
5 Distributed DBS Query Processing
Overview

Contents

56

5.1 Overview
Overview

• Goal of query processing: creation of an efficient as possible query plans from a
declarative query

– Transformation to internal format (Calculus→ Algebra)

– Selection of access paths (indexes) and algorithms (e.g. Merge-Join vs.
Nested-Loops-Join)

– Cost-based selection of best possible plan

• In Distributed DBS:

– User view: no difference→ queries are formulated on global schema/external
views

– Query processing:

∗ Consideration of physical distribution of data
∗ Consideration of communication costs

57

Phases of Query Processing

Globally optimized

Query TransformationGlobal
Schema

Query
Locally optimized

Local OptimizationGlobal
Schema

Global Optimization

Global Query

Data LocalizationSchema

Statistics

Distribution

Global

Global Query Porcessing

Local Query Processing

Algebra Expression

Fragement Expression

Fragment Expression

• Query transformation

– Translation of SQL to internal representation (Relational Algebra)
– Name resolution: object names→ internal names (catalog)
– Semantic analysis: verification of global relations and attributes, view ex-

pansion, global access control
– Normalization: transformation to canonical format
– Algebraic optimization: improve "‘efficiency"’ of algebra expression

• Data localization:

– Identification of nodes with fragments of used relations (from distribution
schema)

• Global optimization:

– Selection of least expensive query plan
– Consideration of costs (execution and communication, cardinalities of in-

termediate results)
– Determination of execution order and place

• Local optimization

– Optimization of fragment query on each node
– Using local catalog data (statistics)
– Usage of index structures
– Cost-based selection of locally optimal plan

• Code-generation

– Map query plan to executable code

58

Query Transformation

Algebr. Optimization

Syntax Analysis (Parsing)

Name Resolution

Global Query

Semantic Analysis

Data Localization

Query Transformation

Translation to Relational Algebra
select A1, ..., Am
from R1, R2, ..., Rn
where F

Initial relational algebra expression:

πA1,...,Am(σF (r(R1)× r(R2)× r(R3)× · · · × r(Rn)))

Improve algebra expression:

• Detect joins to replace Cartesian products

• Resolution of subqueries (not exists-queries to set difference)

• Consider SQL-operations not in relational algebra: (group by, order by,
arithmetics, . . .)

Normalization

• Transform query to unified canonical format to s implify following optimization
steps

• Special importance: selection and join conditions (from where-clause)

– Conjunctive normal form vs. disjunctive normal form

– Conjunktive normal form (CNF) for basic predicates pij :

(p11 ∨ p12 ∨ · · · ∨ p1n) ∧ · · · ∧ (pm1 ∨ pm2 ∨ · · · ∨ pmn)

– Disjunctive normal form (DNF):

(p11 ∧ p12 ∧ · · · ∧ p1n) ∨ · · · ∨ (pm1 ∧ pm2 ∧ · · · ∧ pmn)

– Transformation according to equivalence rules for logical operations

59

Normalization /2

• Equivalence rules

– p1 ∧ p2 ←→ p2 ∧ p1 und p1 ∨ p2 ←→ p2 ∨ p1
– p1 ∧ (p2 ∧ p3)←→ (p1 ∧ p2)∧ p3 und p1 ∧ (p2 ∨ p3)←→ (p1 ∨ p2)∨ p3
– p1 ∧ (p2 ∨ p3) ←→ (p1 ∧ p2) ∨ (p1 ∧ p3) und p1 ∨ (p2 ∧ p3) ←→ (p1 ∨
p2) ∧ (p1 ∨ p3)

– ¬(p1 ∧ p2)←→ ¬p1 ∨ ¬p2 und ¬(p1 ∨ p2)←→ ¬p1 ∧ ¬p2
– ¬(¬p1)←→ p1

Normalization: Example

• Query:

select * from Project P, Assignment A
where P.PNr = A.PNr and

Budget > 100.000 and
(Loc = ’MD’ or Loc = ’B’)

• Selection condition in CNF:

P.PNr = A.PNr ∧ Budget > 100.000 ∧ (Loc = ’MD’ ∨ Loc = ’B’)

• Selection condition in DNF:

(P.PNr = A.PNr ∧ Budget > 100.000 ∧ Loc = ’MD’) ∨
(P.PNr = A.PNr ∧ Budget > 100.000 ∧ Loc = ’B’)

60

Phases of Optimization

Optimized Algebra Expression

Logical Optimization

Physical Optimization

Cost−based Optimization

Best Access Plan

Possible Access Plans

Optimization

Algebra Expression

Algebraic Optimization

• Term replacement based on semantic equivalences

• Directed replacement rules to improve processing of expression

• Heuristic approach:

– Move operation to get smaller intermediate results
– Indentify and remove redundancies

• Result: improved algebraic express⇒ operator tree⇒ initial query plan

Algebraic Rules /1
• Operators σ and on commute, if selection attribute from one relation:

σF (r1 on r2)←→ σF (r1) on r2 falls attr(F) ⊆ R1

• If selection condition can be split, such that F = F1 ∧F2 contain predicates on attributes
in only one relation, respectively:

σF (r1 on r2)←→ σF1(r1) on σF2(r2)

if attr(F1) ⊆ R1 and attr(F2) ⊆ R2

• Always: decompose to F1 with attributes from R1, if F2 contains attributes from R1 and
R2:

σF (r1 on r2)←→ σF2(σF1(r1) on r2) if attr(F1) ⊆ R1

Algebraic Rules /2

• Combination of conditions of σ is identical to logical conjunction⇒ operations
can change their order

σF1
(σF2

(r1))←→ σF1∧F2
(r1)←→ σF2

(σF1
(r1))

(uses commutativity of logic AND)

61

Algebraic Rules /3

• Operator on is commutative:
r1 on r2 ←→ r2 on r1

• Operator on is associative:

(r1 on r2) on r3 ←→ r1 on (r2 on r3)

• Domination of sequence of π operators:

πX(πY (r1))←→ πX(r1)

• π and σ are commutative in some cases:

σF (πX(r1))←→ πX(σF (r1))

if attr(F) ⊆ X
πX1(σF (πX1X2(r1)))←→ πX1(σF (r1))

if attr(F) ⊇ X2

Algebraic Rules /4

• Commutation of σ and ∪:

σF (r1 ∪ r2)←→ σF (r1) ∪ σF (r2)

• Commutation of σ and with other set operation − and ∩
• Commutation of π and on partially possible: join attributes must be kept and later removed

(nevertheless decreases intermediate result size)

• Commutation of π und ∪
• Distributivity for set operations

• Idempotent expressions, e.g. r1 on r1 = r1 and r1 ∪ r1 = r1

• Operations with empty relations, e.g. r1 ∪ ∅ = r1

• Commutativity of set operations

• . . .

62

Algebraic Optimization: Example
select * from Procekt P, Assignment A
where P.PNr = A.PNr and

Capacity > 5 and
(Loc = ’MD’ or Loc = ’B’)

)(5 BLocMDLocCapacity =∨=∧>
σ

><

Project Assignment ⇒

BLocMDLoc =∨=
σ

><

Project Assignment

5>Capacityσ

63

5.2 Data Localization
Data Localization

• Task: create fragment queries based on data distribution

– Replace global relation with fragments

– Insert reconstruction expression using fragments of global relation

Data Localization Phase

Physical Optimization

Query Transformation

Data Localization

Resolution of Fragments
of global Relations

Algebr. Optimization

Data Localization: Example I

• Schema:

PROJ1 = σBudget≤150.000(PROJEKT)
PROJ2 = σ150.000<Budget≤200.000(PROJECT)
PROJ3 = σBudget>200.000(PROJECT)

PROJECT = PROJ1∪ PROJ2∪ PROJ3

• Query: σLoc=’MD’∧Budget≤100.000(PROJECT) [1ex] =⇒ σLoc=’MD’∧Budget≤100.000(PROJ1∪PROJ2∪
PROJ3)

Data Localization /2

• Requirement: further simplification of query

• Goal: eliminate queries on fragments not used in query

• Example: pushing down σ to fragments

σLoc=’MD’∧Budget≤100.000(PROJ1∪PROJ2∪ PROJ3)[1ex] because of: σBudget≤100.000(PROJ2) =
∅, σBudget≤100.000(PROJ3) = ∅[1ex]

=⇒ σLoc=’MD’(σBudget≤100.000(PROJ1))

64

Data Localization /3

• For horizontal fragmentation

– Also possible simplification of join processing

– Push down join if fragmentation on join attribute

Data Localization: Example II

• Schema:

M1 = σMNr<’M3’(MEMBER)
M2 = σ’M3’≤MNr<’M5’(MEMBER)
M3 = σMNr≥’M5’(MEMBER)

Z1 = σMNr<’M3’(ASSIGNMENT)
Z2 = σMNr≥’M3’(ASSIGNMENT)

• Query: ASSIGNMENT on MEMBER[1ex] =⇒ (M1∪ M2∪ M3) on (Z1∪ Z2)
=⇒ (M1 on Z1) ∪ (M2 on Z2) ∪ (M3 on Z2)

Data Localization /4

• Vertical fragmentation: reduction by pushing down projections

• Example:

PROJ1 = πPNr,PName,Loc(PROJECT)
PROJ2 = πPNr,Budget(PROJECT)

PROJECT = PROJ1 on PROJ2

• Query: πPName(PROJECT)[1ex] =⇒ πPName(PROJ1 on PROJ2) =⇒ πPName(PROJ1)

Qualified Relations

• Descriptive information to support algebraic optimization

• Annotation of fragments and intermediate results with content condition (com-
bination of predicates that are satisfied here)

• Estimation of size of relation

• If r′ = Q(r), then r′ inherits condition from r, plus additional predicates from
Q

• Qualification condition qR: [R : qR]

• Extended relational algebra: σF [R : qR]

65

Extended Relational Algebra

(1) E := σF [R : qR] → [E : F ∧ qR]
(2) E := πA[R : qR] → [E : qR]
(3) E := [R : qR]× [S : qS] → [E : qR ∧ qS]
(4) E := [R : qR]− [S : qS] → [E : qR]
(5) E := [R : qR] ∪ [S : qS] → [E : qR ∨ qS]
(6) E := [R : qR] onF [S : qS] → [E : qR ∧ qS ∧ F]

Extended Relational Algebra /2
• Usage of rules for description – no processing

• Example: σ100.000≤Budget≤200.000(PROJECT)

E1 = σ100.000≤Budget≤200.000[PROJ1 : Budget ≤ 150.000]

 [E1 : (100.000 ≤ Budget ≤ 200.000) ∧ (Budget ≤ 150.000)]

 [E1 : 100.000 ≤ Budget ≤ 150.000]

E2 = σ1000≤Budget≤200.000[PROJ2 : 150.000 < Budget ≤ 200.000]

 [E2 : (100.000 ≤ Budget ≤ 200.000) ∧
(150.000 < Budget ≤ 200.000)]

 [E2 : 150.000 < Budget ≤ 200.000]

E3 = σ100.000≤Budget≤200.000[PROJ3 : Budget > 200.000]

 [E3 : (100.000 ≤ Budget ≤ 200.000) ∧ (Budget > 200.000)]

 E3 = ∅

66

5.3 Join Processing
Join Processing

• Join operations:

– Common task in relational DBS, very expensive (≤ O(n2))

– In distributed DBS: join of nodes stored on different nodes

• Simple strategy: process join on one node

– Ship whole: transfer the full relation beforehand

– Fetch as needed: request tuples for join one at a time

"‘Fetch as needed "’ vs. "‘Ship whole"’ /1
R A B

3 7
1 1
4 6
7 7
4 5
6 2
5 7

S B C D
9 8 8
1 5 1
9 4 2
4 3 3
4 2 6
5 7 8

R on S A B C D
1 1 5 1
4 5 7 8

Strategy #Messages #Values
SW at R-node 2 18
SW at S-node 2 14
SW at 3. node 4 32
FAN at S-node 6 ∗ 2 = 12 6 + 2 ∗ 2 = 10
FAN at R-node 7 ∗ 2 = 14 7 + 2 ∗ 3 = 13

"‘Fetch as needed "’ vs. "‘Ship whole"’ /2

• Comparison:

– "‘Fetch as needed"’ with higher number of messages, useful for small left
hand-side relation (e.g. restricted by previous selection)

– "‘Ship whole"’ with higher data volume, useful for smaller right hand-side
(transferred) relation

• Specific algorithms for both:

– Nested-Loop Join

– Sort-Merge Join

– Semi-Join

– Bit Vector-Join

67

Nested-Loop Join
Nested loop over all tuples t1 ∈ r and all t2 ∈ s for operation r ./ s

r ./ϕ s:

for each tr ∈ r do
begin

for each ts ∈ s do
begin

if ϕ(tr, ts) then put(tr · ts) endif
end

end

Sort Merge-Join
X := R ∩ S; if not yet sorted, first sort r and s on join attributes X

1. tr(X) < ts(X), read next tr ∈ r

2. tr(X) > ts(X), read next ts ∈ s

3. tr(X) = ts(X), join tr with ts and all subsequent tuples to ts equal regarding
X with ts

4. Repeat for the first t′s ∈ s with t′s(X) 6= ts(X) starting with original ts and
following t′r of tr until tr(X) = t′r(X)

Sort Merge-Join: Costs

• Worst case: all tuples with identical X-values: O(nr ∗ ns)

• X keys of R or S: O(nr log nr + ns log ns)

• If relations are already sorted (e.g. index on join attributes, often the case):
O(nr + ns)

68

Semi-Join

• Idea: request join partner tuples in one step to minimize message overhead (com-
bines advantages of SW and FAN)

• Based on: r on s = r on (sn r) = r on (s on πA(r)) (A is set of join attributes)

• Procedure:

1. Node Nr: computation of πA(r) and transfer to Ns

2. Node Ns: computation of s′ = s on πA(r) = sn r and transfer to Nr

3. Node Nr: computation of r on s′ = r on s

Semi-Join: Example

Q

3

5

6

9

B

4

2

8

1

R A

3

5

6

9

R’

A

3

5

6

9

R’ D

3

1

6

8

7

A

3

6

B

4

8

R−Node S−Node

S C

4

3

2

8

6

S’ C

3

6

S’ C

3

6

Q C

3

6

D

1

7

D

1

7

D

1

7

R’

S’

A

69

Bit Vector-Join

• Bit Vector or Hash Filter-Join

• Idea: minimize request size (semi-join) by mapping join attribute values to bit
vector B[1 . . . n]

• Mapping:

– Hash function h maps values to buckets 1 . . . n

– If value exists in bucket according bit is set to 1

Bit Vector-Join /2

• Procedure:

1. Node Nr: for each value v in πA(r) set according bit in B[h(v)] and trans-
fer bit vector B to Ns

2. Node Ns: compute s′ = {t ∈ s | B[h(t.A)] is set } and transfer to Nr

3. Node Nr: compute r on s′ = r on s

Bit Vector-Join /3

• Comparison:

– Decreased size of request message compared to semi-join

– Hash-mapping not injective→ only potential join partners in bit vector
sufficiently great n and suitable hash function h required

Bit Vector-Join: Example

Q

3

5

6

9

B

4

2

8

1

R

A

3

6

B

4

8

D

3

1

6

8

7

S C

4

3

2

8

6

C

4

3

2

8

6

h(C)

4

3

2

1

6

C

3

2

6

D

1

6

7

S’C

3

2

6

D

1

6

7

S’

h(t.A(R))

R−Node S−Node

Q C

3

6

(1101100)

h(v)=v mod 7

Hit

−

+

+

−

+

D

1

7

A

70

5.4 Global Optimization
Global Optimization

• Task: selection of most cost-efficient plan from set of possible query plans

• Prerequisite: knowledge about

– Fragmentation

– Fragment and relation sizes

– Value ranges and distributions

– Cost of operations/algorithms

• In Distributed DBS often details for nodes not known:

– Existing indexes, storage organization, . . .

– Decision about usage is task of local optimization

Cost-based optimization: Overview

Cost Model

Query

Best Plan

Search Strategy

Generate the
Search Space

Equivalent Plans

Transformation
Rules

Optimization: Search Space

• Search space: set of all equivalent query plans

• Generated by transformation rules:

– Algebraic rules with no preferred direction, e.g. join commutativity and
associativity (join trees)

– Assignment of operation implementation/algorithm, e.g. distributed join
processing

– Assignment of operations to nodes

71

• Constraining the search space

– Heuristics (like algebraic optimization)

– Usage of "‘preferred"’ query plans (e.g. pre-defined join trees)

Optimization: Join Trees

A B

C

D

A B C D

• Left deep trees or right deep trees join order as nested structure/loops, all
inner nodes (operations) have at least one input relation

• Bushy trees better potential for parallel processing, but higher optimization
efforts required (greater number of possible alternatives)

Optimization: Search Strategy
• Traversing the search space and selection of best plan based on cost model:

– Which plans are considered: full or partial traversal

– In which order are the alternatives evaluated

• Variants:

– Deterministic: systematic generation of plans as bottom up construction, simple
plans for access to base relations are combined to full plans, grants best plan, com-
putationally complex (e.g. dynamic programming)

– Random-based: create initial query plan (e.g. with greedy strategy or heuristics)
and improve these by randomly creating "‘neighbors"’, e.g. exchanging operation
algorithm or processing location or join order, less expensive (e.g. genetic algo-
rithms) but does not grant best plan

Cost Model

• Allows comparison/evaluation of query plans

• Components

– Cost function

∗ Estimation of costs for operation processing

– Database statistics

∗ Data about relation sizes, value ranges and distribution

– Formulas

∗ Estimation of sizes of intermediate results (input for operations)

72

Cost Functions

• Total time

– Sum of all time components for all nodes / transfers

Ttotal =TCPU ∗ #insts + TI/O ∗ #I/Os+

TMSG ∗ #msgs + TTR ∗ #bytes

– Communication time:

CT (#bytes) = TMSG + TTR ∗ #bytes

– Coefficients characteristic for Distributed DBS:

– WAN: communication time (TMSG, TTR) dominates

– LAN: also local costs (TCPU, TI/O) relevant

Cost Functions /2

• Response time

– Timespan from initiation of query until availability of full results

Ttotal =TCPU ∗ seq_#insts + TI/O ∗ seq_#I/Os+

TMSG ∗ seq_#msgs + TTR ∗ seq_#bytes

– With seq_#x is maximum number x that must be performed sequentially

Total Time vs. Response Time

Node 3

Node 2Node 1

x Data Units y Data Units

Ttotal = 2TMSG + TTR(x+ y)

Tresponse = max{TMSG + TTR ∗ x, TMSG + TTR ∗ y}

73

Database statistics

• Main factor for costs: size of intermediate results

• Estimation of sizes based on statistics

• For relation R with attributes A1, . . . , An and fragments R1, . . . , Rf

– Attribute size: length(Ai) (in Byte)

– Number of distinct values of Ai for each fragment Rj : val(Ai, Rj)

– Min and max attribute values: min(Ai) and max(Ai)

– Cardinality of value domain of Ai: card(dom(Ai))

– Number of tuples in each fragment: card(Rj)

Cardinality of Intermediate Results

• Estimation often based on following simplifications

– Independence of different attributes

– Equal distribution of attribute values

• Selectivity factor SF:

– Ratio of result tuples vs. input relation tuples

– Example: σF (R) returns 10% of tuples from R SF= 0.1

• Size of an intermediate relation:

size(R) = card(R) ∗ length(R)

Cardinality of Selections

• Cardinality
card(σF (R)) = SFS(F) ∗ card(R)

• SF depends on selection condition with predicates p(Ai) and constants v

SFS(A = v) =
1

val(A,R)

SFS(A > v) =
max(A)− v

max(A)−min(A)

SFS(A < v) =
v −min(A)

max(A)−min(A)

74

Cardinality of Selections /2

SFS(p(Ai) ∧ p(Aj)) = SFS(p(Ai)) ∗ SFS(p(Aj))

SFS(p(Ai) ∨ p(Aj)) = SFS(p(Ai)) + SFS(p(Aj))−
(SFS(p(Ai)) ∗ SFS(p(Aj)))

SFS(A ∈ {v1, . . . , vn}) = SFS(A = v) ∗ card({v1, . . . , vn})

Cardinality of Projections

• Without duplicate elimination

card(πA(R)) = card(R)

• With duplicate elimination (for non-key attributes A)

card(πA(R)) = val(A,R)

• With duplicate elimination (a key is subset of attributes in A)

card(πA(R)) = card(R)

Cardinality of Joins

• Cartesian products

card(R× S) = card(R) ∗ card(S)

• Join

– Upper bound: cardinality of Cartesian product
– Better estimation for foreign key relationships S.B → R.A:

card(R onA=B S) = card(S)

– Selectivity factor SFJ from database statistics

card(R on S) = SFJ ∗ card(R) ∗ card(S)

Cardinality of Semi-joins

• Operation RnA S

• Selectivity factor for attribute A from relation S: SFSJ(S.A)

SFSJ(RnA S) =
val(A,S)

card(dom(A))

• Cardinality:
card(RnA S) = SFSJ(S.A) ∗ card(R)

75

Cardinality of Set Operations

• Union R ∪ S

– Lower bound: max{card(R), card(S)}
– Upper bound: card(R) + card(S)

• Set difference R− S

– Lower bound: 0

– Upper bound: card(R)

Example

• Fragmentation: PROJECT = PROJECT1 ∪ PROJECT2 ∪ PROJECT3

• Query:
σBudget>150.000(PROJECT)

• Statistics:

– card(PROJECT1) = 3.500, card(PROJECT2) = 4.000, card(PROJECT3) =
2.500

– length(PROJECT) = 30

– min(Budget) = 50.000, max(Budget) = 300.000

– TMSG = 0.3s

– TTR = 1/1000s

Example: Query Plans

• Variant 1:

σBudget>150.000(PROJECT1 ∪ PROJECT2 ∪ PROJECT3)

• Variant 2:

σBudget>150.000(PROJECT1)∪
σBudget>150.000(PROJECT2)∪
σBudget>150.000(PROJECT3)

76

Join Order in DDBS
• Huge influence on overall performance

• General rule: avoid Cartesian products where possible

• Join order for 2 relations R on S

R S

if size(R) > size (S)

if size(R) < size(S)

• Join order for 3 relations R onA S onB T

S

TR

A B

K2

K3K1

Join Order in DDBS /2

• (cont.) Possible strategies:

1. R→ N2 ; N2 computes R′ := R on S; R′ → N3; N3 computes R′ on T

2. S → N1 ; N1 computes R′ := R on S; R′ → N3; N3 computes R′ on T

3. S → N3 ; N3 computes S′ := S on T ; S′ → N1; N1 computes S′ on R

4. T → N2 ; N2 computes T ′ := T on S; T ′ → N1; N1 computes T ′ on R

5. R→ N2 ; T → N2; N2 computes R on S on T

• Decision based on size of relations and intermediate results

• Possible utilization of parallelism in variant 5

Utilization of Semi-Joins

• Consideration of semi-join-based strategies

• Relations R at node N1 and S at node N2

• Possible strategies R onA S

1. (RnA S) onA S

2. R onA (S nA R)

3. (RnA S) onA (S nA R)

• Comparison R onA S vs. (RnA S) onA S) for size(R) < size(S)

• Costs for R onA S: transfer of R to N2 TTR ∗ size(R)

77

Utilization of Semi-Joins /2

• Processing of semi-join variant

1. πA(S)→ N2

2. At node N2: computation of R′ := RnA S

3. R′ → N1

4. At node N1: computation of R′ onA S

• Costs: costs for step 1 + costs for step 2

TTR ∗ size(πA(S)) + TTR ∗ size(RnA S)

• Accordingly: semi-join is better strategy if

size(πA(S)) + size(RnA S) < size(R)

Summary: Global Optimization in DDBS

• Extension of centralized optimization regarding distribution aspects

– Location of processing

– Semi Join vs. Join

– Fragmentation

– Total time vs. response time

– Consideration of additional cost factors like transfer time and number of
message messages

• Current system implementations very different regarding which aspects are con-
sidered or not

78

