum: Spectrum,
tolerance: Tolerance,
fragMasses: Array[Double],
fragintensities: Array[Doublej,
mz: Double,

charge: Int,

maxAcceptable: Int,
massListCache: mutable. Map[MassListKey,
MassListValue],

maxMods: Int,

enzyme: Enzyme)

o fragMasses: the fragmented masses from the spectrum object

e fraglntensities: the intensities from the spectrum object

Figure 4.4: Cloud Scorer

e mz: the m/z ratio of the precursor

e charge: the charge of the peak

e maxAcceptable: number of maximum acceptable scores (refactor array pep-

tides)

e massListCache: a mutable map used to store already found peptides for future
reference. Should a peptide with the same properties is peptide property

calculations are skipped and direktly utilized from the map

e maxMods: maximum number of modifications

e enzyme: enzyme used to cleave the peptide, user configurable. In our case we

used Trypsin

As seen in 2 initially we set up the ScoringResult object (Figure 4.5). It is composed
of arrays because we have used this object to represent the score results for the

validation and cloud solutions.

The scores contain the evaluations of individual

input peptides. The sequences contain the amino acid sequences. The theoretical
masses are obtained by calculating the mono isotopic masses from the peptide string.
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ScoringResult

» scores: Array[Double]

» sequences: Array[String]

» theoreticalMasses: Array[Double]

» madifications: Array[PeptideModificationState]
* bestindex: Int

Figure 4.5: Scoring result class. The array have the size of how much peptide are
given as input, in the cloud variant this array will be the size of one.

The modifications array represent the modification state of each peptide. These are
influenced by the presence of fixed and variable modifications. The bestIndex shows
at which index the score is highest.

Another initialization step is to configure the tolerance used the calculate the maxi-
mum deviation from a mass value. Tolerance values are defined as input parameters
and the types of those values are covered in Chapter 2. We also set up additional
parameters: the maximum scores to be considered : 6 in our and Andromeda’s case,
the presence of water, amonia and higher charges. We split the peptide into smaller
peptides by applying the enzyme Trypsin rules on the amino acid chain. The pep-
tide string get split accordingly and the resulting sub-peptides are stored into a list.
We use this as our new array of peptides to work with.

After calculating the tolerance the only step left before the actual scoring is the
application of any present modifications. In the cloud variant of Cassiopeia there are
none but the option to use them is there. Should the modification count be greater
than the maximum allowed the execution is broken and the next peptide may be
cleaved. The maximum is an environment variable, configurable by the user. If
we have an acceptable modification count we continue by giving the information to
the next step, which works with the sub-peptide array. Having performed all those
preparation steps the only thing left is to evaluate how likely the peptide is to be
corresponding to the input spectrum.

Algorithm 2 Get Best Scores Cassiopeia cloud environment
procedure GETBESTN
scoring Result < ScoringResult.init()
3: fragmentationType < HcdFragmentationType()
initTolerance()
Enzyme.getNCleave()
6: applyModi fications()
calculateScore()
end procedure
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4.2.2.3 Preparation for the true probability calculation

The next step further transforms the data and calculates the effect of the input
parameters on the newly cleaved peptide array. The modifications, if present, adjust
again the values of the peptide. Then for each peptide string a score is calculated.
First we apply the fragmentation rules to each peptide (Algorithm 3). In our tool
we have considered the usage of only HedFragmentation, which is just a collection of
rules, splitting the peptide into smaller subsets. This produces a new array of masses
and is done by the method getQueryMasses(). The presence of water, amonia, the
state of the N- and C-terminus are considered and adjust each mono isotopic peptide
mass. Having performed this step we can apply our formula and extract a score.
We pass as parameters the cleaved and modified masses array originating from the
input peptide. The spectrum masses and intensities are also inputs to this function.
In 3 we call the score function three times, dependent on user input parameters.
First is whether neutral loss is included. When this is set to false the other two
calls are skipped. In the depiction of the algorithm we have displayed only two
Boolean parameters as intake to keep the pseudo code clean. Those variables are
includeNeutralLoss and secondLoss. These two parameters influence the calculation
of mono-isotopic masses performed on the split by the Enzyme peptide chain. The
altered masses are given as input to the scoring function. If there are neutral losses
the results of the three possible scores is compared and the highest is returned. The
precise calculation is explained in the next sub section.

The score function encapsulates in itself the application of the formula provided
by the Andromeda software (Figure 4.3). To simplify the software first looks for
matches in the cleaved array masses. We count the number of matches & found
when comparing the cleaved peptide theoretical masses n and the peaks in the input
spectrum. Higher k& with regards to n represent better probability to have found
a suitable matching amino acid chain. The n and k values are used to calculate
the probability as —10 times the logarithm of the probability of matching at least
k out of n theoretical masses by chance. Again, we use the same approach from
[CNM*11]. We take this probability while accounting for the correlation between
masses, intensities and the cleave position for found matches.

The calculated score is given back up the chain and assigned to the ScoringResult
object, along with information, that can be used later for analysis, such as peak
annotations and the role of modifications.

The ScoringResult is an intermediate object, which gets translated into a PSM
object. This can be them given back as input, which fits both the validation concept
and the one where Cassiopeia plays the role of an additional protein search engine,
used as a cross-validation mechanism. In the next chapter we will go over the results
we have obtained with our implementation.

4.3 Summary

In this chapter we covered the concrete implementation of Cassiopeia scoring and
the architecture required for the integration into MStream. We have developed our
tool to be decoupled so the underlying approach can be used not only in a cloud
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Algorithm 3 Main Scoring
> The score function accepts always the same parameters, the only difference are
the boolean values includeNeutralLoss and secondLoss.

procedure SCOREQMAIN(spectrumM asses, spectrumIntensities, ...)
scoring Result <— ScoringResult.init()
scoreFirst < score(false, false)
4: if ( hasNeutralLosses == false )
return scoreFirst
scoreSecond < score(true, false)
scoreThird < score(true,true)
8: if ( scoreFirst > scoreSecond & scoreFirst > scoreThird )
return scoreFirst
else if ( scoreSecond > scoreFirst & scoreSecond > scoreThird )
return scoreSecond
12: else
return scorel hree
end procedure

environment but also easy to validate against results, produced by the Andromeda
stand alone solution. Our goal is to obtain correct results in a timely fashion, while
also adhering to the pre-existing SMACK stack architecture. We have implemented
both validation and integration with the same components, where we use only the
required for the use case. The goal is to produce a software, which produces the same
evaluations as Andromeda and can be integrated with the IScorer interface into the
MStream ecosystem. In the following chapter we will evaluate the performance of
our implementation and how it behaves in a local or in a cloud environment.



5. Evaluation

Our tool Cassiopeia is an implementation of the Andromeda peptide scoring algo-
rithm intended to be used as cross-validation mechanism in a cloud environment.
Since Andromeda performs at least as good as Mascot, which is considered as the
golden standard in the proteomic field, we believe Cassiopeia may be close in use-
fulness to the scientists working within the proteomic and metaproteomic domain.
This will be true as long as our tool performs just as good as Andromeda. There-
fore in this chapter, we first evaluate the correctness and performance of Cassiopeia
compared to Andromeda. The second part of this chapter shows the scalability of
Cassiopeia when we consider a local or a cloud environment. Lastly, we compare the
cloud variant of our tool to an existing X!Tandem solution in the same environment,
where Cassiopeia will be running, evaluated in [RZS18].

This chapter begins by describing the experiment environment and the data sets
used as input and reference. Then we go over the different evaluations we performed
against Andromeda and X!Tandem in a cloud environment and compare the results.

5.1 Experiment set up

We begin by firstly describing the data sets used to perform our evaluations. The
Andromeda software uses APL format (Listing 2.2) and MStream, deployed on a
SMACK environment, works with data in MGF format (Listing 2.1). The protein
knowledge base is encoded in FASTA format (Listing 2.3). We have used peaks in
APL format for local experiments, but Cassiopeia can work with both APL and
MGF formats interchangeably. For the verification of our correctness with regards
to the performance of Andromeda, we have used two different experiment situations
- one for a data set with modifications and one without. For both of the cases, we
have used the same FASTA file to generate our peptide sequence knowledge base:
the UPSP_Nov2017 data set, which was downloaded from the Uniprot web site
[O:U]. It contains 560,414 distinct proteins, and the whole data set size is 270 MBs.

As for the mass spectrometry results data set, we have used two distinct spectrum
data sets. For the case with no modification, we have used the Ecoli_0/_RD2_01_1275
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Parameter Value
Enzyme Trypsin
Peptide mass tolerance 10 PPM
Fragmentation mass tolerance 0.5 Dalton
Fragmentation type HCD Fragmentation
Fixed modifications None
Variable modifications (when applicable) | Methionine, Cysteine
Max missed cleavages 2
Modification position Anywhere

Table 5.1: Experiment parameters for the experiments performed. The same pa-
rameters are used for Andromeda, Cassiopeia and MStream. Variable modifications
are used only on Ecoli_02_.RD2_01_2199 for one experiment, otherwise none were
used

data set, containing 40, 738 individual spectra and with a size of 77 MBs. We have
also performed tests on different sizes of data to observe the performance influence.
For the evaluation of dealing with data sets with modifications present, we have used
a different spectrum data set: Ecoli_02-RD2_01_2199. It contains 27,759 distinct
spectra and 110 MBs in size. For the evaluation of a cloud environment performance
in the context of MStream, we compared the default scoring - X!Tandem and Cas-
siopeia. UPSP_Nov2017 was also used as the initial peptide knowledge base, and
spectra were obtained from Fcoli_ 02_RD2_01_2199.

We have also evaluated the performance of Cassiopeia in two environments: one local
to compare the performance with the software used as an inspiration: Andromeda,
and then we compare how our tool fares in the MStream cloud environment, com-
pared to an Apache Spark job running the X!Tandem algorithm. We also compare
the performance of Cassiopeia when ran on a local set up or one in the cloud. We
wish to make note that we have two separate implementations - one that accepts
a FASTA file to create its own peptide knowledge base and a second one, which
accepts a peak entry and a peptide to be evaluated. This is covered more in detail
in Chapter 4 and Chapter 3.

Throughout the experiments, we have reused the same experiment variables, which
roles are covered in Chapter 2, can be seen in Table 5.1. We have used the same
peptide mass tolerance when creating the peptide sequence database and the same
fragmentation mass tolerance for the matching of spectra against theoretical spectra.
The fragmentation type used to cleave the proteins and peptides is the same for
all three different environments - HCD fragmentation and allowing a maximum of
two cleavages. There are no fixed modification present, only variable modifications
for the evaluation of performance on a set with variable modifications and in the
MStream environment. Additionally, the modification may be present anywhere in
the peptide string.

For the local experiment, we performed the evaluation on a personal laptop. The
machine is a Dell Latitude 5580 with an Intel Core i7-7820H() processor, 32 GBs
of RAM with 2666 MHz frequency and a Toshiba NVMe2 512GB.
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Modification | Andromeda representation | Composition | Delta mass | Site
Cysteine Carbamidomethyl (C) CyHsNO | 57.0214637236 | C
Methionine Oxidation (M) O 15.9949146221 | M

Table 5.2: Variable modifications used in Andromeda, Cassiopeia and MStream

For the cloud environment, we had a cluster which was running up to 4 Spark Jobs
at a time, each job was running on a machine of 1 Core with 4 GBs of dedicated
RAM. As experiment data for the evaluation of X!Tandem and Cassiopeia scores
on a cloud environment we used Fcoli_02_-RD2_01_2199 set. The peptides used as
input were supplied by our SMACK environment through a Kafka producer.

5.2 Validation Experiments

Our first task was to ensure the correctness of Cassiopeia scores. If we are not sure
about the validity of our results, further comparisons will be meaningless. That is
why we first have focused on validating whether our results match those produced
by Andromeda. For this purpose, we begin with the evaluation of the result of both
Andromeda and our proposed implementation on the exact same data set with the
same parameters.

We have performed experiments for two different cases - one without modifications
and one with two variable modifications. For the second case with we used the
following variable modifications seen in Table 5.2. The modification table contains
the type, composition, and the altered mass of the amino acid, which is modified.
The allowed modification position is anywhere in the peptide. The modifications
create two versions of the peptide - one with the original mass, calculated as a
sum of all available amino acids and a second one, where the amino acids with the
specified sites use the delta mass instead of their default one.

5.2.1 Experiment 1: Validation on sets without any modi-
fications

Our first experiment was to see whether the results of both Andromeda and Cas-
siopeia will match on a local environment with a batch of spectrum data. We have
performed four experiments in total for this, three with different sizes for an exper-
iment without modifications and one experiment with modifications.

For the first experiment, we considered using only subsets of the total data. We
created three distinguish sub-sets of both spectra and protein sequences files - one
where we took only the first 10% of the datasets, a second where we considered the
first half of the files and a third case for the complete files. The first evaluation
was done on the correlation between the best-found peptides and their scores for
first 10% of protein records found in UPSP_Nov2017 and evaluated the first 10%
of the peak records in Ecoli_04_RD2_01_1275 . The were no modifications given
as an input. The comparison of the results can be seen in Figure 5.1. The small
data set produces 63 total peptide match evaluations, where we have displayed only
40 for the sake of clarity. The y-axis is the result score for the match between
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Figure 5.1: Correlation between Andromeda and Cassiopeia scores performed on
10% of the Ecoli_04_RD2_01_1275 data set. The graphs contains 40 random subsets
out of the total 63 evaluated peptides, but the missing records behave in the same
way. The y-axis displays the score given as output, and the x-axis displays the
peptide sequence. Both Cassiopeia and Andromeda have produced the exact same
result, therefore, the bins are the same height.
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Occurrence number | Times encountered
1 36
2 7
3 4

Table 5.3: Number of times the same peptide has been identified as a match

the theoretical input peptide and the spectrum. The x-axis denotes the peptide
sequence. We have plotted both scores as 2 bins with different colors - Cassiopeia
(blue) and Andromeda (orange). Both scoring functions produce the same results
and all bins are with equal height. This is also true for the 23 not displayed from
all 63 distinct strings.

We also performed the same experiment on the complete data set. The ordering was
not the same, but again the same unique peptides were identified, although there
was one more evaluated PSM object. It resulted in 47 unique peptide sequences,
and 64 total evaluated potential matches. Peptides appeared multiple times with
different scores for different spectra, but at most three times. (Table 5.3) contains
the distribution of how many times a peptide has been scored. We can still observe
that the majority of the peptides are unique and only roughly one-quarter of the
peptides were considered as a possible contents in more than one spectrum. Peptides,
which occur more than once have, may also have different scores. A representation
of the deviations in the score can be seen in Figure 5.2. The average of the scores
is indicated by a blue dot. The minimum and maximum is displayed as a black
diamond. The y-axis indicates the score value for the peptide. In this graph we
have displayed the variation of a score with a gray line, starting at the minimum
score and the maximum score achieved. There are 8 present gray lines, which means
that 3 out of the 11 peptides, identified more than once have a large difference
between the scores. The records which were repeated but did not show themselves
in Figure 5.2 are at number 17, 21 and 26. For number 21 we have a peptide scored
thrice as 0 for a potential match and for the other 2 results, they were identified
by two distinct spectra, and the deviation is in range of 1.5 of their score. Their
averages are 41.95 for peptide number 17 and 15.51 for peptide number 26. All other
blue dots represent the average of the scores, where for single peptides the average
is equal to the minimum and maximum score.

5.2.2 Experiment 2: Validation for data sets with modifica-
tions

After performing tests without including any modifications, we have run an ad-
ditional one, including two variable modifications to the experiment environment:
Cysteine and Methionine. There were differences in the number of peptides discov-
ered in both Cassiopeia and Andromeda. An overview of the result can be seen in
Table 5.4. For this experiment, the number of evaluated peptides differ - Andromeda
has considered 882 in total, which is 78 less than those produced by Cassiopeia - 960.
The common distinct peptides discovered are 109 in total, where Andromeda finds
one more peptide additional. This means that we can boil down the sets down to
around 110 peptides and that a peptide has occurred on average 9 times. Although
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Figure 5.2: Evaluation for the whole Ecoli_04_RD2_01_1275 without modifications.
The x-axis shows the index of the peptide, the y-axis is for the score value. The
blue points indicate the average for each individual peptide. The gray line is present
for peptides, which were considered as a potential match for more than one peak
and had different score values, based on the spectrum considered. The gray line
shows the range of the found scores, where the lowest point shows the minimum, the
highest - the maximum and the blue dot displays the average of the scores assigned
to the peptide.
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Measurement Cassiopeia | Andromeda
Total peptides evaluated 960 882
Distinct peptides count 109 110
Peptides missing 1 0

Table 5.4: Results of peptide search for Ecoli_04_RD2_01_1275 with Cysteine and
Methionine as variable modifications.

Position | Cassiopeia | Andromeda | Difference
15 58.03 31.98 26.05
33 28.18 69.15 40.97
71 22.79 20.2 2.99
72 40.36 37.45 2.91

Table 5.5: Mismatched peptides between the maximum scores produced by Cas-
siopeia and Andromeda. We have 4 places in total where differences are present.
Two of them produce scores with small difference, while the other 2 cases have a
significant difference in favor of Cassiopeia.

having evaluated fewer peptides, Andromeda has evaluated one less. The missing
key is a result of a peak which evaluates 14 different peptides in Andromeda and is
13th when ordered by produced score. The missing peptide also appears only once
in this spectrum.

In Figure 5.3 we have compared the maximum scores given by both protein iden-
tification tools for each distinct peptide. There are a total of 109 unique peptides
displayed. We have made a side-by-side comparison for the peptides, which are pro-
duced as results and have plotted how they fare against each other. The x-axis is
used to indicate the peptide index, and the y-axis show the value for the score. The
orange line notes the maximum scores for peptides given by Andromeda and the
blue line displays the maximum score achieved by Cassiopeia for the same peptide.
The maximum value achieved is 77.48 by both software tools, and they also share
12 peptides with zero scores. We see again that Cassiopeia produces at least as high
results, as those gathered by Andromeda. The blue line, representing Cassiopeia al-
most completely overlaps with the orange one, indicating Andromeda results. They
are 4 peptides out of the 109 total, which have bigger value than their counterparts.
Those different can be seen in Table 5.5. We observe 2 distinct peptides to be eval-
uated quite higher than their counterpart in Andromeda - we have a difference of
40.97 higher result than one peptide evaluated with 28.18. The other two results
deviate less, by 2.59 and 2.91, which is under 10% deviation for both cases. All
other 105 peptides share the same maximum score assigned by both search tools.

In Figure 5.4, we have plotted how many times each peptide is evaluated as a
potential match. The figure again displays the shared by both scoring algorithms
109 distinct peptides and the correlation between their score values. We have plotted
the number of evaluations for each peptide, found during the experiment run time.
On the x-axis, we have displayed the index of the peptide up to the maximum of 109.
In the y-axis, we have displayed the number of times a peptide has shown up during
the evaluation. The occurrences for Cassiopeia are in blue and Andromeda is plotted



66 5. Evaluation

Maximum score for identified peptides
90
BO
70
B0

50

Scare

40

30

20

10

1 5 9 13 17 21 25 29 35 37 41 45 49 53 57 61 65 69 73 77 Bl BS B9 95 97 101105109
Mumber of peptide

— 35510 peia Maximum & d romeda M acimum

Figure 5.3: Comparison between the maximum scores of identified peptides form
Cassiopeia and Andromeda with Methionine and Cysteine as variable modifications.
The x-axis displays the 109 distinct peptides shared by both Cassiopeia and An-
dromeda, while the y-axis indicates the maximum score achieved by each individual
peptide sequence.
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Figure 5.4: Comparison on the complete data set without modifications, displaying
how many times distinct peptides have been considered as a match in Cassiopeia and
in Andromeda. The y-axis displays how many times a sequence has been evaluated
as a potential match. The blue line shows the result given by Cassiopeia, while
the orange one is for Andromeda. The x-axis shows the index of the 109 shared by
Cassiopeia and Andromeda peptides.

as orange. We see that the maximum amount a peptide has been shared is 20 and
the least amount of occurrences is 1. The most interesting thing to observe is that
Cassiopeia has at least as many evaluations when compared to Andromeda. There
are some cases where Cassiopeia produces a larger quantity of results found, but in
general, even if there are such, the difference between the two scoring mechanisms
are no more than 4 per distinct peptide. This indicates how the Cassiopeia PSM
evaluations manage to outnumber those, produced by Andromeda.

Since peptides in Cassiopeia are with roughly 10% more than those, evaluated by
Andromeda we have also inspected the average results of each distinct sequence. In
Figure 5.5 we have computed of the average for each one of the 109 distinct peptides.
The x-axis denotes the index of the entry, and the y-axis displays the average score
achieved. Cassiopeia (blue) almost overlaps with Andromeda (orange) for the bigger
part of the graph. There are some deviations, however, especially for the first part of
the figure. We also see an average of 0 given to peptide numbers between 41 and 55.
This is also present in Figure 5.3, where the peptides again share a maximum score
of zero. The fluctuations between the two lines reduce after the first 17 elements
and are almost the same, apart for some differences.
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Figure 5.5: Average of all scores present for each distinct peptide, occurring both
in Andromeda and Cassiopeia. The x-axis shows the indexes of the 109 shared by
both Cassiopeia and Andromeda result evaluations. For each peptide the average
is computed from the sum of all different scores for each individual peptide and
divided by the number of times it has been evaluated as a potential match for more
than one spectra. The resulting value is asigned to the y-axis, representing the score
achieved.
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Metrics Cassiopeia | Andromeda

Pre-processing time | 24,932 ms | 107,517 ms
Search time 7,693 ms 6,151 ms

Total time 32,625 ms | 113,668 ms

Table 5.6: Identification time in milliseconds for 10% of the complete proteins and
peaks data sets

5.2.3 Experiment 3: Evaluation of performance on data sets
with different sizes

After comparing the accuracy of Cassiopeia’s output against Andromeda, we also
wanted to see the performance and scalability of our tool when working with data
sets of different sizes. To validate the process, we have performed three separate tests
on three different data sizes. The complete FASTA UPSP_Nov2017 file takes 270
MBs of storage space and contains 560, 414 individual proteins, which are consid-
ered in normal and reverse order, amounting to a total of 1,120, 828 proteins. The
peptides composed produced by these proteins, after applying the cleavage rules
and omitting same peptides, end up being 13,413,201. The complete set of spectra
Ecoli_04-RD2_01-1275 is composed of 40, 738 individual peaks and take 77 MBs of
hard disk space.

Each graph below has been achieved by using the absolute same input parameters
and settings. Since we evaluated the relation of the scores produced by a data set
without modifications to produce the same results in Section 5.2.1 the graphs below
do not focus on the individual scores but instead indicate the elapsed time. Therefore
the y-axis is showing the time spent in milliseconds instead of indicating the score.
To test the scalability of both approaches, we have used data sets of different sizes
for both peptide knowledge base and the sizes of the spectra to be identified.

Figure 5.6 is performed with 10% of the total sizes for both FASTA and APL sets,
amounting to 27 MBs in size and composed out of 107,176 individual proteins,
cleaved into 1,593,078 individual peptides. For evaluation, we also used 10% of
the spectrum data set, amounting to 3,898 individual entries. The graph displays
the time required to build the peptide sequence database, labeled as "Preprocessing
time”, where Cassiopeia is shown in blue and Andromeda in orange. The y-axis
displays the elapsed time in milliseconds. The search duration comparison, where
the peaks are evaluated from the peptide knowledge base, is displayed as ”"Search
time”. The last bin tuple displays the total time required for the whole experiment.
The values achieved by each peptide identification software for the three phases can
be seen in Table 5.6. We can see that Cassiopeia finishes faster than Andromeda,
needing 32,625 ms compared to 113,668 ms.

Figure 5.7 is done with 50% of the protein and spectra data sets. The y-axis is
for the duration in milliseconds, and the colors are blue for Cassiopeia and orange
for Andromeda. The data quantities amount to 20,658 individual peak entries
with a protein sequence database containing 505,494 proteins, which in turn get
digested into 6,744,717 peptides. The experiment duration is again grouped into
three categories - pre-processing, evaluation, and total time spent. The scores of the
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Figure 5.6: Search performed on 10% of the protein sequence data set
UPSP_Nov2017 and 10% of the Ecoli_04_RD2_01_1275 peak data set. The first
10% of both files was used to evaluated the duration of each phase on a small set of
spectra with a small sequence data base used as a reference.

Metrics Andromeda | Cassiopeia
Pre-processing time | 457,039 ms | 138,113 ms
Search time 11,960 ms | 114,679 ms
Total time 468,999 ms | 252,793 ms

Table 5.7: Identification time in milliseconds for 50% of the complete proteins and
peaks data sets

pre-processing, search, and total times can be seen in Table 5.7. We see that the pre-
processing times for Cassiopeia takes one-fourth of the time - 138,113 ms, compared
with Andromeda needing 457,039 ms to compose the sequence knowledge base. The
scoring correlation, however, has increased drastically, where Cassiopeia requires
114,679 ms, which is 10 times longer than Andromeda (11,960 ms) to evaluate the
same amount of spectra. The total time for the complete evaluations by Cassiopeia
(252,793 ms) is less than Andromeda (469,999 ms).

The experiment run-time is shown in Figure 5.8 is done with both complete sets,
using the whole 77 MBs of data for the spectra and the 270 MB protein set. The com-
plete data set works with all 1,120,828 proteins and evaluates all 40,738 spectra. The
times presented are grouped into three graphs, where one is for the pre-processing
time needed to prepare the sequence database and to load the spectra from the mass
spectrometry experiment results. Additionally, we have displayed the time spent on
evaluating the spectra, grouped into Search time in milliseconds and also shown the
end sum of the experiment run-time under Total time.
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Figure 5.7: Search performed on fifty percent of the data.

Metrics Andromeda | Cassiopeia
Pre-processing time | 817,529 ms | 268,309 ms
Search time 12,757 ms | 328,302 ms
Total time 830,286 ms | 596,612 ms

Table 5.8: Identification time in milliseconds for the complete proteins and peaks
data sets
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Figure 5.8: Search performed using the complete data sets representing the spectra
from the mass spectrometry experiment and the UPSP_Nov2017 protein knowledge
base.

The results achieved between the different phases is shown in Figure 5.8 and the
time elapsed is visualized in Table 5.8. We see that the pre-processing trend is kept
and Cassiopeia (268,309 ms) requires a bit over one-quarter of the time Andromeda
needs (817,529 ms). The search time ratio has further increased, where the search
time accounts for 55 % of the total duration of Cassiopeia - 328,302 ms, while
Andromeda’s takes about 1% of the experiment run time - 12,757 ms.

In Figure 5.9, we have displayed the relationship between the time elapsed for the
preparation of the inputs. The x-axis shows the data set size used, and the y-axis is
for the elapsed time in milliseconds. Andromeda trend has been drawn with orange
and Cassiopeia with blue. We see that the pre-processing scaling ratio is the same
for all different experiments, where Cassiopeia requires 1/4th of the time needed for
Andromeda to prepare the sequence database.

Figure 5.10 displays the trends for the evaluation phase. The x-axis displays the
percentage of data sets used, and the y-axis displays the time spent. We see that An-
dromeda (orange) is the better performer since the data set almost doesn’t influence
the search time, and the time required is linear. This isn’t the case for Cassiopeia
(blue), where search times initially follow closely, but after the 50% mark explode
and continue increasing exponentially.

In Figure 5.11 we have plotted the time scaling of each step of the experiment - the
pre-processing time, the duration of the evaluation phase and in the end the total
duration of the test run. The x-axis is used to indicate the input file sizes, and the
y-axis displays the total time elapsed in milliseconds. We can see that in the end,
the total time of Cassiopeia (blue) is still lower, thanks to the advantages during
the pre-processing phase. The values for each experiment run are also displayed in
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Figure 5.9: Time spent for the building of the peptide sequence database out of a
FASTA file, containing protein sequence information. There are three different sizes
of the initial UPSP_Nov2017 considered.
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Figure 5.10: Time spent by Cassiopeia (blue) and Andromeda (orange) on evaluation
peptide-spectra matches on different data set sizes. The x-axis shows the data set
size and the x-axis displays the time taken in milliseconds.
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Figure 5.11: The total time spent for an evaluation of different data set sizes for
Ecoli_04_RD2_01_1275 without modifications. The time is represented in millisec-
onds and is the sum of pre-processing and search times.

Total time Andromeda | Cassiopeia

10 % proteins and peaks sets 113,668 ms | 32,625 ms
50 % proteins and peaks sets 468,999 ms | 252,793 ms
Complete proteins and peaks sets | 830,286 ms | 596,612 ms

Table 5.9: Total time elapsed for the evaluation of the three different data set pair
sizes.

Table 5.9. For the smallest data set, Cassiopeia takes 27% of the time needed by
Andromeda, for half of the data set - 54% and for the whole data set - 71 %. We
see that the bigger the data set, the less advantage does our new tool have, with a
trend to keep increasing.

We would also like to note the differences in resources used by both systems. Since
Andromeda has been implemented with working on 32-bit Windows environment
in mind, it does not exceed 2 GBs RAM usage. The CPU utilization also keeps a
single core busy, which peaks at 17% utilization. In contrast, the scaling of RAM
usage for Cassiopeia is exploding with the data set sizes. When considering the 10%
experiment, the tool was peaking at 4 GBs of RAM. For 50% the needed memory
space was around the 12 GB mark and for the complete data set peaks at 26 GBs of
RAM usage. This happens at the beginning of analysis until the peptide database is
built, after that step, the utilized memory is halved, but the heap size is kept until
the last stages of the evaluation phase. For the use case of working with the complete
data set sizes, we encountered the second peak much earlier during the evaluation
stage. As far as CPU utilization goes for the pre-processing phase, it is capped, due
to the parallel loading of input data. This also happens during the evaluation phase,
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Measurement Cassiopeia | MStream
Records count 57,000 57,000
Total time in seconds 4,842 s 899 s
Average records processed per second 12 63
Total PSM evaluations 179,841 17,173

Table 5.10: MStream integration comparison. For the processing of 57,000 individual
spectra Cassiopeia takes five times longer by evaluating ten times more peptide-
spectrum-match objects.

but it’s worth to note that for the complete data set a more significant part of the
work was assigned to garbage collection and when using less than 25 GBs of ram we
encountered out of memory exceptions.

5.3 Cloud evaluation

After performing evaluations on how Cassiopeia works on a local environment, com-
pared to Andromeda, we have evaluated how our tool performs as a peptide scoring
mechanism when integrated into the existing MStream environment. Instead of us-
ing the default X!Tandem scoring algorithm we have performed the tests with our
Cassiopeia implementation. In this experiment, we have used the variable modifica-
tions described in Table 5.1. The data sets used were Ecoli_02_RD2_01_2199 for the
peaks, and UPSP_Nov2017 was used to construct the peptide sequence database,
stored into Cassandra.

The output summary can be seen in Table 5.9. Although the initial processed
records are the same - 57,000, the evaluated data sets differ significantly in records
produced. The amount produced by both peptide scoring methods differs in orders
of magnitude - the original scoring of MStream with X!Tandem considers 17,173
records, where Cassiopeia evaluates 179,841. The size naturally also impacts the
performance, where for the whole duration of the evaluation, the time required with
X!Tandem (899s) as a scoring mechanism is five times faster than Cassiopeia (4,842

s).

After taking a look at the performance, we checked out what kind of overlap do
the two sets produce. In Table 5.11, we can see the number of unique peptides
identified and how much of them overlap when only the top 1000, ordered in a
descending manner by score, are considered. Since Cassiopeia’s set is a bit over 10
times larger it also produces a bit over 10 times the unique sequences of MStream
(12,942) - 137,861 distinct peptides are the result of flattening the whole PSM set to
contain unique only sequence keys. After considering the top 1000 records by score
we receive 64 shared peptides between the 812 unique strings from Cassiopeia and
526 resulting from X!Tandem.

Since the data sets differ quite a lot in sizes, we have evaluated how parts of the
top results occur when considering the complete counterpart data set. In Table 5.12
we have taken the top 100 to 1000 keys from X!Tandem scoring and evaluated how
much of them are contained in the 137,861 unique peptide sequences, evaluated by
Cassiopeia. We see that at most, we have a 74% overlap of keys when we take the
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Use case Cassiopeia peptides | MStream peptides | Common peptides
Total 137,861 12,042 1,427
Top 1000 from both 812 526 64

Table 5.11: Overlapping peptides identified by both protein identification algorithms

Use case | Cassiopeia peptides | MStream peptides | Common peptides | %

Top 100 137,861 42 30 71%
Top 200 137,861 105 78 74%
Top 500 137,861 281 189 67%
Top 750 137,861 413 259 62%
Top 1000 137,861 526 321 61%

Table 5.12: Overlapping peptides identified by both protein identification algorithms
where the whole Cassiopeia data set is used

first 200 X!Tandem scores and filter them to keep only the unique keys present.
After that, the shared sequences dwindle as a percentage and go lower and lower.

When considering ordering the scores for Cassiopeia’s output and comparing them
against the complete X!Tandem the maximum overlap is less and the number of
common peptides deteriorates much faster. The best case is when the top 100
scored PSM are considered - they are boiled down to 88 unique peptides and have
a 60% overlap. When increasing the considered keys, even with 200 we end up
having 35% shared identification which goes to 16% with the top 500 best PSMs
and continue dropping. One thing to note is that top scores by Cassiopeia produce
a bigger percentage of unique peptides. When comparing Table 5.13 we have 80+%
unique strings, when in Table 5.12 the results are between 42% and 55%.

Since we achieved the highest overlap for the comparison with the top 200 scoring
PSMs using X!Tandem scoring mechanism we have compared the average of the eval-
uated scores in Figure 5.12. The x-axis shows the distinct 78 shared by Cassiopeia
and X!Tandem peptide sequence results. The y-axis displays the score achieved. The
MStream line in orange is the average of the scores for the peptide sequence present
in the data set. The same has also been done for Cassiopeia’s scoring function, col-
ored in blue. In the figure, we observe 78 distinct peptides, obtained by extracting
the unique keys out of the top 200 X!Tandem results. We have averaged the scores
of each key for both scoring mechanisms and plotted it on the figure. The MStream

Use case | Cassiopeia peptides | MStream peptides | Common peptides | %

Top 100 88 12,942 53 60%
Top 200 173 12,942 60 35%
Top 500 433 12,942 68 16%
Top 750 632 12,942 7 12%
Top 1000 812 12,942 85 10%

Table 5.13: Overlapping peptides identified by both protein identification algorithms
where the whole MStream data set is used
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Top 200 MStream vs all Cassiopeia

Score

1 4 7 101316192225 2831 343740434649 5255586164 67707376
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Figure 5.12: The average of the sum of scores for the top 200 MStream PSMs re-
duced to 78 unique peptide sequences, which are present also in Cassiopeia’s output
for the cloud evaluation. The scores are ordered by descending for results pro-
duced by X!Tandem scoring and matched with their Cassiopeia counterparts. Both
X!Tandem and Cassiopeia posses different scoring scales, where the top X!Tandem
score achieved was 26 and the top Cassiopeia was 121.

graph (orange) appears in descending fashion, due to the ordering. The Cassiopeia
line (blue) has a lot more peaks because we have represented the averages of scores
by using the X!Tandem peptide sequence as a key. Both tools have different scoring
scales, so it is normal that they do not overlap in this case. One thing to note is
that the top-scoring MStream PSM with the score of 26 is not present in the graph,
whereas the top result from Cassiopeia with the value 121 does occur.

5.4 Summary

In this chapter, we showed the evaluations for both local and cloud environments.
We obtained almost the same results during the validation with Andromeda, where
missing results were present only for the complete data set with present modifica-
tions. For the case without modifications, we had the same unique peptide data set.
In contrast - the set with modifications resulted in Cassiopeia producing roughly
10% more PSMs, but the unique peptide sequences were the same, apart from 1
missing peptide in Cassiopeia, produced by Andromeda. The missing peptide, how-
ever, was part of a one spectrum evaluation, producing 14 distinct PSM objects and
was 13th by score when ordered from highest to lowest score.

For the time evaluations, we displayed that Cassiopeia takes a quarter of the time
needed by Andromeda. The scoring phase was, however in favor of Andromeda,
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where it took almost constant time. In contrast, the time required by Cassiopeia was
rising exponentially. In the end, Cassiopeia still managed to outperform Andromeda
for the data sets sizes considered.

As far as the cloud evaluations, we displayed a significant difference in the results
produced and time required. Cassiopeia produced a bit over 10 times for both
complete PSM evaluations and distinct peptide sequences. Cassiopeia also took 5
times longer than the default MStream implementation to finish the evaluation. Due
to the large data set sizes, the overlap percentage was low. We found out, however,
that when an according filtering is applied, we can achieve an overlap of 74% at
most. In the next chapter we go over the results and discuss the reasons behind the
presented evaluations.



6. Discussion

We presented a set of experiments in Chapter 5, intended to compare the perfor-
mance of Cassiopeia’s scoring algorithm against a local Andromeda stand-alone pro-
tein identification software and also the X!Tandem scoring method used in MStream,
deployed on a cloud environment.

6.1 Local environment

The experiments performed can be divided in two types - one for local environment,
meant to validate the correctness of our results and another experiment, evaluating
what is the output when Cassiopeia is used instead of the default X!Tandem scoring.
We first discuss what can be extracted from the results in a local environment.

6.1.1 Validation results

We have begun the evaluation phase initially in a limited environment by analyzing
parts of the data sets and data without modifications. We began the evaluation on
a small data set with no modifications. Both the proteins for the sequence database
and the evaluated spectra were 10 % of the total entries count. The 63 distinct
results were of 47 different peptides. In Section 5.2.1 we showed that almost one
third of peptides occur more than once and in Figure 5.2 we showed the deviations in
averages for the PSM evaluations. Those occurrences do appear in the same fashion
in both scoring functions, which is a good sign. The deviation can be attributed to
different spectra containing different parts of the protein chain. This means that not
the whole peptide may be contained, but is a good enough indication of a discovered
peptide. We have also evaluated the complete data set without modifications, and
we again obtain the exact same results, where we find one more entry. Since we
considered always the first 10% of the files in both use cases we can state, that
the all noteworthy peptide sequences appear in the first 10% of both data sets.
Additionally, no differences in the maximum scores are observed. Therefore we can
be certain that, as far as for data sets without modifications, Cassiopeia produces
the exact same output.
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When we consider working with validations in Section 5.2.2 however, differences
begin to be present. We obtain 960 PSM evaluations by Cassiopeia, compared by
the 882 produced by Andromeda. The amount of peptides considered by Cassiopeia
is equal or larger than those from Andromeda. This explains also how our tool
has acquired more evaluations. When we filter the peptides down to only a set of
unique peptide sequences, we observe that a single key from Andromeda is missing
in Cassiopeia’s output. Although having more results, the missing peptide is a result
of an evaluation which has considered 14 distinct peptides and the missing element is
13th when ordered by score. Since all other sequences are present, we can attribute
this to be an edge case, which does not invalidate the correctness of the resulting
subset. Had it been further ahead, this would be a definitive problem, but due to
the higher number of peptide results supplied by Cassiopeia we can attribute this
to the filtering conditions not present in Cassiopeia.

To double-check how the extra evaluation influences the score, we have also compared
the maximum scores and averages of both protein identification tools. The average
fluctuates a bit, but mainly for peptides which have an extra evaluation. The PSMs
with the biggest average differences share a common value for the maximum score,
apart from one. The peptide with the most significant difference in maximum score
has the largest difference in the times it has been considered as a match and the
average score. Thus by having a large score and more distinct results, this explains
the big difference in the average scores. Concerning different mismatches for the
maximum scores, there are three additional peptides, which differ, where two of
the differ by only a little. The averages of those three are however closer, when
compared to the most significant difference. Apart from those four distinct cases,
the results are the same or differ by very little with regards to the maximum and
average score, and the times they have been evaluated as a match. Considering the
data set contains 109 unique peptides, and 105 are almost identical, we are confident
that Cassiopeia is a viable protein identification method.

6.2 Scaling

In Section 5.2.3 we performed evaluations with different amounts of input data on a
local environment. Our goal was to show that our tool can scale with more resources.
In terms of scaling, we observed significant improvement over the method used to
construct protein sequence databases for a local environment. This

When we consider the time needed for analyzing 10 Percent of the complete data
sets we can see that the elapsed time for the identification of both Andromeda and
Cassiopeia is quite close, the difference is only 0.5 Seconds. Considering the size of
the data set however, this shows a trend for our software to be slower in the scoring
phase when compared to the Max Quant peptide identification tool. Cassiopeia
saves a considerable amount of time during the pre-processing phase. Not working
with a file-based system and operating only with objects stored in the main memory
naturally skips the biggest bottleneck in nowadays computing, this being the read
/ write operations done on the hard drive. Even with a NVMe drive capable of
doing around 435MB/s mixed 1/O operations, it does not come close to the speed
provided by dual-channel 2666 MHz RAM. This is one of the main reasons that we
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see a pre-processing time that take 4 times longer. This comes at a high cost, since
during the building of the sequence knowledge base, 25 GBs of RAM are required
at the peak. This happens only during the digestion of proteins and creating a
map object, which binds the peptide and stores their origin. They can be present
in multiple proteins, therefore the usage of a mutable list has been used. Scala
generally does not encourage the usage of mutable objects and also having heavy
objects as classes, which is the case of the peptide object used during the sequence
database build. These factors contribute to the large memory footprint.

When we consider the time needed for the evaluation of the search time takes al-
most the same amount of time for small data sets, but rises exponentially with the
increase of spectra. The total time for experiment runs is in favor of Cassiopeia
for all input sizes. Although Cassiopeia is generally faster than Andromeda when
it has to build its own peptide knowledge base, the margin of the total time keeps
reducing with the increase of the data sets sizes (Table 5.9). The biggest bottleneck
for Andromeda appears to be the working with the hard drive, but the correla-
tion is consistent between different data set sizes. The search time for Andromeda
also appears constant, while Cassiopeia search time keeps increasing exponentially.
We attribute this to the current implementation of Cassiopeia being in an object-
oriented fashion and Scala promoting functional approach. The usage of indexes,
although slower, allows sequential iteration over the known peptide sequence knowl-
edge base in a much more efficient way than. Andromeda achieves this by using an
index and an offset indicating where the start point of a search can be. Instead of
always re-materializing entries from the in-memory.

Having a slow scoring function still results in Cassiopeia performing better for dif-
ferent data set sizes, although the margin of improvement decreases, it does scale
with the presence of sufficient enough amount of RAM to keep up the advantage in
performance. If a sufficient amount is present, this reduces the influence of garbage
collection occurring, although an implementation with a better consideration for
memory makes more sense.

6.3 Cloud result analysis

Since the intended use of Cassiopeia is as a cross-validation mechanism to be used
in MStream, which is located in a cloud environment, we analyze the results from
the cloud experiment performed. In Section 5.2.1, Section 5.2.2 and we showed that
we have results with a validity, that can be used for cross-validation. Figure 5.9
evaluated the rates of scalability and how our tool performs under bigger loads. In
Section 5.3 there are significant differences present. The difference between the PSM
count being evaluated is almost tenfold. We attribute the enormous difference in
the numbers is due to the number of results not being filtered by Cassiopeia. We
are currently returning all possible results for an identified peptide. For the cloud
implementation, we have also omitted the cache list, since each spark job creates
a new instance of the scoring function and the cache might not be so useful. This
results in the same sequence being evaluated multiple times. The difference in the
resulting output also ends up influencing the time required to perform the whole
experiment. Cassiopeia takes 5 times longer than when MStream uses X!Tandem
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for evaluation. The positive side is that Cassiopeia appears to evaluate twice the
amount of PSMs for the same amount of time needed by X!Tandem.

When we filter the results to contain only unique peptides, we still keep the margin
of difference in unique sequences present - ten times more. There is an overlap to
be observed between the output of both tools. The ratio is rather small when con-
sidering all unique sequences. When we filter out the worst evaluations, the margin
increases, but is again depending on what is filtered out. The best performance
was achieved when considering only the top 200 scores produced by X!Tandem - we
have 74% shared peptide sequences. X!Tandem sequences tend to be present more
often in the other set, but this is expected, considering the second output is ten
plus times larger. Additionally, X!Tadem records have different amplitudes in the
score, since we ordered them in a descending manner. When we compare the scores
shared by both the default MStream scoring mechanism and by Cassiopeia produces
a set with large fluctuations in Cassiopeia’s results. The best scoring peptides from
Cassiopeia are present, which is a good indicator for the relevance of scores. Thus
we can deduce, that although Cassiopeia produces much larger data sets for a longer
duration, it can be easily used as a validation approach when we want to observe if
some results are indeed better matches.

6.4 Summary

The evaluations performed to confirm the validity of Cassiopeia’s results with regards
to Andromeda. We produce the same relevant results as Andromeda. Although more
resource-intensive it does provide a faster analysis run-time, as long as the data sets
don’t get too large. The best features of Cassiopeia, packed behind its in-memory
database, also extract the most substantial toll on performance during the actual
search for matching peptides regarding a single spectrum. This can be attributed
more to the current utilization of the knowledge base.

As far as performance in a cloud environment, we observe much larger sets of PSMs
being evaluated. This increases the total run time and confines the overlap between
Cassiopeia and X!Tandem. When inspecting the top X!Tandem results, however,
we obtain results with higher fluctuations in scores for the cloud implementation
of the Andromeda scoring algorithm. The score differences in Cassiopeia can be
used to adjust the meaningfulness of X!Tandem result, fulfilling the role of a cross-
validation mechanism. The performance could be improved by the introduction of
the filtering method, used by Andromeda, but this will reduce the data set available
for comparison. Cassiopeia offers flexibility in the potential use, which is a valuable
asset for a cloud environment. The cloud’s horizontal scalability may be utilized
to adjust the results needed for each individual experiment, thus improving the
confidence and usability of MStream results. In the next chapter we will present
some related peptide identifications software tools, also deployed in a distributed
data systems.



7. Related Work

As related work, we can mention a couple of distinct researches that are also protein
search tools, deployed on a cloud environment. Their approaches can be summarized
as approaches, which use existing peptide identification mechanisms by wrapping
them into a container, which is used for the evaluation. We will go over three
distinct software solutions using this approach: Q-Cloud, MS-PyCloud and Chorus.

7.1 Q-Cloud

The Q-Cloud [CRE™18] tool wraps the usage of OpenMS [SBGT08] software as a
scoring mechanism. OpenMS is a framework intended to be of use for developers
working on applications handling mass spectrometry data. The scoring functionality
is exposed by a local client interface, run as a script with giving input information
as batches. In contrast to MStream results are not sent to a message queue but are
directly inserted into a database. In order to perform an evaluation, the script is
executed, where multiple instances of the script can run simultaneously.

7.2 MS-PyCloud

MS-PyCloud [LBM™18] is another container for existing protein identification algo-
rithms, implemented using Python. It is also deployed on a cloud environment, but
the input data are still batches of information and are required to be present before
the valuation can take place.

7.3 Chorus

The Chorus project [chol9] is similar to both Q-Coud and MS-PyCloud since it
is again a facade to use existing protein search engines. It has been deployed on
an Amazon container environment and provides the evaluations as a web service.
Living in the Amazon ecosystem, it benefits of state-of-the-art load balancing and
scalability. The input files for the spectra and proteins are retrieved from a S3
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file system, which is also used for the storage of performed evaluations. Using the
commercial suite of tools, it provides ease in sharing research data. Additionally,
multiple files can be given as an input, in contrast to MStream working on a single
data set at a time.

7.4 Summary

The above presented related tools share the approach in using existing tools already
commonly used throughout the metaproteomic field and by researchers using mass
spectrometers. They all offer either single or an ensemble of peptide evaluation
mechanisms by abstracting their functionality into services, which can be called
from a cloud environment. Although all offer scalability and availability due to the
nature of the cloud architectures, the software tools are not implemented with the
use case in mind. In contrast to these 3 software solutions, MStream uses naively
integrated scoring mechanisms in the attempt to give better performance by not
encapsulating tools intended for environments, not native to a cloud architecture.



8. Conclusion

The nowadays go-to approach of analyzing organisms in the field of metaproteomics
is to use a mass spectrometer. To help analyze the results from metaproteomic ex-
periments, researchers use protein identification software tools. Although there are
available open-sourced and proprietary software solution for dealing with the mass
spectrometry data, there is a significant downside - nearly all of them require to have
the complete experiment spectrum data set present beforehand. Since the measure-
ment may take a couple of hours or more before completion, we were compelled to
analyze new measurements in real-time as each spectrum is evaluated. Additionally,
the majority of those tools are also limited in horizontal scalability by being usable
only in a local environment. In the work of Zoun et. al. - MStream, data is analyzed
in near-real-time. It is also implemented in a SMACK stack ecosystem, situated in
a cloud environment, ensuring a distributed software which is highly scalable, due
to the nature of the cloud architecture.

Our goal was to extend the functionality of MStream by the introduction of a new
peptide evaluation mechanism. We implemented Cassiopeia - a protein search en-
gine, based on Max Quant’s Andromeda stand alone. With this work, we have tried
to answer three questions.

Our first goal was to compare the correctness of our tool Cassiopeia against the An-
dromeda stand-alone open-sourced solution, from which we have utilized the peptide
scoring algorithm. We managed to reproduce 99% of the same results for different
data sets in different conditions. Therefore we can conclude that our tool is on par
with the Andromeda, regarding the correctness of the results.

Cassiopeia main goal is to be a cross-validation mechanism in the existing MStream
environment. So after validating the output results, our second goal was to prove the
viability of introducing our new tool into an existing ecosystem. Although the result
sizes differ significantly between Cassiopeia and MStream, we have obtained common
peptide sequences, after some filtration of the output. Cassiopeia’s score had a
higher amplitude and more significant diversity in the averages scores, compared
to the top scores produced by MStream. Following the statement, that our tool
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correctness is on Andromeda’s level, we can deduce that by producing scores with
large deviations, the high-ranking matches can be a viable indicator for a viable
match. Those high scores can be used as a cross-validation feature for result entries
produced by X!Tandem, when looking at the top MStream scoring evaluations in
descending order.

Our third objective was to check how Cassiopeia performs compared to the state of
the art MStream implementation. Our tool did take five times longer to complete
the experiment but ended up performing ten times more evaluations. Even if the
output is filtered to contain unique peptide sequences, the margin remains the same.
It may not be suitable for all use cases, but the flexibility offered by the presence
of an additional scoring mechanism in MStream can be a significant benefit. The
Scala implementation also offers horizontal and vertical scalability, which can speed
up the performance if there are resources to spare.

In our work we successfully recreated the evaluation approach used in Andromeda,
integrated it into the existing MStream environment and managed to work on
streams of data supplied in near-real-time, producing relevant and correct peptide
evaluations, usable for protein identification or cross-validation purposes.



9. Future Work

Extracting top peptides, which are present in Cassiopeia but are missing for An-
dromeda can be attributed to the skipped filtering mechanisms in Cassiopeia. Lim-
iting the evaluation of peptides can reduce the evaluated peptides and constrain the
differences in data sets for example between our software and X!Tandem.

We also introduced the concept of using an in-memory data base for the peptide
sequence knowledge base. This definitively proved to be valuable, since it attributes
the most gain of performance when compared with the original Andromeda software.
In MStream we use a Cassandra database

Additionally, we can always improve our tool by reducing the object-oriented method-
ologies used throughout and adopt a more functional approach, since this is encour-
aged by Scala. This can reduce the memory footprint and the effort needed for
garbage collection of objects, this reducing the run-time of our tool.

Since Cassiopeia proved a potentially valuable asset to the MStream stack it is
worth considering adding more peptide identification tools. This can increase the
confidence of results exponentially, additionally it can be implemented as the go-
to suite of protein identification software, which can handle mass spectrometry in
near-real time as a stream. Basing itself on a SMACK stack will not only ensure
resilience and availability due to the distributed nature of the cloud, it can be also
scaled easily with tools that fit best for a particular experiment. Cassiopeia can work
with two different formats as spectra input, which can be potentially extracted into
a service, suitable to process any open-sourced or other type of data format. Having
a bundle of possible protein search engines to choose from will offer flexibility, while
allowing to adjust the confidence levels and adapt the run-time for maximum time
utilization.
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