Master’s Thesis

Collaboration in Computer Science Teams: A Systematic Literature Review

Author:
Sini Manu Sali

December 5, 2022

Advisors:
Prof. Dr. rer. nat. habil. Gunter Saake
Department of Technical and Business Information Systems
Otto-von-Guericke Universität

M.Sc. Chukwuka Victor Obionwu
Department of Technical and Business Information Systems
Otto-von-Guericke University Magdeburg

Dr. Ing. David Broneske
Deutsches Zentrum für Hochschul- und Wissenschaftsforschung
Manu Sali, Sini:

Collaboration in Computer Science Teams: A Systematic Literature Review

Systematic Literature Review (SLR) is a strategy, employed when conducting literature reviews on a specific research area, that results in minimal bias, and more reliable insight. It is more approachable than any of the typical ad-hoc approaches, and many research efforts and studies have been carried out following this approach. Thus, it has been considered as an essential method to aggregate and summarize existing knowledge, so that none will present repeatedly. They are explicit, reproducible and without prior assumptions. In all the research purposes, the main use and value of a SLR relies on what was done, what was analyzed, what was found and the quality of clarity in reporting.

Computer Science (CS), particularly Software Engineering (SE) is a rapidly evolving research area which is being conducted by large, collaborative teams. Unfortunately, the diversity among the teams are rarely discussed. Thus, in this thesis, we have tried to find the research gaps between the differences in diversity or similarity among team members and the impact of having them in the teams. We have adapted the techniques of SLR to perform the research in a less biased way. We collected a total of 3130 papers from various digital libraries. We performed the various phases of SLR on the collected papers and tried to filter to a less number of papers and analyzed them. Throughout this research, we have followed the guidelines proposed by Kitchenham on SLR.

The main purpose of this thesis endeavor is to examine and identify current, and relevant state-of-the-art research efforts on collaboration in CS teams and to ascertain both the impact and effectiveness of collaborative engagements. We selected 13 primary studies and conducted a literature survey on them. Every study reported at least one important relationship between teams or the role of women in teams or the intervention and performance of teams. Some non-significant facts were also reported. The quality of the review ranges from medium to high. However, almost every research suggested that team processes behaviors influences team performance and related outcomes.
Acknowledgments

This thesis marks the end of my memorable academic journey towards pursuing a Master of Science degree from Otto- Von-Guericke University of Magdeburg.

First and foremost, I would like to thank my adviser, Prof. Gunter Saake, for giving me the opportunity to make this work under his supervision. I would also like to thank M.Sc. Chukwuka Victor Obionwu for his guidance throughout the work.

I would like to give a special thanks to Yusra Shakeel for her comprehensive support and her helpful remarks and suggestions during this thesis.

Last but not least, I would like to extend my very profound gratitude to my family, my father Manu Joseph, my mother Saramma John, my brother Manas M S for their courage and support they provided during my tenure.

And to conclude, I would like to thank all the academic and office staffs who helped me throughout my journey.
I hereby declare that I am the sole author of this Master Thesis and that I have not used any sources other than those listed in the bibliography and identified as references.
I further declare that I have not submitted this thesis at any other institution in order to obtain a degree.

Signature: ___________ Place: ___________ Date: ___________
Contents

List of Figures xiii
List of Tables xv
List of Acronyms xvii

1 Introduction 1
 1.1 Motivation .. 2
 1.2 Goal of this Thesis .. 2
 1.3 Structure of the Thesis 3

2 Background 5
 2.1 Systematic Literature Review 5
 2.1.1 Planning .. 7
 2.1.2 Conducting ... 9
 2.1.3 Reporting ... 11
 2.2 EBSE-Evidence Based Software Engineering 11
 2.3 Snowballing .. 12
 2.4 Collaborative Learning(CL) 12
 2.5 Collaboration in Teams 13
 2.5.1 Collaboration Technologies 14
 2.5.2 Factors of Successful Teams 14
 2.5.3 Five Factor Model 14
 2.5.4 Predictors of Team Work Satisfaction 15
 2.5.5 Ways of Measuring the Effectiveness of Team Work 16
 2.5.6 Tools and Interactive methods of Collaboration 16
 2.6 Text Mining .. 16
 2.7 Visual Text Mining ... 18
 2.8 Technical Background 19
 2.8.1 StArt Tool ... 19
 2.8.2 API ... 19
 2.8.3 Database Management Systems 20

3 Literature Review 23
 3.1 Research Method ... 23
 3.1.1 Research Questions 23
 3.1.2 Search Strategy ... 24
 3.1.2.1 Search terms/keywords 25
Contents

3.1.2.2 Data sources ... 25
3.1.2.3 Search strings .. 26
3.1.3 Study Selection Criteria 26
3.1.4 Quality Assessment .. 27
3.1.5 Data Extraction and Data Synthesis 28
3.2 Conducting the Review ... 29
3.2.1 Identifying relevant research 29
3.2.2 Selection of Primary Studies 30
3.2.3 Quality Assessment .. 31
3.3 Reporting the Review .. 35
3.4 Summary ... 44

4 Methodology ... 47
4.1 Stages of the approach ... 47
4.1.1 Planning of the review: Phase 1 48
4.1.2 Identifying Relevant Research 48
4.2 Approach for selection of primary results 49
4.3 Quality Assessment and Quality Scoring 50
4.3.1 Limitations of DARE criteria 50
4.3.2 Evaluation checklist .. 50
4.4 Threats to Validity .. 53
4.5 Summary ... 53

5 Discussion and Evaluation 55
5.1 Glimpse of our SLR using StARt tool 55
5.2 SLR- Results Set .. 56
5.2.1 RQ1) How do women shape the dynamics of groups and teams in computer science based course projects? 57
5.2.2 RQ2 & RQ4) What are the factors that affect effective group interaction and how they affect the performance of the teams? .. 59
5.2.3 RQ3) How does the team perceive the usefulness of collaboration ... 61
5.3 Tools used for CS teams collaboration 62
5.3.1 Features of collaboration tools 62
5.3.2 Limitations of the tools .. 64
5.4 Quality Scoring of the primary studies 65

6 Threats to Validity .. 67

7 Conclusion and Future Work 69

Appendix ... 71

Bibliography .. 97
List of Figures

2.1 Phases of an SLR, referred from ([ASG19]) 6
2.2 Snowballing procedure [Woh14] . 12
2.3 Interactions of collaborative experience [LY21] 15
2.4 Text Mining in Systematic Literature Review from [FCL17] 17

3.1 Search Method typology . 25
3.2 Identification and selection of primary studies 30
3.3 Overall satisfaction of collaboration [RK15] . 37

4.1 Guideline for performing SLR[KBB+09] . 48
4.2 An example for a BibTeX entry . 49

5.1 Pictorial representation of selection using StARt tool 56
5.2 Number of papers published on perceived diversity until 2021, [RPNN21] 57
5.3 Levels of Collaboration [JvdHP22] . 63
5.4 Collaboration Development Environments referred from [MZ20] 64
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A search string structure</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Data sources for the SLR</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Search results</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Selected primary studies</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Scoring of Selected primary studies</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>5 Dimensions of CL</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparative analysis of SLR tools</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>DARE quality evaluation criteria used to appraise SLRs in SE domain</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>AMSTAR-2 quality evaluation criteria used to appraise SLRs in SE</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Quality scoring criteria and corresponding terms</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>Support hypothesis findings[Wag16]</td>
<td>58</td>
</tr>
<tr>
<td>5.2</td>
<td>Grouping and Influence on team performance</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Collaboration tools referred from [JvdHP22]</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Quality Scoring of the primary studies</td>
<td>66</td>
</tr>
<tr>
<td>A.1</td>
<td>Search results of the SLR</td>
<td>71</td>
</tr>
</tbody>
</table>
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ALM</td>
<td>Application Lifecycle Management</td>
</tr>
<tr>
<td>AMSTAR</td>
<td>Assessment of Multiple Systematic Reviews</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CDE</td>
<td>collaborative development environments</td>
</tr>
<tr>
<td>CL</td>
<td>Collaborative Learning</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>CSCL</td>
<td>Computer Supported Collaborative Learning</td>
</tr>
<tr>
<td>DARE</td>
<td>Database of Abstracts of Reviews of Effects</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
</tr>
<tr>
<td>DL</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>EA</td>
<td>Enterprise Architecture</td>
</tr>
<tr>
<td>EBSE</td>
<td>Evidence based Software Engineering</td>
</tr>
<tr>
<td>EC</td>
<td>Exclusion Criteria</td>
</tr>
<tr>
<td>FFM</td>
<td>Five Factor Model</td>
</tr>
<tr>
<td>GSS</td>
<td>Group Support Systems</td>
</tr>
<tr>
<td>IC</td>
<td>Inclusion Criteria</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>IE</td>
<td>Information Extraction</td>
</tr>
<tr>
<td>IR</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IVi</td>
<td>Information Visualisation</td>
</tr>
<tr>
<td>JSON</td>
<td>JavaScript Object Notation</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>KS</td>
<td>Knowledge Sharing</td>
</tr>
<tr>
<td>LMS</td>
<td>Learning Management Systems</td>
</tr>
<tr>
<td>LSA</td>
<td>Lag Sequence Analysis</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>PBL</td>
<td>Project-Based Learning</td>
</tr>
<tr>
<td>PICO</td>
<td>Population Intervention Control Group Outcome</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>PICOC</td>
<td>Population Intervention Control Group Outcome and Context</td>
</tr>
<tr>
<td>PRISMA</td>
<td>Preferred Reporting Items for Systematic reviews and Meta-Analyses</td>
</tr>
<tr>
<td>PTPA</td>
<td>Predicting Teamwork Performance</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assessment</td>
</tr>
<tr>
<td>QUOROM</td>
<td>Quality Of Reporting Of Meta-analyses</td>
</tr>
<tr>
<td>RDBMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>ROB</td>
<td>Risk of Bias</td>
</tr>
<tr>
<td>RQ</td>
<td>Research Question</td>
</tr>
<tr>
<td>SE</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>SESRA</td>
<td>Software Engineering Systematic Review Application</td>
</tr>
<tr>
<td>SLR</td>
<td>Systematic Literature Review</td>
</tr>
<tr>
<td>SR</td>
<td>Systematic Review</td>
</tr>
<tr>
<td>StArR</td>
<td>State of the Art through Systematic Review</td>
</tr>
<tr>
<td>STEM</td>
<td>Science</td>
</tr>
<tr>
<td>TM</td>
<td>Text Mining</td>
</tr>
<tr>
<td>VS</td>
<td>visual studio</td>
</tr>
<tr>
<td>VTM</td>
<td>Visual Text Mining</td>
</tr>
</tbody>
</table>
1. Introduction

Systematic Literature Review (SLR) finds, collects, analyzes and critically aids research efforts towards the objective of formulating near precise strategies to address respective research question. [K+07] This scientific approach has been conventional in the fields of medicine and sociology, and currently, and is the de facto strategy employed to systematically discover scientifically feasible answers to Research Questions (RQ) that motivated the need for a literature review. SLR’s are different from normal literature reviews as they begin with an intentional, and purposeful selection of data that is included in the research study.

Since Kitchenham [KDJ04] introduced the Evidence Based Software Engineering (EBSE) method in 2004, many researchers have been motivated to apply the SLR method in the field of Computer Science (CS).

Now, SLR is the most evident based methodology for evaluating provisional data. The main aim of doing a systematic review is to adopt a systematic method of research, analyzing and critiquing the research and finding solutions to a specific issue. In simple language, SLR is a study of multiple papers and journals using different techniques. This will give a clear summary of the current evidence which can be later used for evidence based researches. Ergo, it is essential to review existing papers in order to find relevant proof of concept about a specific topic. SLR is the perfect systematic method to perform literature surveys.

Collaboration is a key strategy employed to cope with the complex, rapidly evolving tasks in today’s research environments, and more specifically in computer science related disciplines. Collaboration can be defined as a complex task that depends on the team member’s attitude towards various social and academic factors that involves cooperative factors. Teamwork, co-ordination, communication are some of the soft skills that are demanded in academic life as well as in real life [Mar15]. Thus, collaborative learning (CL) is an efficient learning technique to boost participation and performance in teams [SB19]. It is good to exchange and share knowledge among people who have different perspectives on a specific topic, as knowledge sharing (KS) is an excellent opportunity to manage knowledge among peers. Recent research and
studies shows that there are many factors that influence the performance of a team project. In the course of this SLR, we will be investigating different aspects of these concepts with respect to our research questions (RQ).

1.1 Motivation

Collaboration, and collaborative learning (CL) scenarios arise when two or more individuals actively work together on a defined objective, and possibly comes up with a set of possible results. Ergo, the main motivation behind this thesis is the analysis, comparative evaluation, and summarizing of relevant contributions in the research area of collaboration and collaborative learning in various fields of CS and SE. Thus, the need to perform an SLR on collaborative, and cooperative learning techniques. In the past, computer science, and software engineering tasks work was chiefly an individual task, and any form of collaboration was deemed as fraudulent [BSWH04]. Later on, as projects became more complex, the idea of “divide and conquer” was incorporated to the end that team members were assigned different tasks or modules to focus on. The outcomes of each individual task are then presented after a given deadline [BSWH04]. Therefore, it is crucial to comprehend the variables influencing team performance. The statement “Together, everyone accomplishes more” is evident...

Prior studies indicate that female students were not interested in working alone for a long period of time, in Computer science or Information Technology projects. As the time went, it was proved that women were capable of doing projects or task alone as well as in a group. Over the past 30 years, a considerable number of gender related research studies in the context of team collaboration have been conducted, and thus the challenge of measuring the influence of women in the information technology sector, and sciences in this context. [BSWH04].

This thesis focus on the factors that affect the behavior and stipulation of each of the individuals participating in different Computer Science project teams. As a matter of fact, collaboration can also be termed as cooperation. It means for a team work needs to be done, the cooperation and participation among the members is a very important factor. While the body of literature strongly suggests that team collaboration greatly improves learning, especially in computer science based courses. Several factors can be attributed to the success of a team. The purpose of this thesis will be the exploration of factors influencing collaboration in teams. Evidence regarding the impact of the gender gap on work teams and teamwork will also be crucial. The benefits of having women on teams are a crucial component of this review.

Being a woman, in a “male dominant” field, I find my thesis to stand out and hope it could be a motivation to all the women around the world to come forward to various STEM fields irrespective of whatever diversities existing.

1.2 Goal of this Thesis

Global computer science courses offer researchers and students the opportunity for evaluating the differences among the avenues of communication, particularly as they
might affect collaboration among teams. Also, the growing representation of women in the organizational workforce [BG97], and the use of relatively homogeneous teams in investigating group effectiveness in previous empirical studies [dWCKH15] suggest a need to determine the role of gender in shaping leadership dynamics within teams in the context of a given task.

Whenever group tasks were assigned in multi-gendered work groups, the members are potentially constrained by latent gender roles as a consequence of an unproved theory that men are more efficient than women in every way. Thus, men voluntarily select themselves as leaders in a collaborative group which suppresses the role of women. This can be referred to as "gender-role-constraint". To accomplish the goal of this thesis, we follow the following steps:

First, we assemble a collection of surveys and research papers to identify, select and review potential studies and articles to synthesize those which explains the importance of collaboration in teams, and also which specifically answers our research questions. On the selected literature, a quality assessment will be carried out. Finally, a comparative analysis, and evaluation will be carried out on the state-of-the-art strategies and answers we have elicited from the selected literatures.

1.3 Structure of the Thesis

The thesis is structured as follows,

Chapter 2: Through this chapter of background we try to explain the background information about SLR and CL.

Chapter 3 :Here we describe the SLR techniques that we perform to identify, analyze and selection of the primary studies and the quality assessments techniques. Following, we explain the research methodology of the SLR, the results and proofs we obtained.

Chapter 4 :In this chapter, we are implementing the approach for the conducting phase of the SLR to obtain the most relevant and promising studies from the pool of journals we have. We define the steps for our approach and the quality criteria we used for the assessment method.

Chapter 5: This will be the chapter where we recall the precision of the primary studies we selected and will assess a quality score to each of them.

Chapter 6 This is the chapter where the limitations and drawbacks we faced during the thesis are described. The validation of the data, accuracy of information and authenticity of the paper will be discussed in this chapter.

Chapter 7: Finally, we summarize our thesis achievement. Furthermore, We outline the potential future work in this field of study and can give authorization for it to be referred to in the future.
2. Background

In this chapter, the term SLR will be explained and will try to go further deep into the details of the stages of this research method. We explain the background information about collaborative learning and the impact of behavior on each individual team member’s contributions to a team performance. Furthermore, we spotlight on several areas in which gender, personality or other criteria’s that may or may not affect the performance and the outcome of the team.

2.1 Systematic Literature Review

An SLR, most frequently known as systematic review, is a systematic representation of the literature review of scientific contributions. This can also be referred to identify, evaluate and understand information related to a specific research question (RQ) for an area of interest. Before the review is undertaken, several criteria are carefully defined, and made apparent in the systematic review’s protocol or plan as it is a thorough, transparent search conducted over multiple databases and gray literature that can be replicated and reproduced by other researchers [[DD16]]. The review will find out the searched type of information, analyses or criticizes it, and reports within a given time of interest. The keywords used for the search which including the research sites, other platforms, databases etc. needs to be added in the review. According to Pittway[PRM+04], he outlines the seven key principles behind basic SLR’s [PRM+04]:

- Transparency
- Clarity
- Integration
- Focus
- Equality
- Accessibility
- Coverage
SLR begins with the selection of data and information that is needed to be included in the research study. Following, the data collected will be analyzed and criticized. To be specific, the data will be deeply analyzed to get the information from any piece of word. In the next step, the derived information is compared with the RQ. A correlation between the strategies used in the source papers, and, RQ will be carried out accordingly. Thus, in general, the primary step involves gathering data and information from different research platforms.

The three different phases that we have for SLR are:

- Planning
- Conducting
- Reporting/Documentation

The fig 3.2 shows a description of these phases which are further described in the next sub-subsections.

![Figure 2.1: Phases of an SLR, referred from ([ASG19])]
2.1.1 Planning

Planning is the initial phase of an SLR. As the name itself says, a proper planning of what to do, how to do, what to get, how to get, are defined in this phase. This is an important phase as it is the foundation for the next phases. Next, the RQ is used to develop the review protocol.

The planning phase can be classified as follows [AKSL21]:

- Identification of the purpose for the SLR.
- Commissioning a review.
- Defining the research questions (RQ’s).
- Creating a review protocol.
- Validating the review protocol

Identification of the purpose for the SLR.

The fundamental point of the review is to create a foundation for knowledge about the topic in question, to the end of which a clearer scope of which body of work the literature search will be covering.

Commissioning a review

In some cases, where the systematic reviews are commissioned, a document for the commissioning must also be prepared during this stage.

Defining the Research Question (RQ’s)

Then, a necessary step is to specify the RQ’s, which is the most important part of any SLR. The RQ’s drive the entire systematic review methodology, and thus:

- A relevant and significant set of primary studies, that responds to the research questions must be found through the search procedure.
- The RQ’s must be answered, as well as the data items must be extracted.
- The data must be synthesized during the data analysis process so that the questions can be addressed. [FSBR10].

The crucial problem in any systematic review is to formulate the right RQ. The (RQ) must be meaningful and significant for researchers as well as practitioners. PICOC criteria are recommended by York University to structure the question(s). PICOC elements include Problem/Patient/Population, Intervention/Indicator, Comparison, Outcomes and Context of the Study. Since PICOC was designed to address SLR in the area of medical systems, we research on more or other form of criteria to define the RQ’s for our context. Also, Kitchenham’s guideline paper recommends this criterion that was suggested by Petticrew and Roberts in, to frame RQ’s. [KBB+09].

Developing a review protocol.

A review protocol is an essential step to ensure validity and quality of the reviews. It outlines the methods and review questions to be addressed in the review, Inclusion criteria (IC) and Exclusion criteria (EC), search strategy, data extraction, and quality assessment. Introduction and usage of a well-defined protocol can result in a proper
basis for the review. The protocol defines in advance how the systematic review is going to be conducted, and such definition is necessary to structure the work, however, defining a protocol is a complex task [KBB+09]. The review protocol builds the review plan, which should cover the following components:

- **Background**: The background section is the literature survey section, which is the key foundation for the research questions.

- **Research Questions**: The RQ’s that the review is intended to answer shall be included in the review plan. These RQ’s must be clear to find and provide answers with significant data which can which can further be utilized. RQ’s should be stated clearly and precisely using the protocol. They can be extremely specific or very vague, even if they are vague and broad, it may be more appropriate to narrow it down to more related questions to be more clear and specific questions [KBB+09].

- **Search Strategy**: The strategy used to search for collecting primary studies, including the search terms, search strings, keywords and resources (digital libraries, specific journals and conference proceedings) that will be searched. The strategy defines the RQ’s, search terms with their abbreviations/synonyms and alternative spellings and builds the search query using Boolean expressions. The search resources are also defined in this step. Multiple searching methods might be used during the search, for example; snowballing, automated searching, manual searching, and contacting important researchers in the field (Primary level of review).

- **Study Selection criteria**: Some criteria for the studies are defined to determine which among them should be included in, or excluded from, an SLR. It is usually helpful to apply some criteria for selection on a selected subset of primary studies. The IC and EC are defined based on these RQ’s. This step is helpful, because it saves effort and time. The IC should capture all studies of interest. If the criteria are too weakly defined, there is a risk of missing important and relevant studies. On the contrary, IC also needs to be practical to apply, if they are too detailed, screening and analyzing may become very complicated, time-consuming and tedious.

- **Study quality assessment and procedures**: To evaluate each study individually, we should create quality score criteria and quality checklists. The goal of the quality assessment will direct how checklists are created. The most challenging and time-consuming process is the QA. The purpose of quality evaluation is to determine the likelihood that the findings are accurate and whether they are pertinent to our understanding of the topic at hand. Each article is given a score based on its own criteria, and the study is then given the overall points. This is not common practice, as various quality factors are often evaluated through sensitivity analysis at the synthesis step [KBB+09].

- **Data extraction strategy**: In this step, it defines how the data and information collected are obtained. If the collected data requires changes or sum-risings to be made, the protocol ought to indicate the course of validation.

- **Synthesis of the extracted data**: This defines the synthesis strategy. Synthesis can be defined as the process of collection, combination, evaluation and summary of
2.1. Systematic Literature Review

each study that has been selected and included for the review. The main task of that is to build the report of the result. The famous approaches that can be used for this technique are narrative and quantitative approaches. This enables reliable conclusions to be drawn. The stability and consistency of the evidences are also analyzed in this phase.

- Project timetable: This defines the review schedule in detail. The time needed for performing an SLR is considered depending on the difficulty level and complexity of the review. And that, too, each step should be specified clearly with the time needed and also with the deadlines. This is an essential organizing step, as it is helpful for building motivation and forming well-organized steps.

Validating the review protocol

As it has already been discussed on how to develop and define the review protocol, we now discuss steps for evaluating the protocol. The protocol is an important element of SLR. Therefore, evaluating the proposed protocol is a critical task that should be considered by a group of experts in the research field and thus, should be carefully considered, and documented to obtain reliable results which can be used for future references.

2.1.2 Conducting

The second phase of an SLR is conducting. Once the review protocol has been created, evaluated, and finalized, the phase of conducting, which includes finding relevant research, choosing and evaluating the quality of primary studies, data extraction, and information synthesis. [MCD+]

Following the guideline proposed by Kitchenham [KBB+09] for executing this stage while conducting the review, are as follows:

- Identification of relevant research.
- Primary studies selection.
- Perform quality assessment.
- Data extraction and monitoring.
- Data synthesis.

Identification of relevant research

The first step of conducting the survey is to identify and finalize primary studies using an unbiased search strategy. For that, the review protocol defined in the planning phase is applied. The search strategies and methods can vary in different ways. For a more technical assistance, we can use semi-automated techniques. Manual strategy is also one form of method. Using semi-automated techniques, we can use existing digital libraries, databases, journal sites, indexing systems etc. [MCD+].

Primary studies selection

This step can be described as to ensure that the studies that are included for
consideration are relevant. Manual or semi-automatic selection of papers are the first step to gather information and collect papers, which could be more than a handful of papers. These papers must be reviewed, after which the relevant ones are selected. The selection of paper must be unbiased to confirm that these can be monitored for inclusion and exclusion steps. The selection is being done by various steps. The first selection of the papers are done by using keywords, key performance indicators, abstracts, titles etc. The resulting set of papers are then subjected to the Inclusion and the exclusion criteria. Once these criteria are met, then these papers are considered for the further steps as to find the relevance and finding solutions to our research questions.

Perform quality assessment

This is the most important step in the selection process. Analyzing the studies which we obtain from the final selection of primary studies is the function for QA. The implementation of the quality criteria defined in the planning phase is adopted here. The only problem in the quality assessment is that there is no guaranteed example or definition for quality. Thus, it is a challenge for reviewers. An illustration of the utilization of QA of essential studies in SE is the systematic review of experimental investigations of agile programming advancement[DD08]. As Kitchenham proposed principles of good practice of quality assessment, we are trying to implement the same here. The eleven criteria used to assess the quality of the studies covered four main issues:

- Reporting: the accuracy with which the purpose, setting, and outcome of a study are reported.
- Rigor: The accuracy and reliability of the research techniques used to validate the methodologies and tools used for data gathering and analysis, as well as the veracity and accuracy of the conclusions.
- Credibility: The evaluation of the study methodologies' reliability to make sure the results were accurate and significant.
- Relevance: The evaluation of the study’s applicability to both the larger software business and the research community. [DD08]

Data extraction and monitoring

In the data extraction stage, the aim is to collect the information that we obtained from the primary studies. The forms for the data extraction are defined in the review protocol. This helps in the consistency of the data extraction in an unbiased manner. These forms consist of RQ’s, quality assessment criteria, IC and EC and all the basic information.

Data synthesis

This is the final step of conducting phase, which is the summarized result of all the included relevant primary studies. There are two ways for conducting the synthesis, either by formal statistical techniques (quantitatively) or through a rendering manner. Both quantitative and delivering synthesis ought to start by developing a reasonable descriptive synopsis of the included studies. As well as having the synopsis together, the delivering synthesis should consider the consistencies, inconsistencies, and strength
of the evidence. This ensures forming reliable results from the assembled body of evidence. [Sha17]

2.1.3 Reporting

This is the final phase of the SLR process. Ergo, the final reporting and documenting of the findings is done in this phase. This phase has significant impact on the whole SLR process. The findings are documented as a journal paper, technical report, a conference paper or a thesis chapter. There must be a specific method and structure followed to report these findings. Presentation manner, layout should be well-defined for that. According to Kitchenham, the stages associated with the reporting phase are:

- Specifying dissemination mechanisms.
- Formatting the main report.
- Evaluating the report.

Specifying dissemination mechanisms

The dissemination mechanisms are specified, for overall time saving. It should be precipitated and anticipated that what a reader is expecting from the report. Thus, it should be clear enough to present the findings of the review concisely. As a result, an accurate and consistent report can be obtained.

Formatting the main report

The format for reporting the review can be of two methods:

- As a technical report or as a research report.
- In a journal or a conference paper.

Evaluating the report

After completing the documentation of the findings in the final report, this report should be assessed and reviewed by several researchers with expertise in the topic area. The evaluation process can use quality checklists for SLR.

2.2 EBSE-Evidence Based Software Engineering

EBSE explains the use of evidence-based model for SE research and practice. The practice of empirical SE provides a cutting edge direction and guidance on how to conduct secondary studies and optional studies. The five steps used in EBSE are as follows [KDJ04],

1. Converting the need for data (about management procedures, development and maintenance methods, etc.) into a question that can be answered as well as a reliable inquiry.
2. Finding the best evidence to support your answer.
3. Evaluating that evidence critically for its applicability (usefulness in software development), impact (size of the impact), and legitimacy (practically possible) [KDJ04].

4. Integrating the critical evaluation with our SE expertise and the values, requirements, conditions, and situations of our stakeholders.

5. Evaluating the efficiency and effectiveness of Steps 1 through 4 and looking for ways to improve them for the next time that question is asked [KDJ04].

2.3 Snowballing

“Snowballing” also referred to as ‘Pearl Growing’, ‘Bibliographic Search’ or ‘Citation Tracking’ is a famous and proven search method for identifying important relevant articles on the research area of interest. The figure below shows the snowballing procedure.

![Snowballing procedure](Woh14)

2.4 Collaborative Learning (CL)

Collaboration is an ordinary action in business undertakings, and thus an essential skill for a person to possess when planning to apply for a new position in today’s commercial sector [LY21] as seamless collaboration can increase the productivity of an endeavor. Collaborative learning is a success when a person is willing to share and contribute their ideas in a group to accomplish the project goals effectively. Individual assessment can be done before assigning the roles to a person to confirm what or which role that member should fulfill. According to [LY21], there are three primary team performance indicators, “Good”, “Pass”, “Marginal”. Before the covid pandemic, collaboration was mainly achieved through physical and face-to-face meetings. However, during and after the pandemic, virtual collaboration became the
main avenue for most interactions and thus, the rise of online collaboration.

According to ([FC92]), a model of collaboration consists of five components:

- Personal Commitment.
- Communication skills.
- Interaction processes.
- Programs or services.
- Context.

Collaborative learning is also considered as an educational approach where student groups develop and enhance learning through working together. At the least, two individuals cooperate to take care of issues, to complete assignments, or to learn new ideas and concepts. For collaborative learning to be effective, Panitz and Panitz ([Pan99]) described five elements must be present. They are:

- Positive Interdependence.
- Face-to-face promotive interaction
- Individual accountability
- Interpersonal and small group skills
- Group processing

To encourage CL, and to make it simple and informal for groups working together, two methods can be adapted.

- Think-Pair-Share: Team members come up with a question on their own before discussing the ideas with another student to come up with a consensus.
- Jigsaw: One or more team members becomes “experts” on a concept and are responsible for teaching it to other team members.

2.5 Collaboration in Teams

Teams fall into a variety of categories. The term “action teams,” “project teams,” or “decision-making teams” is one such classification among them. “Action teams” typically engage in more behaviorally interdependent activities, requiring team members to arrange their activities to perform time-sensitive or actual tasks, whereas “Decision-making teams” are interdependent in relation to the relevant data. However, in order to achieve team objectives, “Project teams” engage in both information-knowledge processing and behavioral actions.([Zho17])
2.5.1 Collaboration Technologies

History demonstrates the way that people can accomplish incredible things when they work together, coordinate and cooperate in teams. Strongly designed tasks, effective collaborative work practices and adequate information systems facilitates teamwork. The role of research on collaboration has intensively grown in general and research on Group Support Systems GSS in particular. There are currently 6 known contingency factors that affect group decision-making.

- Group size - Large/Small.
- Member proximity - Face-to-face/Dispersed.
- Task type - Generating ideas/Choosing Alternatives/Negotiation.
- Environment - Cooperative/Non.cooperative.
- Group type - Functional/Task (Project)/Interest or Friendship.
- Development Stage - Orientation & Internal problem-solving /Growth & Productivity/Evaluation Control [Ven96].

2.5.2 Factors of Successful Teams

When people from different backgrounds, cultures, and situations come together to work toward a common goal, many interpersonal dynamics determine whether the team succeeds or not. Sometimes a group of people can work well together and accomplish anything; however, it appears that other teams fail, despite the availability of resources. The effectiveness of a team performance can be determined by the seven factors mentioned below:

- Cohesiveness
- Communication
- Group-think
- Homogeneity
- Role identity
- Stability
- Team size

2.5.3 Five Factor Model

The probability that a user will use a technology may depend on their personality characteristics. A person’s personality can be characterized as an enduring disposition that results in specific patterns of interaction with their environment. Genetic influences on personality traits are averaged out by heritability. There are several ways to categorize personality qualities. The Cattell Sixteen Personality Factors, Eysenck’s Introversion-Extraversion/Stability-Instability, Psychoticism-Self-Control, and Five Factor Model of Personality are the most widely acknowledged among them. (FFM)
2.5. Collaboration in Teams

- Extraversion
- Agreeableness
- Openness to Experience/Intellect
- Conscientiousness
- Emotional Stability/Neuroticism

2.5.4 Predictors of Team Work Satisfaction

A Predicting Teamwork Performance (PTPA) framework was created to help recognize the practical jobs of each member automatically [LY21]. Thus, the outcome can be obtained from the factors such as:

- Personal skill sets results
- teamwork performance indicator
- Individual performance indicators
- recommended skill sets improvements

A simple representation of interaction of collaborative experiences can be seen in the figure below.

![Figure 2.3: Interactions of collaborative experience [LY21]](image)

Previous researches have demonstrated various elements that are intended to have an influence in student fulfillment with cooperation. Specifically, the span of the project and the structure of the group seem, by all accounts, to be significant. In particular, the duration of the project and the composition of the team appear to be important [HHHVBB06]. For a team work to be successful, the following criteria should be met:

- working towards a shared objective
- cohesive-i.e.share resources and are aware of each other’s capabilities and assignments
- works together to obtain a common goal
- sharing resources
2.5.5 Ways of Measuring the Effectiveness of Team Work

Several measures have been used to evaluate the effectiveness of team work. They include:

Performance measures
This action might show up as a summative assessment, which includes contrasting a group’s design and a model game plan arrangement [HHHVBB06].

Satisfaction measures
This involves a questioner based inquiry on a team’s process from the team participants themselves.

Efficacy
This is a measurement in which the team’s shared belief in their ability is used to evaluate whether a specific task can be completed [HHHVBB06].

Group Potency
This is a measure of a team’s shared belief in their own ability [HHHVBB06].

Satisfaction
The estimation of how ‘blissful’ and ‘fulfilled’ students are while engaged in team collaboration [HHHVBB06].

Decision process satisfaction
The satisfaction of colleagues with their decision-making processes [HHHVBB06].

2.5.6 Tools and Interactive methods of Collaboration

There are various interactive methods and strategies to achieve success in the course of a collaborative task, or engagement. During the COVID-19 chaos, the importance of distributed collaboration had inevitably increased. Without the physical, face-to-face interaction, people including working employees and students had to find an alternate method to interact. The various media that were used for communication during those times were Microsoft Teams, Zoom, GitHub, Slack, Google Drive etc. Many researches and reviews were proposed in-order to share the tasks and collaborate among team using different repositories and compendium technique. To be clear, there were Synchronous and Asynchronous platforms for collaboration. Recent collaboration tool researchers investigated individual characteristics of the tools to benefit for different distributed teams [CR10]. Thus, a 5 evaluation framework characteristic was created. These are:

- Awareness
- Calendar Assist
- Context Persistence
- Coordination
- Visualization

2.6 Text Mining

Text mining (TM) is the process of deriving interesting information, potential and valuable patterns, non/trivial knowledge and trends from textual documents. Text is one of the quite possibly of the most widely recognized data types within databases. Depending on the data structure, this data can be organized as:
2.6. Text Mining

- Structured data
- Unstructured data
- Semi-structured data

Since the majority of data in the world is unstructured, text mining is a very effective strategy used by businesses. Companies can investigate and find hidden links in their unstructured data by using cutting-edge analytical approaches like Naive Bayes, Support Vector Machines (SVM), and other deep learning algorithms.[[T+99]].

There are different categories for the classification of Text Mining. Some of them are: Information Extraction, Information Retrieval, Information Visualization, Document classification, Document Clustering, Document summarization. Figure below explains the main TM applications that are being used in SLR.[FCL17]

![Text Mining in Systematic Literature Review from [FCL17]](image)

Figure 2.4: Text Mining in Systematic Literature Review from [FCL17]

Now, we will discuss more on different **TM methods** :

Information Extraction (IE)

The extraction of information is the basic step in text mining. This acts as a starting point for analyzing unstructured text and identifying key phrases, key performance
indicators Key Performance Indicators (KPI) in the document. This method is very much useful when handling huge data sets such as SLR’s.

Information Retrieval (IR)

The retrieval of information gives easy access of information to the users. This IR deals with multiple aspects. Documents, webpages, and other items that contain information must be represented, stored, organized, and made accessible. A traditional IR model is the vector model. It is an algebraic paradigm in which the number of distinct terms in a collection, t, is used to represent documents and queries as vectors in t-dimensional space. [BYRN et al. 1999]

Information Visualization (IVi) The visual representation of the information as a hierarchy or map is termed as information visualization. This helps the viewers for a wide understanding of the information within a short time. In SLR, IVi helps for the decision-making faster than manually checking of huge amount of data.

Document Classification

Document Classification aims to identify the main theme of a given document. As the name itself suggests, it is the grouping of similar documents on some predefined criteria or concepts. In SLR, classification can be used with topics to specify the relevance of the document. After the classification, these documents can be ranked in order of which documents have the most content of a specific area.

Document Clustering Clustering is the technique that comes after classification. It is used for grouping of similar documents depending on the content and the topic shared. This clustering can be used in different areas, such as for grouping similar documents and eventually discovering meaningful implicit objects across all the documents.

Document Summarization This technique helps the users to make a quick decision on a document whether the relevance or need of them has been met or not. Summarizing can be considered as a difficult task as it is difficult to teach a software to analyze the sentences and the words and understand their meanings. There are various summarization tools. Some among them are position information and sentence extraction. In short, summarization can be used to analyze and then summarize the documents collected on a particular topic.

2.7 Visual Text Mining

Recently, there is a trend of increasing interest for Visual Text Mining (VTM) techniques as a supporting tool for SLR. VTM is a potential extension of TM, used to extract patterns and non-trivial knowledge from unstructured or textual documents [FSM13]. In our case, VTM is useful for the systematic finding of relevant primary studies. To be clear, VTM is an algorithm that helps the users to have a sense of collection of documents, without actually reading all of them [MHP et al. 2007]. There are several approaches to handle VTM. The supporting tools such as Projection Explorer (PEx) and ReVis are used for the implementation. Some of them are:

- Document Map
• Edge bundles
• Citation Networks

The most common technique among the above is Document Map. The steps to create the document maps are as follows:

• **Clusters and Topics**: Text preprocessing for cleaning the primary studies.
• **Expression Occurrence**: Points on the document map represent the frequency of occurrence of particular user-defined terms from the original studies.
• **Neighborhood relationship**: Establishes a connection between primary studies and their neighbors to encourage study inclusion by association, i.e., the more closely related the neighbors of an included study, the more likely to be relevant to the SLR.[FSM13]

2.8 Technical Background

2.8.1 StArt Tool

StART Tool is a tool which supports the whole SR process. The introduction to SR was happened in 2004 and from then, the problem of performing the review was difficult due to the time-consuming for that. Start tool was one among different tools developed for minimizing the effort and time investment or doing the SR. StART currently has more than 3000 downloads from unique clients around the world, including nations like Brazil, the United States, Italy, Spain, the United Kingdom and others.[FSH+16]

This tool helps SR in the following steps:

• Defining a SR protocol.
• Initial Selection activity.
• Data extraction activity.
• Data Synthesis activity.

The tool has recently updated to a version which is helpful to perform collaborative systematic reviews.\(^1\).

2.8.2 API

The searching and finding of papers are very difficult to handle if it has to be done manually. Hence, an approach which is reliable and time saving is by using existing API’s. Some of the API’s are Elsevier by Science Direct, IEEE Explorer, dblp etc. These API are very much helpful to integrate content and data to our own websites and applications.

\(^1\) https://www.youtube.com/watch?v=zCTKHTBmxUab&channel=LaPESUFSCar
2.8.3 Database Management Systems

DBMS is a management system which is used by the user or an application program to access a database. The DBMS provides a wide range of features, such as improved database operation performance, data recovery, limited user access, and more. Usually an DBMS is for managing a large amount of data and these data can be stored in any manner. If the data is stored in relations (tables), it is known as a Relational Database Management System (RDBMS).
3. Literature Review

This chapter presents and discusses the SLR process conducted in the SE or CS domain for the purpose of identifying and learning about collaborative learning and collaboration in teams. Through this study, we assess and aggregate previous research outcomes in order to provide a balanced and objective summary of research evidence to answer our RQ’s and find any gaps or unresolved problems. We describe in detail the process of conducting this SLR and the need to perform it. For this purpose, we follow the guidelines proposed by Kitchenham.[KBB+09]

3.1 Research Method

In this thesis, the focus is on the collaboration predictors and the collaborative learning techniques that are important when doing projects or any kind of research in a group or team. The impact of the contribution by the team members and the other factors that affect the performance of the work group is being analyzed. SLR, an efficient and unbiased strategy, is used for the analysis and comparison of the existing articles on the same topic. According to the guidelines proposed by Kitchenham, the three phases including planning, conducting and reporting is performed to find solutions to the research questions. These were summarized in the second chapter (Chapter 2).

3.1.1 Research Questions

In literature reviews, it is important to define research questions as part of the first phase, which is the planning phase. These questions will be the foundation for the further steps in the thesis. The thesis aims, among other objectives, is to explore the factors that influence collaboration in teams. Furthermore, of importance is the evidence of gender diversity on group processes and team performance. An important aspect of this review is the positive effects of the presence of women in teams, and will include a comparative analysis of the above-mentioned factors. Thus, the following RQ’s are of interest:
RQ1: How do women shape the dynamics of groups and teams in computer science based course projects?
The main objective behind this RQ is to find the influence and effect of having women in the work groups. Nowadays, there are researches going on to find out the impact of having diverse people in various SE groups. Many researches have proved that having women in work groups shows a good result than a group with just men.[KBWN14]

RQ2: Which personality or behavior stimulates effective group interaction and how they affect the performance of the work teams?
The motivation behind this RQ is to find out which personality or behavior stimulates a positive outcome and how does the full effectiveness of doing projects or work in group can be achieved. The requirements people consider when forming a group and the factors that affect the performance of teams should be discussed as a response to this RQ. Whether there is any consideration of homogeneity or heterogeneity in the selection of group also needs to be discussed.

RQ3: How does the work groups and project team perceive the usefulness of collaboration?
The outcome of a teamwork depends on how the team members accept the ability, diversity and performance of other team members. Collaboration is a term defined to express the need of doing tasks in a group rather than working independently. This RQ is defined to discuss more on the usefulness and need of collaboration in computer science teams.

RQ4: What factors can affect performance of work groups and teams?
The outcome of a project depends on various factors of the work groups/teams. The various diversities among different individuals and team members affects the performance of the group. The integration of technology and education promotes CL. The various student factors will include gender, openness to argue, learning style etc. Thus, the outcome of a work consists of knowledge construction and acquisition process [SBSH14].

RQ5: What are the different tools and approaches used for conducting SLR in CS or SE domain?
The aim of this RQ is to perform a comparative analysis on various tools used to perform SLR in SE or CS areas.

These RQ’s will be discussed elaborately in the Reporting(3.3) section

3.1.2 Search Strategy

After describing and formulating the research questions, we give a description on the strategy for searching for, and identifying suitable literature. This methodology involves formulating the keywords for the search step and utilizing them inside the search string. The search process for the literature survey is basically made using
forward and backward snowballing techniques. A good and well-structured search strategy can help the researcher to identify and retrieve as many studies as possible. The figure below shows a typology of the search methods used in systematic reviews.

![Search Method typology](image)

Figure 3.1: Search Method typology

3.1.2.1 Search terms/keywords

For obtaining better and most relevant studies, it is important to define the keywords or search terms which are most related to the research questions and the main aim of the thesis. In fact, the keywords should be closely related to the RQ’s. We created the search string based on the following keywords, shown in table 3.1.

<table>
<thead>
<tr>
<th>Section</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>“collaboration” and all synonyms</td>
</tr>
<tr>
<td>B</td>
<td>“systematic literature review” and all synonyms</td>
</tr>
<tr>
<td>C</td>
<td>“work groups” and all synonyms</td>
</tr>
<tr>
<td>D</td>
<td>“teams” and all synonyms</td>
</tr>
<tr>
<td>E</td>
<td>“collaboration predictors” and all synonyms</td>
</tr>
<tr>
<td>F</td>
<td>“collaborative learning” and all synonyms</td>
</tr>
<tr>
<td>G</td>
<td>“computer science” and all synonyms</td>
</tr>
<tr>
<td>H</td>
<td>“data mining” and all synonyms</td>
</tr>
</tbody>
</table>

Table 3.1: A search string structure

3.1.2.2 Data sources

The search strategy will not be complete if the sources to be used and how to search them is not mentioned. The list of sources will be containing the relevant online digital libraries for finding CS publications. These digital libraries are trustworthy
to a certain extent and covers the majority of the high quality publications in CS. The data sources which we chose for the selection of primary studies is shown in the table below.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>URL</th>
</tr>
</thead>
</table>

Table 3.2: Data sources for the SLR

3.1.2.3 Search strings

The search terms/keywords mentioned in the Table 3.1 are used for creating a search string. These search strings are used in different data sources to identify the relevant studies with the mentioned keywords. The keywords are thus joined using AND, OR Boolean operators to apply conditions. Using these Boolean expressions, we formulate the search string which can be used to obtain maximum relevant results:

TITLE-ABS-KEY(“collaboration” OR “collaborative learning”) AND TITLE-ABS-KEY (“systematic literature review” OR “systematic review” OR “systematic literature reviews” OR “systematic reviews” OR “SLR”) AND TITLE-ABS-KEY (“quality assessment”) AND TITLE-ABS-KEY (“data mining” OR “recommender”) AND TITLE-ABS-KEY(“collaborative learning” OR “collaboration predictors”) AND TITLE-ABS-KEY(“work teams” OR “work groups”)

3.1.3 Study Selection Criteria

To identify and collect relevant primary studies for addressing and answering the research questions, we define certain criterion’s. Such criterion’s can be termed as Inclusion and Exclusion criteria (IC and EC). These criteria are applied to the papers that we collected from the different data sources (mentioned in the section above). The IC and EC defined for our literature is as follows:

Inclusion Criteria

- Papers must be officially published in a journal/conference. To ensure the quality of the result, the proposed approach should be reviewed the proposed approach must be reviewed prior to the publication.
- The content format of the paper should be PDF. Audio, video or HTML pages are ignored.
- The paper should be related to Computer Science domain. As this SLR focuses only on SE domain, we limit our focus on studies conducted in the Computer Science domain.
3.1. Research Method

• The study has been conducted or released between 2009 and 2021.
 The guidelines to lead an SLR in SE were proposed by [KBB+09]. Articles that
 published after these guidelines and up until the time we conduct the review are
 the focus of this review.

• The paper should include a part addressing Collaborative learning, work groups
 or participation of women in project groups. (Primary priority content)

• The paper should include gender roles on the primary priority content. (Secondary
 priority content)
 This review will focus mainly on Collaborative Learning and the impact of having
 women in the work groups.

• There should be accessibility for the whole paper.
 Due to the limitations in digital libraries and databases, many articles are
 inaccessible even though we use the university subscription. Thus, only papers
 with full accessible text are considered.

• Technical reports and Bachelor/Master/PhD thesis papers.

Exclusion Criteria

• Papers not written in English.
 A standard language is selected for the purpose of addressing data. Here, we are
 using the language English

• Abstracts and PowerPoint Presentations.
 Complete text of the study is preferred to ensure good quality and provide the
 required amount of data.

• Articles with unknown publication type or publisher.
 To acquire better quality outcomes, articles with inadequate data with regard to
 creators or distributors are rejected.

3.1.4 Quality Assessment

Assessing the quality of the primary selection of studies is another critical step after
defining the IC/EC criteria. The guidelines proposed by [KBB+09] defines how
to perform meticulous quality assessment of the selected papers. After the set of
studies have undergone the IC filtering process and EC criteria, the next step is the
implementation of the QA. For the completion of this step, we define some quality
criteria check lines. Some of these criteria are as follows:

Problem Statement

QC 1 Has the aim of the research been clearly defined?
 The aim and goal of the research in the study should be clear. If there are
 unclear descriptions, the paper can be given a score 0=NO. If the description
 is partial, then the score can be 0.5=PARTIAL. If none of the above cases,
 which means the paper is pretty clear about the aim of the study, the score
 can be 1=YES.
QC 2 Is there a proper description addressing the choice of research area?
Studies with a clarification to help determination of the subject for research are appointed a score of 1=YES, if not 0=NO.

QC 3 Does an experimental procedure, if present, been properly explained to justify the aim of the research?
The experimental procedure must be clearly explained by the authors. This includes all the steps required to achieve established goals. A score of 1 may be assigned to the paper if adequate descriptions are provided; a score of 0 will be assigned if the descriptions are insufficient or unclear.

QC 4 Were the results achieved via feasible methods?
The results of the study conducted represents the permissiveness of the proposed approach. If the proposed approach is useful, a score of 1=YES can be assigned, otherwise a score of 0.5=PARTIAL is assigned.

QC 5 Does the test proof help the discoveries that were introduced?
If there is a feasibility solution is described to evaluate the proposed approach with results that support the findings, a score of 1 can be assigned. If there is no study performed for the evaluation, such that the results do not support the presented findings, a score of 0 will be assigned.

QC 6 Is the research method appropriate and of benefit to the SLR in the SE field?
If the research method is appropriate for the SLR and can benefit the researchers in the SE field, then yes and a score of 1 is given and 0 otherwise.

The four main areas of empirical research for the quality assessment criteria as explained by [DD08] are:

- Reporting
- Rigor
- Credibility
- Relevance

The quality of each of the selected primary papers are assessed using the quality criterion’s mentioned above. On a scale of 0 to 1 we assign a score to each of the papers to find the best quality paper.

3.1.5 Data Extraction and Data Synthesis
After assessing the quality of the primary studies, next it comes to extract the relevant information for answering the defined RQ’s. In this step, the step intended to follow is that, we try to collect information from each of the selected primary studies and synthesize in a manner which is really appropriate for the whole study. The papers should properly address the research questions, and then only the consistent extraction could be performed. The standard information defined by [KBB+09] should be included for the data collection forms:
3.2 Conducting the Review

To ensure consistency, the extraction forms should be well-defined. To achieve that, along with the above information, the following sections from each primary study is collected:[KBB^09]:

- Aim and Summary of the study
- Name of the proposed method
- Description of the method proposed
- Explanation of the methodology
- Summary of the findings
- Results of the evaluation and the goals achieved
- Limitations of the approach

3.2.1 Identifying relevant research

This is the first step of the conducting phase. The previously mentioned search strings are applied to all the available and selected data resources. When done with the search, there are more than a handful of studies to evaluate. The table below shows the number of articles (studies) initially retrieved from each of the digital sources. The table below represents a part of the result of the initial selection. We have tried to retrieve as many papers as possible. After the initial selection of the primary studies, we manually checked the title-abstract-keyword of each paper to decide whether to hold or remove the paper from the list.

<table>
<thead>
<tr>
<th>Database</th>
<th>Number of papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM Digital Library,</td>
<td>2706</td>
</tr>
<tr>
<td>IEEE Explore</td>
<td>214</td>
</tr>
<tr>
<td>Scopus/ScienceDirect</td>
<td>160</td>
</tr>
<tr>
<td>SpringerLink</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 3.3: Search results
3.2.2 Selection of Primary Studies

According to Kitchenham, the selection of the primary studies is usually done in a two staged process. At first, as mentioned in the above section, the primary list of studies are filtered by analyzing the title, abstract and keyword. Irrelevant papers are thus rejected. After this step, the full copies of the accepted papers are obtained and the IC,EC criteria are applied. Thus, the results are obtained using the snowballing technique. The set of primary studies is shortlisted. The figure below shows the process and the steps included in selecting the primary studies.

Figure 3.2: Identification and selection of primary studies

- **IEEE**
 IEEE Xplore digital library is a database for research discovery and permission to use to journal articles, conference papers etc. After searching and finding the papers related to our topic, it was clear that there were many false positives. Initial count of the papers were 170. After iterating over the abstract, keywords and the whole paper, 6 papers were finalized for the review.

- **ACM Digital Library**
 The ACM Digital Library (DL) is the world’s most used and thorough
database of full-text articles and literature of bibliography covering computing and information technology. The count of unwanted and false-positive papers in the search result in ACM library was disappointingly high. The total number of initial results were more than 1000. We applied all the IC/EC criteria and filtered the papers. Even after that stage, more than a handful of papers was obtained. Then we had to apply the extraction criteria which was to go through the whole paper to get answers for our RQ’s significantly resulted in a small list. The final list of papers accepted for evaluation was 2.

- **Google Academic/Scholar**
 Google is a free web search which can be accessed by anyone with a little knowledge. When searching in Google Scholar, it was easy compared to other digital libraries. The data and details of all papers were very much visible and was easy to select/ignore them. The unbiased result included a list of 89 papers, which further was filtered using the filtering criteria we already defined.

- **Springer**
 It is an online database of science journals. From this database, the initial collection of papers count was 136. Through deep reading and analyzing, the count was reduced. By applying the IC,IC criteria and reviewing whether to find answers for our RQ’s, a significant amount of false-positive papers were ignored.

- **Elsevier/Scopus**
 This is a multidisciplinary reference dataset of peer-reviewed literature with tools to follow, analyze and visualize the research. It contains almost full text articles from journals and books, fundamentally distributed by Elsevier, but including some facilitated societies. Scopus attempts to file and index the metadata from abstracts and references of thousands of publishers, including Elsevier. In our research, we could filter and finalize 3 papers from them, related and relevant to our topic.

3.2.3 Quality Assessment

The last step performed in the conducting phase is the QA of all the primary studies selected for SLR. The quality of the papers are analyzed using the guidelines define by [KBB+09]. The purpose of the quality assessment in this research is to assess the quality of papers related to our primary topic shortlisted in SLR. Not every paper focuses on the primary topic. Some of them focuses and on the secondary topic or answers to the RQ’s. The main reason for assessing the quality of SLR is to analyze the purpose and confidence of the review findings. Selecting an appropriate tool or defining quality scoring criteria will help to analyze strength of the evidence of quality, as avoids bias with each relevant paper.
<table>
<thead>
<tr>
<th>Cite</th>
<th>Title</th>
<th>Year</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SBSH14]</td>
<td>Affordances of computer supported collaborative learning platforms: A systematic review</td>
<td>2014</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[RPNN21]</td>
<td>Perceived diversity in software engineering: A systematic literature review</td>
<td>2021</td>
<td>Springer</td>
</tr>
<tr>
<td>[Wag16]</td>
<td>Gender and performance in computer science</td>
<td>2016</td>
<td>ACM</td>
</tr>
<tr>
<td>[CRPN14]</td>
<td>Does gender matter for collaborative learning?</td>
<td>2014</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[VHL22]</td>
<td>How do table shape, group size, and gender affect on-task actions in computer education open-ended tasks</td>
<td>2022</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[DPF15]</td>
<td>What do we know about high performance teams in software engineering? Results from a systematic literature review</td>
<td>2015</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[ACC12]</td>
<td>Dispersion, coordination and performance in global software teams: A systematic review</td>
<td>2012</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[Mar15]</td>
<td>Software engineering education—does gender matter in project results?—a chilean case study</td>
<td>2015</td>
<td>IEEE Xplore</td>
</tr>
<tr>
<td>[FS18]</td>
<td>Gendered Risks of Team-Based Learning: A Model of Inequitable Task Allocation in Project-Based Learning</td>
<td>2018</td>
<td>IEEE</td>
</tr>
</tbody>
</table>

Table 3.4: Selected primary studies

The main motivation and purpose of our thesis is to research on collaboration in teams. Using the checklist we defined in 3.1.4, we assign score for each primary studies to aggregate and fins the final score. The scoring process is done as follows:
3.2. Conducting the Review

- 1 = Yes
- 0.5 = Partial
- 0 = No

<table>
<thead>
<tr>
<th>Cite</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Final Score/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SBSH14]</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>[RPNN21]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>[CAK18]</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>[GDW+20]</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>[YRDB21]</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>[Wag16]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>[CRPN14]</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>[VHL22]</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>[DPF15]</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>[OMB19]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>[ACC12]</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>[Mar15]</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>[FS18]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 3.5: Scoring of Selected primary studies

Apart from the primary studies, we have considered some studies for the reinforcing the research area and find more evidences for the research topic. Some of them are the following:

- [TNDC22] : This paper summarizes the foundation for team assembly using online recommender systems for selecting potential teammates. This study also highlights technology enables team assembly from a network perspective.
- [KKS17] : Here, they present a deliberate identification and perception of group communication impacts and varieties for field study on records of more than 30 student programming projects.
- [RRGdO21] : In this article, an automated approach is proposed to help teachers in prescribing gatherings of students to learning the board frameworks systems (LMS’s).
- [SB19] : This study is focused to point-out applied specific strategies in the CL environment for creating an online knowledge sharing tool on computer based systems.
- [MMB19] : This paper surveys recently (until 2017) published and relevant papers in group formation process, which provides a systematic literature review
- [AMBS16] : This paper presents a systematic literature review that analyzes the solutions for the obstacles of group formation in mobile computer supported collaborative learning contexts.
- [LY21] : This is a systemPTPA developed to identify the functional roles of each member automatically. It also analyzes the positive and negative effect of each and every group members contributing to the group.
• [QBF+19] : This article uses correlation and linear regression in helping to form groups for collaborative learning.

• [MPN21] : This paper is a systematic review researching on collaborative learning, collaborative memory and gathering conceptualizing, speculations and presumptions about the advantages and disadvantages of individual arrangement for collaboration and what this will be meant for by the plan of person readiness will be created.

Now, we will briefly explain our primary studies.

• [SBSH14] : This is a systematic literature review on different technology driven platforms that supports the design, monitoring or even motivates the members of a group to embrace collaborative learning activities. They have also tried to find different technological tools or platforms that have been developed for CSCL.

• [RPNN21] : This paper is also a SLR which describes about the perceived diversity in SE. Perceived diversity is a high value team property which emphasizes the efforts to create more diverse work teams. Alongside with the gender diversity, this paper focuses on different diversity factors such as race, nationality, disability and age of developers or team members in computer science. The ultimate goal of this paper is to identify the gaps in the current literature and create a call for future action in perceived diversity in SE.

• [CAK18] : This paper is also an SLR to address the relevant research works that addresses the students grouping problem. They have adapted an ACO algorithm to discuss advantages and disadvantages on group formation among students.

• [GDW+20] : This research focuses on the design tasks of collaborative learning. LSA is used to explore the differences in the sequence of behavior activities of the participants in the different stages of completing the design projects.

• [YRDB21] : This paper covers a study in which 58 introductory computer science students constructed code remotely with a partner following either predefined structured roles (driver and navigator in pair programming) or without predefined structured roles. No matter what the cooperation condition, ladies revealed altogether more elevated levels of pressure, lower levels of perceived competence, and less perceived choice compared to men.

• [Wag16] : They investigated whether there is a performance gap in addition to the gender gap in this article. The author investigated statistical data on student performance in a CS course from 129 universities in the United Kingdom from 2002 to 2013. They were able to achieve their goal of giving male students, on average, more first-class degrees than female students. Subjects Allied to Medicine, Business & Administrative Studies, Mathematical Sciences, and Engineering & Technology are the four other subjects they evaluated and found that they do not exhibit this performance gap. Based on this finding, they looked at possible solutions to close the gender and performance gaps, as well as explanations and clarifications
for those gaps. The majority of solutions do not necessitate significant institutional change, making them straightforward to implement.

- [CRPN14] : This paper describes about the roles of student’s gender plays during collaborative learning and their learning performance. They have tried to explore and investigate on the different mixture of groups such as just female, just male and mixture of male and female groups. The result from this study is that the female groups tends to work simultaneously and achieves better results as male group members engage less and work in sequences.

- [VHL22] : This is an evidence to the CS field by focusing on the interaction between the shape of the tables, size of the group, gender and their effects on-task collaborating learning actions. As a result of this study, the analysis shows the tendency of female students to engage is more in the team activity.

- [DPF15] : This article is a SLR researching on the high performance teams in SE. The authors have tried to understand different contexts and conditions in which SE teams are likely to achieve their success. The result suggests that there are many characteristics that positively and negatively affects the process of teamwork.

- [OMB19] : This paper is also an evidence of SLR that investigates group formation, which is a first step in collaboration or collaborative learning. The review has revealed the current state of the art in the group formation (till 2019). Ideal proportion of group, different learner characteristics etc. has been reviewed in this paper.

- [ACC12] : The authors have performed a SLR to summarize the evidence on the relationship among dispersion, cooperation and coordination within teams and performance in global software projects. This paper can also be referred in the future for establishing effective distributed team coordination.

- [Mar15] : Does gender matter for better project results in CS or SE teams? Yes, they do. From this study article, the author tried to find answer to this question from her experience over assisting SE courses. Her study result summarized that mixed gender teams were more effective and coordinated.

- [FS18] : This paper proposes a conceptual model for task allocation among students in project based learning (PBL). The authors have also tried to find how the gender affects the working of project teams, and how does the team (STEM) works with the apportioning of gender roles in inequitable ways.

3.3 Reporting the Review

The last and final step of conducting the SLR is to summarize the obtained results and collecting the findings into one clearly described report. The studies we obtained and the assessment of the paper’s quality are defined in the Table 3.5. The brief description about the primary studies shall help us find answers to our RQs.
• RQ1) How do women shape the dynamics of groups and teams in computer science based course projects?

The intention to define this RQ is one of the main goal of our thesis. Along with finding the importance of coordination and collaboration in a group, we would like to find the importance of the presence of women in those groups.

Software development is a stunning development that requires a social event of people working really as a team. Recent studies recommend that adding more ladies to a group can make them on the whole more astute, as ladies are by and large observed to be better (than men) at perusing and answering to others’ feelings. ([KBWN14]). In a Chilean case study on SE education conducted by Maira Marques([Mar15]), she observed that mixed gender teams performed better in CS courses. She performed an analysis of the behavior and result of software projects over students of nine different semesters. Thus, she obtained the result stating that an effective and coordinated team performance happened in mixed gender teams.

There have been many researches conducted to find out the impact of having female presence in work groups. But, there are only very fewer papers focusing the same in SE or CS domain. Recently, a bunch of researches has begun to investigate the environmental factors that promote or deter women’s participation in STEM fields, including the culture and gendered stereotypes and incidents of bias as well [LS22].

• RQ2) Which personality or behavior stimulates effective group interaction and how they affect the performance of the work teams?

The aim behind this RQ is to figure out what are the different characteristics that stimulate effective group interaction and how those personalities affects the group performance.

In a study conducted by Wolley et al., [WCP+10], she established three main factors that have the most effect on team performance and collective intelligence. Those three factors are,

– Social Sensitivity
– Turn-taking behavior
– Proportion of females in the group

The objective of her research was to test the speculation that gatherings, similar to people, do have trademark levels of knowledge, which can be estimated furthermore, used to foresee the gathering’s presentation on a wide variety of errands. In theory, the performance of cognitive tasks cannot be correlated because, one task if it is relying on a specific set of capacities can cause neglect of others. The main question that arise when considering the cognitive capacity of a group is that, is there any single factor that acts as a common denominator for analyzing the capacity of an individual as well as the capacity and performance of a group. In a research [WCP+10], it was proved that the average and maximum intelligence scores of individual group members are not significantly correlated.

The consequences of these investigations gave significant proof to the presence of cognitive intelligence in groups, undifferentiated from a notable
comparative capacity in people. To note, this collective intelligence factor appears to be influenced by elements that emerge from how the group is put together as well as factors that were present before the group was formed, i.e, their turn taking behavior.

Many researchers have identified that there are two main measures of team effectiveness: task performance and team member effectiveness. The team member effectiveness can be obtained by analyzing the satisfaction, participation and willingness to work together [KBWN14]. There are various findings presenting the subjects of team composition and the factors that affect the team effectiveness. But unfortunately, there is no single factor that shows the key to a greater performance of teams. Recent studies have shown that team success has less to do with individual smartness, but it’s the team’s dynamics.

- **RQ3) How does the work groups/ team perceive the usefulness of collaboration?**
 It is an obvious fact that “Together, everyone accomplishes more” (Michael Lembach, 2005). A study was conducted in the Web Interaction Design and communication in Copenhagen Business School focusing on the student’s perception of collaboration, e-collaboration and group performance. The survey consisted of questions covering different aspects of collaboration including satisfaction, assessment of outcome of collaboration, factors that may impact joint effort and different method for collaboration. For each of their questions in the survey, they received recurring responses. Additionally, the survey included some questions about the different tools used for collaboration [RK15]. The graph below was the final result of the survey, showing the overall satisfaction of the collaboration.

![Figure 3.3: Overall satisfaction of collaboration.][RK15]

- **RQ4) What factors can affect performance of work groups and teams?**
 Collaboration can be characterized as an interaction by which “people negotiate and share meaning pertinent to the critical thinking job that needs to be done” [SBSH14]. Many researchers has identified that the three main components of CL is mutual engagement, joint decision-making and
The table below shows the major 5 dimensions of collaborative learning defined by [SBSH14].

<table>
<thead>
<tr>
<th>Main Dimension</th>
<th>Sub-Dimension</th>
<th>Description</th>
</tr>
</thead>
</table>
| Communication | Sustaining mutual understanding | - verbal and non-verbal acknowledgements
 | | - grounding concepts |
 | | - explicit feedback strategies |
| Dialogue Management | | - turn taking
 | | - attention grasping |
| Joint Information Processing | Information pooling | - eliciting information from one’s partner
 | | - by externalizing one’s own knowledge in a timely manner |
| Reaching consensus | | - reaching a decision concerning solution alternative
 | | - critically discussing different perspective |
| Coordination | Task Division and Technical Coordination | - individual work phases should be scheduled
 | | - discussion plans for how to approach a task | |
 | | - allocation rules are set up |
| Time Management | | a time schedule is set up |
| Interpersonal Interaction | Reciprocal Interaction | - encourage and respect contributions
 | | - equality in contribution |
| Motivation | Individual task orientation | individuals show interest/enjoyment in their tasks |

Table 3.6: 5 Dimensions of CL [SBSH14]

Effective team coordination is a main aspect of successful global projects. High performance teams formed by groups relies on each of the team members
should have a common vision to identify and motivate each other and develop activities and task through communication. Even when there is diversity of culture and other characteristics in the group, enable and appreciate the innovation from every individual builds confidence and yields a better result.

- **RQ5) What are the different tools and approaches used for conducting SLR in CS or SE domain?**

Large SR’s are complex and difficult to manage manually. In order to support the production and updating of high quantity data for SLR, different and standard tools can be used as reference managers to get an elaborated and error-prone review.

- **SLuRp[BHB12]**: SLuRp is an open source web enabled database that supports the management of SLR’s. It is very much intact and helps in supporting almost all the phases for conducting SLR. The different steps included to use SLuRp is as follows:
 * Identifying relevant research: Define RQ, search terms, IC/EC criteria, QA criteria.
 * Select primary studies: SLuRp have access to almost all the digital databases (ACM portal is an exception).
 - Thus, semi-automatically, it extracts papers from the available databases and saves them.
 - Imports the bibliographic details in BibteX/RIS format by using different management systems.
 - Allows to apply the IC/EC criteria (Assigned for more than 2 reviewers)
 - Saves the assessment and saves the reason for rejection/acceptance
 - Identifies difference in the proof of concept of the reviewers (If there is more than 1 reviewer)
 - If there is a clash between the selection/rejection reasons, the frequency of disagreements is calculated and reliability scores are produced.
 - Finally, SLuRp will store the data of the accepted papers.
 * Assess the quality of study

Advantages
* Allows searching of individual digital libraries with library specific queries.
* Maintains records of past SR’s and their results.[MBK18]

Limitations
* No support of cross-library queries
* Automated Search is not supported.

- **StArt[HZFT12]**: StArt is a tool created aiming to facilitate and support the conduction of a repetitive research and review processes such as SLR. This tool provides support to almost all the phases in an SLR except the automated search of primary studies in digital/electronic.
database. This is restricted because it has been categorized as a robot action. Therefore, the researcher is supposed to manually find the primary studies. This step should be done following certain protocols which the researcher has to define as a primary step when starts to use the tool.

After the collection of primary data, the bibliographic data of the needed papers or studies has to be exported in the for of BibTeX/RIS files. And then should be imported to the tool for further steps. Different stages of SLR implemented using the StArt tool is as follows:

* Planning

In the planning phase, the primary steps of the SLR are performed.

- Finding the keywords and selecting the source list is the primary step in that.
- After defining the keywords and the source list, then it comes to define the IC/EC criteria ad the information extraction attributes. This information is added beforehand and will be used in the latter stages.

* Execution

Once the protocol is defined, then comes the execution stage. There are three steps included in this stage: Studies Identification, Selection and Extraction. The study’s identification is used to filter the papers according to the protocols defined in the first stage and also by using the bibtex data we will get more information on each of the papers... And the table we received from the data will have various attributes such as title, year of publishing, reading priority and an automatically calculated score (which is calculated depending on the number of times the keywords used in the protocol). There is another field called status which needs to be filled by the researcher. Then comes the selection phase, which is used to select the papers according to the protocol and the criteria defined in the former stage. At the end of this stage, all the accepted papers are then moved to the extraction step.

In the Extraction step, what happens is that, the researcher must go through the selected papers and read in full and must be analyzed again whether to accept or reject. After that, the researcher extracts the information according to the attributes defined in the Information Extraction form, which was defined along with the protocol.

* Summarization

In this stage, the researcher explains the state of the art of the topic.

After the summarization stage, there is an option to visualize the data from the research in any manner, in which the researcher has to choose to select from a graph, tree or bar model.
3.3. Reporting the Review

We have used this tool mainly for our thesis and will be discussed more in Chapter 4.

- **SLR-Tool [FSBR10]**: This tool has been developed using JAVA and has implemented it IDE in Eclipse. This tool is a multi-language tool which is available in English and Spanish interfaces. The SLR-Tool empowers all the data expected to complete the SLR cycle proposed by [KDJ04] to be stored and managed. Text mining is the technique used in this tool to allow the search session or the primary stage of the review. When all the primary studies have been arranged with the grouping plan characterized, SLR-Tool can create tables and graphs to sum up the information, [FSBR10]. Hence, the tool will make visual admittance to the papers. SLR-Tool sends out all the information gathered in the survey process as Excel document sheets and the charts as PDF records.

Advantages:

* This tool allows the researcher to build a classification scheme that aids in data synthesis and analysis.
* SLR-Tool additionally empowers every one of the bibliographic information from the primary studies transferred in the device to be traded to the configuration acknowledged by bibliographic bundles like EndNote, BibTeX and Ris.

Disadvantages:

* SLR-Tool is not just a metasearch tool, but the search of the documents or papers has to be performed manually and independently of the tool.
* This tool does not allow collaborative systematic reviews.

- **Kitchenham QA reporting [KBB+09]**: Kitchenham’s study aims to address the issues from already published SE studies on SLR conduction. There are very fewer papers on QA reporting which is from SE department. This level of QA is carried out based on [DD08] and has the following major points.

 * A 12 point checklist of item was defined and subjected to a group for getting opinions, suggestions and drawbacks.
 * A weighted scoring mechanism is used.
 * The extraction stage of assessing the quality to get good scores on the collected papers.

Advantages

* Gave improvement scope for future regarding the procedures for quality evaluation of the SE studies based on empirical methods.
* Proposed changes in guidelines that handle removal of unwanted docs and also inclusion of various text analysis and quasi-gold standard tools.

Disadvantages

* Poor decision on the study content quality as the scoring mechanism is really error-prone.
– **SESRA** [MB15]: An automated tool for the web that supports systematic literature reviews. Results and comments from early use have demonstrated that SESRA could support the SLR process by automating some of its essential tasks. An advantage about SESRA is that it will provide instructions and support recommendations at each stage to help the researcher avoid biases that could taint the review results. According to some researchers[MB15], and the survey they conducted results in showing that the users broadly agree with the tool support of SLR in terms of productivity on an average of 60.7% and reliability on an average of 72.1%. This can be categorized as a subjective evaluation on the tool.

To maintain the objective metrics and the interpretation of the objectives suggested that SESRA can increase output and dependability on SLR process in SE. Additionally, as discovered in a prior study, the tool uses automated approaches to minimize effort on the more time-consuming processes [MB12].

SESRA seeks to provide automated assistance for SLR’s in the context of SE and CS, enhancing process productivity and reliability.

Advantages

* High rate of average on productivity and reliability.

Disadvantages

* Most of the guidelines provided within the tool are in Portuguese, which might be difficult for non-portuguese researchers to understand.
* Data from certain databases cannot be retrieved through this tool.

– **JabRef** [SDDK19]: JabRef is a reference management system to organize the bibliographic references. It is a free and open source software. It offers a graphical user interface for viewing and editing bibliographic references and saves them in the LaTeX-native BibTeX or BibLaTeX formats. Unlike, other tools we are referring, JabRef only manages the bibliographic stages and not any other phases. So, this tool is not that relevant to our studies.

– **SLRTOOL** [BRAC14]:- This tool is a web-based, open source program with a reasonably large support base that assist researcher through the SLR studied across a variety of research areas. Initially, this tool was proposed to perform SLR on EA. Just like every other tool, SLRTOOL also follows the same stages and phases for conducting the SLR. The only exceptional feature that differentiates the START tool from other tools is that it supports collaborative SLR’s. Specifically, the tool could be reasonable for the fledgling research community. Another key component in this approach was an early acknowledgment that the potential for significant automated examination of reviews could be made conceivable, assuming that we adopted a model based strategy to tool improvement.[BRAC14].

Advantages

* All the code for the overall SLR can be generated from this model.
3.3. Reporting the Review

* It is able to accommodate changes in the tool protocol, and also in other parts of the SLR process, just by modifying the model and then reusing or regenerating to support research on different disciplines.

Limitations

* The search area is just limited to google scholar.
* Management of resources (auto uploading the references) is poor and error-prone.

PRISMA [LAT^09] The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for fundamental straightforward detailing (transparent) of a systematic review. The main objective behind this tool was to improve the SLR reporting efforts and set a standard for the same. The development of QUOROM which was a reporting guideline published had several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Hence, after that, the invention of PRISMA is considered as an evolution of QUOROM. It is mainly useful in reviewing or meta-analysis of health care interventions. The main scope of this tool is to ensure complete and transparent reporting of SLR’s. This method predominantly handles randomized studies except some non-randomized, quasi-experimental studies and interrupted time series.

Advantages

* Describes in detail about the risk and impact of bias within various studies, which in fact helps in ensuring the methodological consistencies.
* Ensures the clarity and transparency in SLR reporting process.
* Gives a clear-cut idea on the different protocols, strategies and other IC/EC criteria used for various phases of the research review.

Limitations

* This is not recommended to be used as a Quality Assessment tool as such, because it does not elaborate on the methodologies used in the SLR review process.
* Even though an evidence-based approach was used to develop PRISMA, an SLR itself was not conducted to produce the checklist.

Parsifal: Parsifal is a Python based library typically used in AL, ML, DL and TensorFlow applications. It is an online tool designed for supporting researchers to perform SLR in the domain of SE. It provides collaborative support for research in case of multiple researchers. Thus, it is made possible for geographically distributed researchers to work within a shared workspace, to design the protocol and conduct the research.

The tool has an important feature which helps to remind the researcher about the important steps and guidelines during the SLR. During the first phase of the SLR, which is the planning phase, Parsifal will help with the objectives, PICOC, RQ, search string, keywords and synonyms,
source selection, IC and EC criteria. As a next step after this phase, it will also help in creating a QA checklist and data extraction forms. During the conducting phase, the tool will help to import the BibTeX files from corresponding digital sources and helps in selecting the primary studies, finding duplicates, executing the QA and extracting important data from the selected papers.

Advantages,
- Allows collaboration support.
- Displays a single review even when there are multiple researchers.
- Exports the results of a review.
- Helps in visualization of the summary, as a table.

Limitations
- It is an online tool, and you have to register to use the functionalities.
- Does not provide any elaborated tool or guide to use the tool.
- The program does not offer automatic duplication detection, but it does support human duplicate labeling in the event that there are any.\cite{Kar21}.

We will summarize the important characteristics of all the collected tools in Table 3.7.

3.4 Summary

Finally, we will summarize our SLR conduction and findings. Our main objective was to research on the impact of collaboration of people in CS teams. As a secondary objective, we wanted to do a brief comparative analysis on different SLR tools being used in SE any CS departments. For the primary objective we shortlisted 13 papers which were closely relevant to our topic and 10 more papers were shortlisted as a set of reinforcement for our primary findings.

To get to the result of primary findings, we performed SLR by defining various search terms, search strings and keywords. For a proper arrangement and organized solution, we prepared 4 RQ’s.

The impact and perceptiveness of various gender being grouped together had to be determined. With the help of shortlisted papers, we had to get to the result whether there is any effect of women in CS teams. The table below shows an overview of the different tools we found. Since Kitchenham QA reporting is a theoretical guideline on conducting SLR, we are not including it in the table. PRISMA is a tool created focusing on the reporting phase of the SLR so, it is also excluded from the table. We will use the scoring method to get a better understanding of the tools.\cite{AZ17}.

The rating of the score is as follows:
- 0-30% : Satisfactory
- 31-60% : Good
- 61-100% : Very Good

\footnote{1 http://carver.cs.ua.edu/Studies/SLR-Requirements}
3.4. Summary

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Requirements</th>
<th>StArt</th>
<th>SESRA</th>
<th>SLuRp</th>
<th>SLR-Tool</th>
<th>SLRTOOL</th>
<th>Parsifal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collaboration Support</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Integrated Search</td>
<td>20%</td>
<td>50%</td>
<td>10%</td>
<td>10%</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Supports Text Mining</td>
<td>20%</td>
<td>10%</td>
<td>30%</td>
<td>10%</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>Traceability</td>
<td>100%</td>
<td>75%</td>
<td>25%</td>
<td>50%</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>5</td>
<td>Supports IC/EC criteria</td>
<td>100%</td>
<td>30%</td>
<td>20%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>6</td>
<td>Supports QA</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>7</td>
<td>Data Maintenance</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>Automated Analysis</td>
<td>50%</td>
<td>50%</td>
<td>60%</td>
<td>30%</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>Visualization</td>
<td>90%</td>
<td>60%</td>
<td>90%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>10</td>
<td>Storage of studies</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>75%</td>
<td>56.5%</td>
<td>55.5%</td>
<td>41%</td>
<td>47%</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

Table 3.7: Comparative analysis of SLR tools [AZ17]
4. Methodology

In the previous chapter, we discussed the various SLR phases focusing on our topic. We discussed the impact of teams and diversity in teams when and during CL. We have also analyzed and summarized various available tools for performing SLR in CS or SE departments. The domain and limitations of those tools were also discussed. In this chapter, we will discuss more on the approach we selected for the selection of primary studies. We will also discuss the way of comparative analysis we performed on various tools that support SLR.

Through this chapter we will also explain an analysis on the different primary studies we selected, the way of selection, why is it selected and what are the important aspects of those papers.

We will begin the chapter with an explanation of our approach and describe the methodology we used for that approach. Following that, we will explain in detail how we analyzed the selected studies to answer to the RQ. Finally, we will discuss the difficulties and limitations we had to face during the research and possible solutions to them.

4.1 Stages of the approach

The main approach we used for our SLR is based on the guidelines proposed by Barbara Kitchenham [KBB+09]. The three phases planning, conducting and reporting has been covered for our review following her guidelines. Finding the effectiveness of collaboration in CS teams is the main aim to follow. Selecting the primary studies and evaluating and analyzing the relevant papers are satisfied by using the StArt tool, which we will discuss more in this chapter. The guideline overview for performing SLR can be understood from the figure below.
4. Methodology

4.1. Planning of the review: Phase 1

The various stages of the proposed approach will be elaborated and summarized in the following sections. The first step of a systematic review is to plan. As part of the planning phase, initially we have to define research protocol. As we defined in the Section 2.1.1, the reviewers need to specify the need of the review in the selected specific area. Along with that, before conducting an SLR, the RQ’s, search strategy and study selection criteria must be defined. Constructing clear and useful RQ’s is the most fundamental prerequisite for recognizing relevant primary studies. And on the basis of the defined RQ’s, keywords and the key performance indicators are determined. Using the keywords and the search terms, we define a search query to find the primary studies. During the search process, every synonym and alternate terms for the keywords and search terms must be used in order to get an unbiased search result.

4.1.2 Identifying Relevant Research

After the planning phase, following the review protocol and RQ’s, the search string is defined and the database sources for the collection of data are selected.

As part of our research, we started from the universal directory of journals and articles, which is the Google Scholar. All the available papers are collected according to the area and topic of interest using the defined search query. Apart from Google Scholar, we used another digital libraries such as ScienceDirect, ACM and IEEE Explore. For conducting and performing an SLR, it is required to export the details.
of papers, including the abstract. We exported the BibTeX file format to get the bibliographic metadata and abstract of each and every paper.

There are other digital approaches defined for handling Bibliographic notes such as EndNote, RIS, refer etc. Almost every digital libraries support exporting citations in any one of these formats. We mainly focussed on the BibTeX file format.

In a BibTeX file, the bibliographic information is represented in the form of (JSON) JavaScript Object Notation. This way it is more compact and can be easily loaded in JavaScript. The structure of the data is well-defined and each BibTeX record includes all the metadata of different papers with a choice of having abstract and keywords in it. The entry types identify various types of article, journal, book, or conference. The structure of the BibTeX entry begins with the symbol ‘@’ indicating the entry type, followed by a citation-key and the number of tags for the specific BibTeX entry. The information on these tags includes the author, title, DOI, published year, etc. The figure below shows an example for a BibTeX entry.

![Example BibTeX Entry](image)

Figure 4.2: An example for a BibTeX entry

4.2 Approach for selection of primary results

We follow a predefined approach for the selection of primary studies. There are various methods and tools available to do the same. As we already discussed in the second chapter, selecting relevant studies from a large collection of documents manually takes a lot of time and effort. Therefore, the approach we have selected is to efficiently reduce manual effort and selects primary relevant studies. We use an offline tool (StARt tool) to perform the SLR. We perform the three phases, planning, execution and summarization using this tool.

As the system is semi-automated, user intervention is needed. First, we need to define and decide the keywords, search terms and search strings. The reviewer completes the first phase of planning, uses the defined search terms in the selected digital libraries (Section 3.2.2) and exports the results in the BibTeX format. And then, filtering the pool of papers with regard to the titles, abstract and keywords, we reach to a point with only a handful of studies. We have used the IC and EC criteria to do the filtering. Furthermore, the final step of the assessment is to assign scores to the studies according to the defined QA criteria. As the final stage of the review, visual representation of the result in the form of pie charts, graphs or radical graphs will be shown to the user.
4.3 Quality Assessment and Quality Scoring

After the identification of relevant research and primary studies is done, the reviewer must assess each study for analyzing the quality and the amount of bias. In addition to the general IC/EC criteria defined for the quality assessment, it should be considered important to assess the “quality” of the primary studies. The main aim of this to pave way for the interpretation of findings and determine the strength of the inferences. In the 2007 update by Kitchenham and Charters added the CRD Database of Abstracts of Reviews of Effects (DARE) set of four questions to the list.

4.3.1 Limitations of DARE criteria

The guidelines defined by Kitchenham were used by reviewers to perform SLR in the SE domain. Even though many researchers came forward to modify these guidelines, it wasn’t enough to handle SLR appraisal. Thus, it had a lot of limitations and thus was restricting the reviewers to get a clear perspective to use the DARE criteria. Some of the limitations are:

- Lack of search strategies.
- Poor reporting quality estimation for the SLR.
- DARE is not a CAT (Critical Appraisal Tool) per se; it is intended to provide the criteria that SLR’s should meet to be included in the CRD’s (Center for Reviews and Dissemination) database of SLR’s.

The table below shows the quality evaluation criteria of DARE to appraise SLR in SE domain.

Table 4.1: DARE quality evaluation criteria used to appraise SLRs in SE domain.

<table>
<thead>
<tr>
<th>DARE</th>
<th>4 items a, b, e and c/d are typically used, depending upon situation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Were inclusion/exclusion criteria reported?</td>
</tr>
<tr>
<td>b.</td>
<td>Was the search adequate?</td>
</tr>
<tr>
<td>c.</td>
<td>Was the quality of the included studies assessed?</td>
</tr>
<tr>
<td>d.</td>
<td>Are sufficient details about the individual included studies presented?</td>
</tr>
<tr>
<td>e.</td>
<td>Were the included studies synthesised?</td>
</tr>
</tbody>
</table>

4.3.2 Evaluation checklist

Taking the limitations of the DARE criteria into account, after proper research and revision, we have acquired a number of checklists for quality scoring. This QA evaluation checklist has been created based on the reporting guidelines defined by Kitchenham and an article prepared by Nauman bin Ali and Muhammad Usman on a critical appraisal tool for SLR in SE. We will also refer the evaluation checklist of AMSTAR-2 tool for the quality scoring. Since, AMSTAR-2
tool [SRW+17] has mainly defined for systematic reviews of randomized or non-randomized studies of healthcare interventions, we can omit some of the checklists which are not relevant for the SE domain. An AMSTAR-2 score of 8 to 11 indicates high quality, 4 to 7 a moderate quality and 0 to 3 a low quality. The table below explains the quality evaluation criteria used to appraise SLRs in SE domain by AMSTAR-2 ².

Table 4.2: AMSTAR-2 quality evaluation criteria used to appraise SLRs in SE domain [SRW+17] [AU19]

<table>
<thead>
<tr>
<th>AMSTAR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Did the RQ’s and IC for the review include the components of PICO?</td>
</tr>
<tr>
<td>b. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review, and did the report justify any significant deviations from the protocol?</td>
</tr>
<tr>
<td>c. Did the review authors explain their selection of the study designs for inclusion in the review?</td>
</tr>
<tr>
<td>d. Did the review authors use a comprehensive literature search strategy?</td>
</tr>
<tr>
<td>e. Did the review authors perform study selection in duplicate?</td>
</tr>
<tr>
<td>f. Did the review authors perform data extraction in duplicate?</td>
</tr>
<tr>
<td>g. Did the review authors provide a list of excluded studies and justify the exclusions?</td>
</tr>
<tr>
<td>h. Did the review authors describe the included studies in adequate detail?</td>
</tr>
<tr>
<td>i. Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?</td>
</tr>
<tr>
<td>j. Did the review authors report on the sources of funding for the studies included in the review?</td>
</tr>
<tr>
<td>k. If meta-analysis was performed, did the review authors use appropriate methods for statistical combination of results?</td>
</tr>
<tr>
<td>l. If meta-analysis was performed, did the review authors assess the potential impact of ROB in individual studies on the results of the meta-analysis or other evidence synthesis?</td>
</tr>
<tr>
<td>m. Did the review authors account for ROB in individual studies when interpreting/discussing the results of the review?</td>
</tr>
<tr>
<td>n. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?</td>
</tr>
<tr>
<td>o. If they performed quantitative synthesis, did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?</td>
</tr>
<tr>
<td>p. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?</td>
</tr>
</tbody>
</table>

Using the available instrument/tools, we have given quality scoring to each of our primary selected papers. The checklist we created for our scoring criteria is as follows:

² https://amstar.ca/Amstar_Checklist.php
• **QC1**: How relevant is the information in the study according to the title under observation?
 These criteria define whether the information and the content in the paper is relevant and is important and considerable for our primary research goal. In our case, we have to analyze whether the paper explains about collaboration in computer science teams or the importance of women in teams. The papers with higher occurrence of keywords and search terms can be given a higher score, while with less occurrence will be given a less score or rather 0.

• **QC2**: How reliable and important is the contribution according to the author?
The contribution of the author should be considered as an important factor for the quality scoring. The higher the contribution of the author in the specified field, the higher the expertise. The authors publishing more papers on the relevant field can be considered and given a high score, while the opposite can be given less score.

• **QC3**: Does the content of the study present in the abstract is relevant to the conducted SLR?
 Through these criteria, we meant to analyze the content of the paper. As an initial stage of the study selection, we consider the title, keyword and abstract and check the occurrence of keywords in them. In our method, we have defined Boolean expressions to search for key terms and their synonyms related to the topic. One term and its synonyms are connected by the logical operator OR to create a group of terms. The groups are connected by the logical operator AND in order to create a complete string of keywords. According to [KDJ04] a review of the title and abstract of a primary study should be sufficient to decide whether a study is relevant to SLR or not.

• **QC4**: Does the study carry a strong and clear introduction?
The primary understanding of the paper is understood from the introduction. In fact, introduction is the shorter summary of the whole paper, irrespective of the length and pages. Kai Petersen [Pet11] has said that strong and structured abstracts and introductions may be a great help in conducting SLR. We can give a score of 1 to structured introduction and 0.5 to unstructured introduction.

• **QC5**: Are the results of the study reported in a clear and concise manner? The clarity and clearness of the paper should be well reflected in the result. If the result of the paper is well-structured and addresses all the needed criterion’s defined in the introduction and RQ’s, a score of 1 can be given. Else, give a score of 0 to 0.5 according to the percentage of result and findings satisfaction.

• **QC6**: What is the impact of the study on the overall research, and SLR?
The impact of the studies that perceives the usefulness of the research has to be scored. In the study, the area of research must be clearly defined and should have created an impact on the overall research. If the study is conducted as an SLR, a score of 1 can be given and if not, a score of 0.5 can be given. If the study satisfies both the criteria, the impact on overall research and the study is an SLR, then a high score can be allotted and if not, a low score can be given.

• **QC7**: Does the study have been officially published?
Studies that are officially published are selected prior and primary for observation.
Articles or papers which are published in globally accepted platforms and formats are given a high score, while the rest is given less.

- QC8: How often does the study have been referred or cited?
 The frequency and citation count must also be considered. Studies that provide useful and relevant findings are usually referred and cited by other researchers. Hence, We will use the citation count to find out the most reliable ones. (Used the Harzing’s Publish or Perish tool to find the citation count([Har10]))

For an easier interpretation, the table below shows each scoring criteria and their corresponding term to use.

<table>
<thead>
<tr>
<th>Term</th>
<th>Scoring criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC1</td>
<td>Title</td>
</tr>
<tr>
<td>QC2</td>
<td>Author</td>
</tr>
<tr>
<td>QC3</td>
<td>Abstract</td>
</tr>
<tr>
<td>QC4</td>
<td>Introduction</td>
</tr>
<tr>
<td>QC5</td>
<td>Results</td>
</tr>
<tr>
<td>QC6</td>
<td>Impact</td>
</tr>
<tr>
<td>QC7</td>
<td>Published</td>
</tr>
<tr>
<td>QC8</td>
<td>Citation Count</td>
</tr>
</tbody>
</table>

Table 4.3: Quality scoring criteria and corresponding terms

4.4 Threats to Validity

In the methodology we followed and the approach we considered was semi-automated and human intervention was needed in most of the stages. Doing an SLR itself takes a lot of time and effort, to research on papers, selecting relevant studies, scoring the papers according to their quality etc. Mostly, the initial stages were very difficult as because of the unawareness of defining boolean operators in between search terms to obtain an unbiased result. For each and every study, the occurrence of keywords had to be determined independently, regardless of their synonyms and antonyms. Defining RQ’s and finding papers to get answers to them was a bit tedious as there were very fewer papers available for the same. Many studies and articles were available online, but many of them doesn’t have full access to the article. When the full article was available, the frequency of citation count was very less. Despite all these limitations and putting a lot of manuals and semi-automated approach, we finally were able to conduct all the stages of SLR according to Kitchenham’s [KDJ04] guidelines.

4.5 Summary

In this chapter, we have discussed the methodology and the approach we followed to perform the SLR. We have explained about the fundamental concepts of the approach, the different stages of the approach, tool used for the approach. The tool we used is an existing tool (StARt). The manual entry that had to be done was in the
initial stage of planning, to define RQ,IC/EC criteria and the research protocol. We used the defined search terms and search strings to find relevant papers by applying Boolean operators in different digital libraries. We then used the tool to insert all the papers using the BibTeX data we exported from the digital libraries and used them to select the primary studies. Manual intervention was needed, as the tool we used was semi-automated. We then define quality scoring criteria and gave scores to each paper, which we see more in the next chapter.

We will explain more about the evaluation of the primary studies, different collaboration tools and the scoring of the primary studies in the following chapter.
5. Discussion and Evaluation

This chapter will mostly discuss the results and analysis of the conducted SLR. As we discussed the methodology and approach we adopted to do the SLR in the previous chapter, we will evaluate them as well as we will try to find proofs and evidences to answer our RQ’s and their drawbacks and the possible solutions for that. We will also mention the lacking criterion’s that we came across in our research and possible “nice-to-have” features for future references.

The main aim of an SLR is to search, identify, analyze and interpret all available proof relevant and related to one or more RQ’s in a way that is unbiased and (to a certain point) repeatable [KC07]. We will give evidence to our thesis by proving, valuating and analyzing collaboration in CS teams, and make sure that the strategy that we employed is robust and transferable.

5.1 Glimpse of our SLR using StARt tool

We have already discussed and explained in the previous chapter, the methodology and approach we used for SLR. At a point, we have mentioned the tool we used for conducting the various phases of SLR, which is the start tool.

In section 3.1.2.2, we mentioned the various digital data sources we used to apply the search string and the search terms to find relevant papers. After, collecting the papers and exporting the BibTeX format of the relevant papers, we uploaded the result to the StARt tool. The objective of the research, research protocol, research questions, inclusion and exclusion criteria were defined in the tool at the beginning phase. As the planning phase was finished by exporting the pool of paper’s BibTeX data, extraction had to be done. This phase was to filter the papers needed according to the keywords, abstracts. As the tool was semi-automated, a human intervention and manual selection was needed at this phase. Once the selection was done, extraction, which is another level of filtering, had to be done in-order to select less and most relevant papers. Thus, we ended up having 13 very-high priority papers and 9 high priority papers. The pie chart representation is a graphical representation of the steps we completed using the tool.
5. Discussion and Evaluation

5.2 SLR - Results Set

In this section, we will discuss in detail and analyze the primary set of results we obtained as part of the SLR and the impact of those papers that helped in answering our RQ’s. The need to analyze the relevancy of the papers will also be discussed thoroughly. Here, we will mention once more the RQ’s that we had to find evidence and prove the dissertation.

- **RQ1)** How do women shape the dynamics of groups and teams in computer science based course projects?
- **RQ2)** Which personality or behavior stimulates effective group interaction?
- **RQ3)** How does the team perceive the usefulness of collaboration?
- **RQ4)** What factors can affect performance of work groups and teams?

Now, we will categorize the selected primary studies according to the RQ’s. The first RQ is in favor of the impact of women in CS and SE project teams. The rest of the RQ’s focuses on the factors that affect the performance of work groups and teams. We can consider these RQ’s together, as it implies almost the same meaning. We will consider all the papers selected, including the 13 primary studies and the secondary studies.
5.2.1 RQ1) How do women shape the dynamics of groups and teams in computer science based course projects?

Among the 13 papers we took for consideration, we mainly focussed on collecting papers on this RQ. This is the first and foremost goal of our thesis. From [RPNN21] SLR, the researcher created a demographic data on the synthesized data of papers that studying perceived diversity. The papers published were conferences, journals, workshops etc. The data is as follows.

![Figure 5.2: Number of papers published on perceived diversity until 2021, [RPNN21]](image)

We analyzed the importance of women in computer science and the impact that occurs with the presence of women in teams. From a study conducted in the University of Hull, the author mentioned that the significant under-representation of females in CS can be commonly referred to as the gender gap [Wag16]. She also analyzed an aspect of the gender gap by finding the difference in the performance of male and female students.

The IT sector is thriving and developing day by day. Even in this digital progressive era, many women continue to be underrepresented as compared to their numbers in the overall work area [MAWH21]. CS and SE jobs are seen as a job for men, ignoring the efforts of women’s competence. The basis for the under-representation are social and cultural. The stereotyped career choice is one aspect which people, especially women, are forced to follow. Interaction with people are meant for women, while software development and technical activities are left for men. This is something that has to be considered for the overall persistence of women.

The students in a team tends to allocate the tasks of a project among themselves, different to working collaboratively on the tasks. They believe and follow the ‘divide-and-conquer-approach’ for a better outcome. But when they do that, do they consider
having equal proportion of girls and boys on the team? Or do they go for just boys, who they believe is "highly qualified and efficient" compared to women?. To find proof of evidence for this RQ, we will set up a hypothesis.

Hypothesis - Presence of women in groups and teams in CS based project yields a positive and better outcome.

A social sensitivity perspective created by [KBWN14], the researcher tried to report about the presence of females in teams and the factor that leverages the team performance activities. The experiment was conducted based on forming teams in 5 different manner. M being Male and F being Female, they created groups of MMMM, MMMF, MMFF, MFFF, FFFF. The essential finding they showed up after the experiment is that the extent of female students were not exceptionally corresponded with the execution of the student teams. Average social responsiveness score of groups with large number of female individuals was altogether less in contrast with groups with low number of female. The presence of female affected the Group execution exercises, for example, Exploration, Data Sharing and Collaboration. Another perspective of this paper was that the female attitude towards the jobs were more favorable than males. Research across various nations across Europe asserts that females show a high level of job and work satisfaction than compared to men. Through the qualitative analysis of data, it is suggested that females tend to have a more favorable attitude towards job and report more satisfaction than males, even in the same work environment [KBWN14].

From another study conducted by [Wag16], she defines the term gender gap as the under-representation of females. And in her study, she analyzed that male students were awarded more first class degrees than female students. So, she proved that there is gender gap and performance gap existing in SE and CS areas, where the ability of women is undermined because of the poor consideration of women. The hypothesis she considered were cross-checked with the performance indicators first degree and good degree. The table below was her finding that supported her hypothesis.

<table>
<thead>
<tr>
<th></th>
<th>First-Class Degree</th>
<th>Good Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female computer science students perform worse than male students</td>
<td>Yes</td>
<td>Mixed</td>
</tr>
<tr>
<td>Female students perform better as their total number and percentage increases</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Both male and female students perform better as the year of entry increases</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 5.1: Support hypothesis findings [Wag16]

Agreeing to this finding, a Chilean case study was conducted describing and comparing the results of mixed gender teams in student software projects. The result was that mixed gender teams offers more coordination and focus to student teams, which helps to focus on the efforts for a good result in the project. This can be proved by saying that mixed gendered groups perform better in terms of self-efficacy.
On the contrary, in terms of group processes, recent researches and evidences suggest that the group collaboration is greatly increased by the presence of women in groups [WCP+10]. [WCP+10] found that the proportion of female in a work group is strongly related to the whole group’s measured collective intelligence. From the social sensitivity [KBWN14] it was clear that, women have the greater ability to read nonverbal cues and make inferences about what others are feeling or thinking. Thus, the groups with women exhibits greater equality in the conversational turn taking behavior and making the rest of the team members to be responsive among them and make use of the best use of knowledge and skills. When the group performance has to be evaluated, the results of several meta analyzes had to be considered, which shows either no effects or slightly negative effects for gender diversity of team members on team performance. Indeed, the researches show that in areas dominated by male, the integration of women may be difficult initially but should get better as their efforts and participation equalizes with men.

In a study conducted by [YF22], the researchers tried to find about the gender differences in collaboration patterns in CS. Fundamental discoveries are that the gender gap changes incredibly by field, extending from 6% female creators in hypothetical CS to 42% in CS education, sub-fields with the next gender gap to tend to display lower female efficiency, bigger coauthor bunches, and higher gender homophily. Our hypothesis can thus prove that, Presence of women in groups and teams in CS based project yields a positive and better outcome. Gender balance and diversity have the potential to improve group outcomes, which is just as important as collaboration, becoming a main attraction in the production of CS. However, in order to be truly effective, the role that women play in scientific teams should also be taken into consideration and promoted in order to yield the significant benefits of increased gender diversity.[WCP+10].

5.2.2 RQ2 & RQ4) What are the factors that affect effective group interaction and how they affect the performance of the teams?

RQ2 and RQ4 can be considered together. These RQ’s are defined to find and assess the factors that affect the teams and how it yields a perfect outcome. In one word, effective group interaction is an outcome of proper communication and coordination. A high performance team is one that overcomes all reasonable expectations and produces good and extraordinary results [DPF15]. A good team is a group of people that bring together the team members to mutual growth and personal development. Other attributes that affect high performance teams are participation, accountability, clarity, creativity and flexibility. The performance of a team can be characterized using technical and behavioral excellence [DPF15]. The participation in a team, irrespective of the diversities existing between them, increases the commitment, which results in delivering high quality work. There are some real life examples of companies which has used high performance inter functional teams to improve the efficiency and service to the clients, such as ATT, Boyett and Boyett.

When working remotely or in person, every team and team members should be mastered to keep their colleagues encouraged, engaged and productive. There must be some factors that enhance the performance of every one. Some of them are as follows:
• **Reinforce a common goal**: Each of the team members should be aware of the goal. A manager or a leader should be able to inspire the team with a proper sense of purpose and vision. Everyone should know if their team goals are aligned with their colleagues, overall. Teams should understand why their team even exists.

• **Ensure the clarity of individual role.** The people working in teams should maintain frequent communication and make sure each of the individual roles are properly explained and understood by them. At the final stage of coordinating all the results of the team, there should be a uniformity and continuation of the results. Thus, it is essential to clearly and carefully explain individual roles and tasks.

• **Being aware on the emotional safety.** Team members need to feel great, esteemed, and involved. Emotional security is one of the main elements in groups, particularly in the midst of emergency and uncertainty. The respect and consideration given to one another could result in a blissful climate, which will ponder the results.

• **Promoting the progress**: The team knows the objectives and tasks they are assigned to. But it is essential to make sure that they are aware of how to accomplish them. An effective team should share and collect feedback. They must have the time and effort to accept the success and failures. Successful teams have clear team processes for planning, tracking, documenting, and managing work.

• **Encouraging collaboration**: The main reason behind collaboration is to make sure each person needs the rest of the team to accomplish the goals. That collaborative spirit enhances the team to tackle the work. Collaboration is not a guarantee, but when working remotely and without personal physical interaction, it is important that remote workers are not feeling isolated, hence collaboration is essential.

• **Promoting orientation of growth**: Team members learning from each other is one way to keep growing. Teams give everyone a chance to grow and learn from each other. If people want to do better in their performance, they need to learn and grow. It doesn’t mean that they should do additional courses and gain a pool of knowledge; we are trying to talk about mutual cooperation and collaboration. Brainstorming and encouraging each other gives a potential growth individually, thus affects the performance of the group.

Autonomy and Diversity are two factors which acts as the base for a team formation. The figure below is an instance table on the grouping and abstraction process of the evidence and the finding on the papers we collected, which mentions the factors that generally affects a team performance.
Table 5.2: Grouping and Influence on team performance

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Factor</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy increases the response efficiency</td>
<td>Autonomy</td>
<td>influence the team performance positively</td>
</tr>
<tr>
<td>Difference in decisions by high and low performing groups during ALM</td>
<td>Autonomy</td>
<td>Influences the team performance negatively</td>
</tr>
<tr>
<td>Diversity slows down the response efficiency due to the conflict in communication</td>
<td>Diversity</td>
<td>influence the team performance negatively</td>
</tr>
<tr>
<td>Could have a significant influence on the speed of introducing to the market and functionality of a new product</td>
<td>Diversity</td>
<td>influence the team performance positively</td>
</tr>
</tbody>
</table>

There have been many papers publishing every year addressing and mentioning the factors that influence the performance of computer science teams. The publishing papers are journals, conferences, books etc. Among the 13 primary studies we selected, we could find only two or three authors published more than one paper. There were only a few SLR conducted focussing on the importance of the high performance teams. In most of the papers we selected only the "communication","motivation","cooperation" are discussed. While "personality","mutual respect","autonomy and diversity" are less addressed. Fortunately or unfortunately, we could not find any paper reporting negative effects of individual characteristics over the performance of processes in the CS teams.

5.2.3 RQ3) How does the team perceive the usefulness of collaboration

This RQ is defined to address the after effects of the previous RQ’s. We have discussed the factors that affect the performance of different teams and those which affects effective group interaction. But how does the team conceive the usefulness of interaction and collaboration?

"Use what you have" is a quote by a famous researcher. When working in teams, being motivated and having confidence to communication with your peer and share knowledge is one way of perceiving the usefulness of collaboration.

Increase in productivity and creativity are the perfect result of good collaboration. The main impacts on the usefulness of collaboration can be defined as follows:

- Improves team efficiency.
- Increases the result quality.
- Teamwork supports individual learning
- Teamwork inspires innovation and creativity
• supports accountability on the tasks they did.

In terms of efficiency, the most likely factors included are better decision-making, little lonely thinking and improved communication and coordination. There can be seen an imbalanced collaboration between different roles in a team. We can speculate that the collaborations within the teams may have been highly directional, which caused an imbalanced collaboration. This can be solved by having proper communication and less intuition.

5.3 Tools used for CS teams collaboration

During the Covid-19 pandemic situation, communication and cooperating physically was impossible. Thus, the need for a remote modelling collaboration increased and the use of them became inevitable. Irrespective of the location, timezone, working hours, many software teams started relying on them. Collaboration tools can be defined as an implementation used to carry out a particular function, which here in specific to collaborate between and among different researchers. In this section, we will present various collaborative development environments and tools to enable effective software development, either global or collocated [LEPV10]. When people are told to suggest collaboration tools, the different software programs available for audio conferencing and videoconferencing comes on top of the list, as it reflects a generic opinion that collaboration tools should imitate the direct verbal interaction. A good collaboration tool will have the following characteristics.

• Enhances communication.
• Able to share digital formats of media.
• Enables mutual interaction
• Easy to learn and use

The collaborators should be able to share in virtual environments, which are not easily approachable to the physical constraints in real life. An example for an innovative collaboration can be in such a way that, a faculty deliver the class standing in front of the room while the students collaborate on lecture notes in a synchronous text environment. From the above section, it is almost clear that collaboration tools are different from the communication tools. Now, we will have an inside look onto what are the features that sets the collaboration tools different from communication tools [LBP08].

5.3.1 Features of collaboration tools

Communication is a basic feature for collaboration. But, does these two terms imply same meaning or different meaning? The following are some basic and important features of what makes collaboration tools stand up.

• Capability of Strong communication
• Easy-to-use and understandable User Interface
• Capability of Collaboration

In short these can be termed as **Communication, Coordination and Cooperation**. These features were extended to permit and promote new and different types of interaction.

<table>
<thead>
<tr>
<th>Distribution of Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration Tools</td>
</tr>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>Chat</td>
</tr>
<tr>
<td>Voice</td>
</tr>
<tr>
<td>Email</td>
</tr>
<tr>
<td>Coordination</td>
</tr>
<tr>
<td>Online Calendar</td>
</tr>
<tr>
<td>Spreadsheets</td>
</tr>
<tr>
<td>Time-Tracking</td>
</tr>
<tr>
<td>Cooperation</td>
</tr>
<tr>
<td>Video Conferencing</td>
</tr>
<tr>
<td>Telephone conferencing</td>
</tr>
</tbody>
</table>

Figure 5.3: Levels of Collaboration [JvdHP22]

When choosing a tool, the researchers should make sure of the following 5 critical requirements. The following items were taken into account for that.

- Does the tool allow multiple collaborators?
- Does the tool support synchronous and asynchronous collaboration? i.e, whether the tool supports real-time collaboration.
- Does the tool allow or restrict functions to every collaborator participating using the tool?
- Is the tool encouraging and entertaining to the users?
- Is the tool social and helps to integrate different solutions?

Here, we briefly name and explain standard collaborative development tools and collaborative development environments (CDE). We will differentiate the tools according to the use of the tool and then the CDE’s and collaborative software applications.

<table>
<thead>
<tr>
<th>Use</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Via Chatting</td>
<td>Slack, WhatsApp, WeChat, Google Chat</td>
</tr>
<tr>
<td>Communication Via Video-conferencing</td>
<td>Microsoft Teams, Zoom, Google Meet</td>
</tr>
<tr>
<td>Diagram Management</td>
<td>Lucid Chart, Figma, draw.io, diagrams.net</td>
</tr>
<tr>
<td>Digital Drawing</td>
<td>Mural, Miro, Jamboard</td>
</tr>
<tr>
<td>Document Sharing</td>
<td>Google Docs and Sheets, MS Office 365, VS Live Share</td>
</tr>
<tr>
<td>Code Sharing and Knowledge Management</td>
<td>GitHub, Confluence</td>
</tr>
<tr>
<td>Task and Project Management</td>
<td>JIRA, GitHub, Asana, Smartsheet</td>
</tr>
</tbody>
</table>

Table 5.3: Collaboration tools referred from [JvdHP22]
Collaborative Software application is a very vast term. These applications help to monitor the development of code and knowledge and makes it accessible to all the users. The main purpose of these applications are for the unification of communication and for a better and productive cooperation between the collaborators. Since 2019, some of the widely used such IDE’s are [MZ20]:

- Office 365
- Trello
- JIRA
- Asana
- Basecamp
- Monday.com
- Bitrix 24

The standard features of these IDE’s are cloud storage capacity, chatting and video conferencing, sending and receiving notifications. Some exclusive collected data on the above-mentioned CDE is as follows:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Office 365</th>
<th>Trello</th>
<th>JIRA</th>
<th>Asana</th>
<th>Basecamp</th>
<th>Monday.com</th>
<th>Bitrix 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud version</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>On premises</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mobile application</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Desktop application</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Free version available</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>File sharing available</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Instant messaging available</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
</tr>
<tr>
<td>Video conferencing available</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
</tr>
<tr>
<td>Email integration available</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Figure 5.4: Collaboration Development Environments referred from [MZ20]

5.3.2 Limitations of the tools

- **Integration** - Most of the tool allows and provides collaboration features, but individual features created on different tools doesn’t allow to be integrated across them.
- **Security** - When the tools are made available to everyone, a compromise on the security will be affected. The data security,(which normally the data in the tool will be stored in cloud) which the collaborators think is not securer than their personal servers.
• **Availability** - The best collaboration tools might not be available free and once the size of the team increases, collaborative system should maintain unified. So every penny we spend should be worthy.

5.4 Quality Scoring of the primary studies

As a final stage of evaluation, we will now score our selected primary studies according to the scoring criteria (Section 4.3.2) we defined in the previous chapter. The score we calculated for the QC2 (for abstract, title and keyword) is obtained from the StARt tool we used. It is calculated based on the frequency of occurrences of keywords in title, abstract and keywords of the publication as defined in the review protocol. The citation count QC7 is obtained using a software tool called Publish and Perish \(^1\), in which it calculates using the reference count of the paper within a particular time period.

1 https://harzing.com/resources/publish-or-perish/
<table>
<thead>
<tr>
<th>Lit.ID</th>
<th>Title</th>
<th>Author</th>
<th>Abstract, title and keywords</th>
<th>Introduction</th>
<th>Results</th>
<th>Impact</th>
<th>Published</th>
<th>Cited-by</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>Affordances of computer supported collaborative learning platforms: A systematic review</td>
<td>0.5</td>
<td>0.32</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.18</td>
<td>3.5</td>
</tr>
<tr>
<td>3777</td>
<td>Perceived diversity in software engineering: A systematic literature review</td>
<td>1</td>
<td>0.11</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.17</td>
<td>4.78</td>
</tr>
<tr>
<td>451</td>
<td>Towards a Bio-inspired ACO Approach for Building Collaborative Learning Teams</td>
<td>0.5</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.02</td>
<td>3.57</td>
</tr>
<tr>
<td>365</td>
<td>A Study on the Behavior Pattern of Collaborative Knowledge Construction by Analyzing the Design Tasks in Collaborative Learning</td>
<td>0.5</td>
<td>0.15</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>3.15</td>
</tr>
<tr>
<td>340</td>
<td>Understanding Women’s Remote Collaborative Programming Experiences: The Relationship between Dialogue Features and Reported Perceptions</td>
<td>0.5</td>
<td>0.08</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>3.17</td>
</tr>
<tr>
<td>292</td>
<td>Gender and performance in computer science</td>
<td>1</td>
<td>0.56</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.26</td>
<td>5.32</td>
</tr>
<tr>
<td>372</td>
<td>Does Gender Matter for Collaborative Learning?</td>
<td>0.5</td>
<td>0.27</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.43</td>
</tr>
<tr>
<td>11685</td>
<td>How do table shape, group size, and gender affect on-task actions in computer education open-ended tasks</td>
<td>0.5</td>
<td>0.14</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.14</td>
</tr>
<tr>
<td>3826</td>
<td>What do we know about high performance software engineering teams in software engineering? Results from a systematic literature review</td>
<td>1</td>
<td>0.05</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.35</td>
<td>4.85</td>
</tr>
<tr>
<td>7351</td>
<td>Group Formation for Collaborative Learning: A Systematic Literature Review</td>
<td>0.5</td>
<td>0.24</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.23</td>
<td>4.47</td>
</tr>
<tr>
<td>11700</td>
<td>Dispersion, coordination and performance in a multiplied software engineering team: A Systematic Literature Review</td>
<td>0.5</td>
<td>0.12</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.36</td>
<td>4.48</td>
</tr>
<tr>
<td>3611</td>
<td>Gendered Risks of Team-Based Learning: A Model of Inequitable Task Allocation in Project-Based Learning</td>
<td>1</td>
<td>0.14</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0.26</td>
<td>3.4</td>
</tr>
<tr>
<td>195</td>
<td>Gender and performance in project results - a Chilean case study</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.07</td>
<td>2.27</td>
</tr>
<tr>
<td>1102</td>
<td>Gendered Risks of Team-Based Learning: A Model of Inequitable Task Allocation in Project-Based Learning</td>
<td>1</td>
<td>0.14</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0.26</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Table 5.4: Quality Scoring of the primary studies
6. Threats to Validity

The SLR we performed was a detailed and statistical analysis on specific area of research. But certain limitations and drawbacks we came across cannot be ignored. Since we performed the SLR on a small manually selected set of studies could definitely result in variations. We were obliged to select less number of studies for a less biased result, but the selected studies functions based on manual search strategy in digital databases. Therefore, a deviation and can be noticed.

Secondly, only minimal reviewers reviewed the overall process. Therefore, the intervention and participation of multiple reviewers can result in more conflicts and innovations on ideas and observations. So, the robustness of the whole process will be affected. We also used a semi-automated approach for the conduction of SLR, that can also be a reason for less accurate result.

A very important point regarding the refinement of the dissertation is that, technology and information develops every single day. For our research, we considered a timeline of 2009-2021. There could be studies that uses much more and strong checklists and RQ’s on the same area of research. So, it cannot be guaranteed that the proposed studies we considered and the RQ we answered does not ensure 100% coverage. In that case, some of the key factors could have been missed. The research string and the research questions we formulated need not always yields the best possible outcomes. So, if there is a need for altering the search strings and RQ is there in order to get better results, that also has to be considered, which is something that might have been missed in our review.
7. Conclusion and Future Work

Computer science is a collaborative discipline. The aim of our SLR was to summarize the evidence and analyze the effects of collaboration and performance in CS teams. SLR is the most significant and reliable method to aggregate available information for scientific research. We used this method for our thesis in order to arrive at a less biased and more importantly to get a statistical evidence on our area of research interest.

As a result of this SLR, we found 13 papers reporting the factors has an impact on various team processes and collaboration in CS and SE teams. Our main aim was to do this using a systematic procedure and organize the results in such a manner which would help to identify research gaps and helps to improve the understanding in the specific topic.

In this study, we were able to understand that most of the studies has assumed an exploratory approach, which means we should be able to understand problems in SE teams more in the upcoming future. Collaboration in SE and software development happens in every levels of development process, between customers, developers and stakeholders. Selection of the collaboration tool depends on the developers and the area of domain which can be determined for the success of projects. Proper communication and collaboration will be the basic criteria to yield a good result. Let it be face-to-face or virtual, a good team with team-spirit and positive attitude can achieve every goal irrespective of gender, culture, ethnicity or whatever diversity is present among them.

This research can be identified as reference for further findings on doing a statistical analysis on the size of project and teams. This can also be extended by analysing the relationship between different types of collaboration, impact on the selection of collaboration tools and the success and quality of different CS projects.
Appendix

Table A.1: Search results of the SLR

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm.</td>
</tr>
<tr>
<td>2022</td>
<td>An Investigation of Smart Contract for Collaborative Machine Learning Model Training.</td>
</tr>
<tr>
<td>2022</td>
<td>Decentralized Collaborative Learning with Probabilistic Data Protection.</td>
</tr>
<tr>
<td>2022</td>
<td>Split-U-Net: Preventing Data Leakage in Split Learning for Collaborative Multi-Modal Brain Tumor Segmentation.</td>
</tr>
<tr>
<td>2022</td>
<td>Visual Perturbation-aware Collaborative Learning for Overcoming the Language Prior Problem.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Machine Learning-Driven Internet of Medical Things - A Systematic Literature Review.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative search and autonomous task allocation in organizations of learning agents.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Learning of Distributions under Heterogeneity and Communication Constraints.</td>
</tr>
<tr>
<td>2022</td>
<td>Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.</td>
</tr>
<tr>
<td>2022</td>
<td>A Decentralized Collaborative Learning Framework Across Heterogeneous Devices for Personalized Predictive Analytics.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Distillation Meta Learning for Simulation Intensive Hardware Design.</td>
</tr>
<tr>
<td>2022</td>
<td>Graph Convolutional Reinforcement Learning for Collaborative Queuing Agents.</td>
</tr>
<tr>
<td>2022</td>
<td>Multi-Agent Collaborative Inference via DNN Decoupling: Intermediate Feature Compression and Edge Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Semi-Decentralized Federated Learning with Collaborative Relaying.</td>
</tr>
<tr>
<td>2022</td>
<td>Constructive Interpretability with CoLabel: Corroborative Integration, Complementary Features, and Collaborative Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>A Unified Collaborative Representation Learning for Neural-Network based Recommender Systems.</td>
</tr>
<tr>
<td>2022</td>
<td>An Information-theoretic Method for Collaborative Distributed Learning with Limited Communication.</td>
</tr>
<tr>
<td>2022</td>
<td>Efficient Distributed Framework for Collaborative Multi-Agent Reinforcement Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Can collaborative learning be private, robust and scalable?</td>
</tr>
<tr>
<td>2022</td>
<td>Combined Learning of Neural Network Weights for Privacy in Collaborative Tasks.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Learning for Hand and Object Reconstruction with Attention-guided Graph Convolution.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Auto-Curricula Multi-Agent Reinforcement Learning with Graph Neural Network Communication Layer for Open-ended Wildfire-Management Resource Distribution.</td>
</tr>
<tr>
<td>2022</td>
<td>Global-and-Local Collaborative Learning for Co-Salient Object Detection.</td>
</tr>
<tr>
<td>2022</td>
<td>Decentralized Collaborative Learning Framework for Next POI Recommendation.</td>
</tr>
<tr>
<td>2022</td>
<td>MGDCF: Distance Learning via Markov Graph Diffusion for Neural Collaborative Filtering.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Learning and Patterns of Practice.</td>
</tr>
<tr>
<td>2022</td>
<td>Nested Collaborative Learning for Long-Tailed Visual Recognition.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Intelligent Reflecting Surface Networks with Multi-Agent Reinforcement Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Asynchronous Collaborative Learning Across Data Silos.</td>
</tr>
<tr>
<td>2022</td>
<td>SPRITE: A Scalable Privacy-Preserving and Verifiable Collaborative Learning for Industrial IoT.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Learning for Cyberattack Detection in Blockchain Networks.</td>
</tr>
<tr>
<td>2022</td>
<td>Doubly Robust Collaborative Targeted Learning for Recommendation on Data Missing Not at Random.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Driving: Learning-Aided Joint Topology Formulation and Beamforming.</td>
</tr>
<tr>
<td>2022</td>
<td>Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased Scene Graph Generation.</td>
</tr>
<tr>
<td>2022</td>
<td>An Adaptive Hybrid Active Learning Strategy with Free Ratings in Collaborative Filtering.</td>
</tr>
<tr>
<td>2022</td>
<td>Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering.</td>
</tr>
<tr>
<td>2022</td>
<td>Asynchronous Federated Learning Empowered Computation Offloading in Collaborative Vehicular Networks.</td>
</tr>
<tr>
<td>2022</td>
<td>Task Scheduling with Collaborative Computing of MEC System Based on Federated Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative Learning with Augmented Reality Tornado Simulator.</td>
</tr>
<tr>
<td>2022</td>
<td>Composite Fault Diagnosis of Rotating Machinery With Collaborative Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.</td>
</tr>
<tr>
<td>2022</td>
<td>Supporting Teacher Professional Learning and Curriculum Implementation Through Collaborative Curriculum Design.</td>
</tr>
<tr>
<td>2022</td>
<td>Comparing Student Experiences of Collaborative Learning in Synchronous CS1 Classes in Gather.Town vs. Zoom.</td>
</tr>
<tr>
<td>2022</td>
<td>Students’ Engagement in Collaborative Active Learning - Online v.s. Face-to-Face.</td>
</tr>
<tr>
<td>2022</td>
<td>Designing Effective Playful Collaborative Science Learning in VR.</td>
</tr>
<tr>
<td>2022</td>
<td>A reinforcement learning-based path planning for collaborative UAVs.</td>
</tr>
<tr>
<td>2022</td>
<td>Collaborative DDoS Detection in Distributed Multi-Tenant IoT using Federated Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Optical Status Representation by Collaborative and Unsupervised Learning.</td>
</tr>
<tr>
<td>2022</td>
<td>Federated Learning Empowered Edge Collaborative Content Caching Mechanism for Internet of Vehicles.</td>
</tr>
</tbody>
</table>

A Dual-Role Collaborative Learning Support System for Simultaneous Speaking Acquisition in English and Japanese.

Pointer-Based Item-to-Item Collaborative Filtering Recommendation System Using a Machine Learning Model.

A collaborative deep multitask learning network for face image compliance to ISO/IEC 19794-5 standard.

Smart Learning Objects Retrieval for E-Learning with Contextual Recommendation based on Collaborative Filtering.

A real-time collaborative machine learning based weather forecasting system with multiple predictor locations.

Collaborative Learning to Improve the Non-uniqueness of NMF.

Integrating collaboration scripts, group awareness, and self-regulation in computer-supported collaborative learning.

Group awareness and regulation in computer-supported collaborative learning.

Meta-Governance Framework to Guide the Establishment of Mass Collaborative Learning Communities.

Active Learning Activities in a Collaborative Teacher Setting in Colour, Design and Visualisation.

Collaborative learning of graph generation, clustering and classification for brain networks diagnosis.

The relationship between collaborative problem solving behaviors and solution outcomes in a game-based learning environment.

The effects of web-based inquiry learning mode with the support of collaborative digital reading annotation system on information literacy instruction.

Collaborative filtering with implicit feedback via learning pairwise preferences over user-groups and item-sets.

Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs.

Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education.

A real-time collaborative machine learning based weather forecasting system with multiple predictor locations.

Improving hypergraph convolution network collaborative filtering with feature crossing and contrastive learning.

Collaborative deep learning microservice for cybersecurity in Industrial IoT networks.

Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning.

Alternative Collaborative Learning for Character Recognition in Low-Resolution Images.

Fine Grain Synthetic Educational Data: Challenges and Limitations of Collaborative Learning Analytics.

Collaborative Learning in Computer Vision.

Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of Semi-Supervised Learning and Active Learning.

Edge-Based Collaborative Learning with Heterogeneous Local Learning Models.

Towards Deep Learning in the University through Collaborative Instructional Design based on Learning Outcomes and Threshold Concepts.

Effects of a collaborative AI-enhanced learning environment on learning gains and technology implementation beliefs.

Evidence from a graduate teacher training course.

An effective method for incentivizing groups implemented in a collaborative problem-based learning system to enhance positive peer interaction and learning performance.

Improving collaborative learning outcomes by detecting and understanding sentiments and cognitive processes in online collaborative learning: A network analytic approach.

Smart Learning Objects Retrieval for E-Learning with Contextual Recommendation based on Collaborative Filtering.

Student learning performance in online collaborative learning.

Learning through technology in middle school classrooms: Students’ perceptions of their self-directed and collaborative learning with and without technology.

Corrigendum to “Factors influencing students’ perceived impact of learning and satisfaction in Computer Supported Collaborative Learning” [Computers & Education 174 (2021) 104310].

Identifying regulation profiles during computer-supported collaborative learning and examining their relation with students’ performance, motivation, and self-efficacy for learning.

A learning analytics approach towards understanding collaborative inquiry in a problem-based learning environment.

Women More Likely to Have a Sense of Belonging in Coding Bootcamps than University Computer Science Programs.

Retaining Women in Computer Science: the Good, the Bad and the Ugly Sides.

Collaboration Tool Choice and Use in Remote Software Teams: Emerging Results from an Ongoing Study.

A Neural Approach to Forming Coherent Teams in Collaboration Networks.

How to Make Smart Collaboration Work in Multidisciplinary Teams.

Female computer science students: A qualitative exploration of women’s experiences studying computer science at university in the UK.

Multi-Modal COVID-19 Discovery With Collaborative Federated Learning.

Deep Reinforcement Learning for Collaborative Offloading in Heterogeneous Edge Networks.

Reinforcement Group Formation in Collaborative Quadrupedal Manipulation of a Payload over Challenging Terrain.

Facial Recognition in Collaborative Learning Videos.

Fast Hand Detection in Collaborative Learning Environments.

A Word Embeddings Based Clustering Approach for Collaborative Learning Group Formation.

Discovering Co-creative Dialogue States During Collaborative Learning.

Learning Design Thinking Through a Collaborative Focus on Social Justice.

Value-Aware Collaborative Data Pricing for Federated Learning in Vehicular Networks.

Online Distributed Learning Strategies for Collaborative Extended Reality Applications.

Person Detection in Collaborative Group Learning Environments Using Multi-View Consistent Strategy Adaptation.

CIECMPL: New Cipher-Based Evaluating Collaborative Multi-layer Perceptron Scheme in Federated Learning.

Designing Smart Learning through the use of Smart Learning in the cultural heritage context.

Online Knowledge Distillation via Collaborative Learning with Enhanced Diversity and Gradual Ensemble.

A Survey of Collaborative Reinforcement Learning: Interactive Methods and Design Patterns.

A Model Study on Collaborative Learning and Exploration of RBAC Roles.

Multi-Agent Reinforcement Learning Based Distributed Transmission in Collaborative Cloud-Edge Systems.

Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing.

Multi-AUV Collaborative Data Collection Algorithm Based on Q-Learning in Underwater Acoustic Sensor Networks.

Emotion Attention-Aware Collaborative Deep Reinforcement Learning for Image Cropping.

Collaborative Image Relevance Learning for Visual Re-Ranking.

Collaborative Game-Based Environment and Assessment Tool for Learning Computational Thinking in Primary School.

A Case Study.

MOCA: A Motivational Online Conversational Agent for Improving Student Engagement in Collaborative Learning.

Collaborative Learning for Extremely Low Bit Asymmetric Hashing.

Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach.

An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization.

Combining Progressive Rethinking and Collaborative Learning: A Deep Framework for In-Loop Filtering.

On Lightweight Privacy-preserving Collaborative Learning for Internet of Things by Independent Random Projections.

Privacy-Preserving Collaborative Learning in Industrial IoT via Deep Reinforcement Learning.

Regression of Human Voluntary Torques Based on Collaborative Neuromusculoskeletal Modeling and Adaptive Learning.

A privacy-preserving framework for location recommendation using decentralized collaborative machine learning.

Shielding Collaborative Learning: Mitigating Poisoning Attacks Through Client-Side Detection.

A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Learning.

Multiagent Adversarial Collaborative Learning via Mean-Field Theory.

Distributed Value Function Approximation for Collaborative Multiagent Reinforcement Learning.

Trustworthy and Context-Aware Distributed Online Learning With Autoencoding for Content Caching in Collaborative Mobile Edge Computing.

IEEE TCCN Special Section Editorial: Convergence of Collaborative Distributed Machine Learning and Edge Computing.

Toward Intelligent Networking.

A Novel Drug Repositioning Approach Based on Collaborative Metric Learning.

Bi-clustering Collaborative Learning for Cross-Domain Person Re-Identification.

Collaborative coding and dictionary learning for nearest subspace classification.

A deep learning approach for collaborative prediction of Web service QoS.

Deep feature extraction via adaptive collaborative learning for druzen segmentation from fundus images.

Privacy Preserving Collaborative Machine Learning.

Zero-Trust Based Distributed Collaborative Dynamic Access Control Scheme with Deep Multi-Agent Reinforcement Learning.

Efficient Graph Collaborative Filtering via Contrastive Learning.

Collaborative Learning Based Straggler Prevention in Large-Scale Distributed Computing Framework.

Mapping Outbreak Floods Using a Collaborative Learning Method Based on Temporally Dense Optical and SAR Data: A Case Study with the Baige Landslide Dam on the Jinsha River, Tibet.

Variational Low-Rank Matrix Factorization with Multi-Patch Collaborative Learning for Hyperspectral Imagery Mixed Demosaicing.

Optimized Learning from Demonstrations for Collaborative Robots.

Human-Centered Collaborative Robots With Deep Reinforcement Learning.

Collaborative learning in computer vision: box regression bounding box regression for object detection.

SoK: Privacy-Preserving Collaborative Tree-based Model Learning.

Task-Feature Collaborative Learning with Application to Personalized Attribute Prediction.

A Two-Step Classification Method Based on Collaborative Representation for Positive and Unlabeled Learning.

A Trusted Consensus Scheme for Collaborative Learning in the Edge AI Computing Domain.
Federated Learning-Empowered Collaborative Data Sharing for Vehicular Edge Networks.

Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G.

Collaborative learning without sharing data.

Adversarial interference and its mitigations in privacy-preserving collaborative machine learning.

Personalized Learning Resource Recommendation Method Based on Dynamic Collaborative Filtering.

Double bayesian pairwise learning for one-class collaborative filtering.

BackRL: Reinforcement learning with hierarchical attention for cross-graph knowledge fusion and collaborative reasoning.

Cataract detection based on ocular B-ultrasound images by collaborative monitoring deep learning.

ADCF: Attentive representation learning and deep collaborative filtering model.

Emotional Aspects for Productive Dialogues in Computer-Supported Collaborative Learning: A Systematic Literature Review.

Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching.

Improvement of recommendation algorithm based on Collaborative Deep Learning and its Parallelization on Spark.

Unsupervised collaborative learning based on Optimal Transport theory.

Method towards reconstructing collaborative business processes with cloud services using evolutionary deep Q-learning.

Research on multi-agent collaborative hunting algorithm based on game theory and Q-learning for a single escape.

Deep Learning-Based Ligand Design Using Shared Latent Implicit Fingerprints from Collaborative Filtering.

Sure, ours, and yours: Why engagement and prior knowledge affects individual collaborative learning?

Characteristics of pedagogical change in integrating digital collaborative learning and their sustainability in a school culture: e-CSAMR framework.

Revealing the hidden structure of physiological states during metacognitive monitoring in collaborative learning.

English outside the academic sphere: A mobile-based context-aware comparison study on collaborative and individual learning.

On collaborative reinforcement learning to optimize the redistribution of critical medical supplies throughout the COVID-19 pandemic.

Intelligent Edutab Box: Supporting Real-Time Face-to-Face Collaborative Learning.

PPCL: Privacy-preserving collaborative learning for mitigating indirect information leakage.

A selective ensemble collaborative learning based two-sided cross-domain collaborative filtering algorithm.

Achieving Democracy in Edge Intelligence: A Fog-Based Collaborative Learning Scheme.

CLONE: Collaborative Learning on the Edges.

Federated Sensing: Edge-Cloud Elastic Collaborative Learning for Intelligent Sensing.

Privacy-Preserving Collaborative Learning for Multiarmed Bandits in IoT.

Secure Collaborative Deep Learning Against GAN Attacks in the Internet of Things.

Collaborative and Early Detection of Email Spam using Multitask Learning.

Semantic and detail collaborative learning network for salient object detection.

Adversarial learning with collaborative attention for facial makeup removal.

CCPrune: Collaborative channel pruning for learning compact convolutional networks.

A Smart Collaborative Educational Game with Learning Analytics to Support English Vocabulary Teaching.

A Systematic Review of Serious Games for Collaborative Learning: Theoretical Framework, Game Mechanic and Efficiency Assessment.

A Blended Collaborative Teaching Mode in Language Learning Based on Recommendation Algorithm.

Antecedents Influencing the Adoption of Collaborative Learning-Social-Media Platforms Among Thai University Students During the Covid-19 ‘New Normal’ Era.

Feature fusion-based collaborative learning for knowledge distillation.

A probabilistic collaborative dictionary learning-based approach for face recognition.

An Experience of the Application of Glossaries and Wikis for Collaborative Learning of the Materials Science Subject.

Distributed Learning-Based Cache Replacement in Collaborative Edge Networks.

Embedded experts in online collaborative learning: A case study.

Students, social network technology and learning in higher education: Visions of collaborative knowledge construction vs. the reality of knowledge sharing.

The Immersive Workbench for Engineering Educators: (Re)Thinking Collaborative and Distance Learning Platforms as Technological Enablers.

Students’ Perception About the Use of Mobile Learning in Solving Engineering Problems Collaboratively.

Incentive mechanism for collaborative distributed learning in Artificial Intelligence of Things.

Differentially Private Collaborative Coupling Learning for Recommender Systems.

An intelligent collaborative inference approach of service partitioning and task offloading for deep learning based service in mobile edge computing networks.

Collaborative community-specific microblog sentiment analysis via multi-task learning.

Representation learning with collaborative autoencoder for personalized recommendation.

Learning attention embeddings based on memory networks for neural collaborative recommendation.

Detecting conflicts in collaborative learning through the valence change of atomic interactions.

Using a video annotation tool to enhance student-teachers’ reflective practices and communication competence in consultation practices through a collaborative learning community.

Does the student’s perspective on multimodal literacy influence their behavioural intention to use collaborative computer-based learning?

Collaborative writing at work: Peer feedback in a blended learning environment.

Capturing regulatory patterns in online collaborative learning: A network analytic approach.

Affording embodied cognition through touchscreen and above-the-surface gestures during collaborative tabletop science learning.

Guidance in computer-supported collaborative inquiry learning: Capturing aspects of affect and teacher support in science classrooms.

Many are the ways to learn identifying multi-modal behavioral profiles of collaborative learning in constructivist activities.
Educational dialogues and computer supported collaborative learning: critical analysis and research perspectives.

Collaborative Filtering Recommendation Algorithm for MOOC Resources Based on Deep Learning.

Optimizing the MOOC Learning Platform Based on a Collaborative Filtering Algorithm.

A trusted and flexible framework for deep learning in IoT.

A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs.

Multi-agent reinforcement learning for cost-aware edge computing in 5G networks.

A Collaborative Learning-Based Algorithm for Task Offloading in UAV-Aided Wireless Sensor Networks.

Fake news detection based on image text collaborative recognition model based on deep learning.

Toward a framework that connects individual TPACK and collective TPACK. A systematic review of TPACK studies investigating teacher collaborative discourse in the learning by design process.

Collaborative learning in mathematics classrooms: Can teachers understand the progress of concurrent collaborating groups?

Using a design-based research approach to develop and study a web-based tool to support collaborative learning.

The informed use of pre-work activities in collaborative asynchronous online discussions: The exploration of idea exchange, content focus, and deep learning.

Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation.

Improved predictive performance of prostate biopsy collaborative group risk calculator when based on automated machine learning.

The effects of a group awareness tool on knowledge construction in computer-supported collaborative learning.

Effects of the group-regulation promotion approach on students' individual and collaborative learning performance, perceptions of regulation and regulation behaviours in project-based tasks.

FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery.

Attention-based dynamic user preference modeling and nonlinear feature interaction learning for collaborative filtering recommendation.

Classification of traffic over collaborative IoT and Cloud platforms using deep learning recurrent LSTM.

Collaborative Reinforcement Learning Based Route Planning for Cloud Content Delivery Networks.

Collaborative Deep Forest Learning for Recommender Systems.

A trusted and collaborative framework for deep learning in IoT.

Help-Seeking and Help-Giving in ISD Teams: A Paradox of Collaboration.

Effect ofMobile Devices and Software in Collaborative Learning Smart Classroom on Students' Learning Motivation.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.

Combining Collaborative Reflection based on Work-Out Examples with Problem-Solving Practice: Designing Collaborative Programming Projects for Learning at Scale.

Learning Domain Knowledge Using Block-Based Programming: Design-Based Collaborative Learning.

Reducing the UX Skill Gap Through Asymmetric Mixed Reality Collaborative Learning.

Peer-Assessment Enhanced Collaborative Learning in a Virtual Learning Environment.

Personal Learning Environments as Digital Spaces that are Collaborative, Adaptive, and Autonomous: College Students' Perceptions of Personal Learning Environments.

An Integrated Observing Technic for Collaborative Learning: The Multimodal Learning Analytics Based on the Video Coding and EEG Data Mining.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>Using Arduino in Service Learning to Engage Pre-service STEM Teachers into Collaborative Learning.</td>
</tr>
<tr>
<td>2020</td>
<td>Investigating Different Educational Blog Characteristics to Influence Collaborative Learning based on Connectivism Learning Theory.</td>
</tr>
<tr>
<td>2020</td>
<td>Collaborative Game Design for Learning: The Challenges of Adaptive Game-Based Learning for the Flipped Classroom.</td>
</tr>
<tr>
<td>2020</td>
<td>Exploring the role of social media in collaborative learning the new domain of learning.</td>
</tr>
<tr>
<td>2020</td>
<td>OL4EL: Online Learning for Edge-Cloud Collaborative Learning on Heterogeneous Edges with Resource Constraints.</td>
</tr>
<tr>
<td>2020</td>
<td>What does a Literature Survey Reveal about the Initiatives to Attract and Retain Women into Computer Science Majors in Latin America?</td>
</tr>
<tr>
<td>2020</td>
<td>Welcome to the Course: Early Social Cues Influence Women’s Persistence in Computer Science.</td>
</tr>
<tr>
<td>2020</td>
<td>Predicting Women’s Persistence in Computer Science- and Technology-Related Majors from High School to College.</td>
</tr>
<tr>
<td>2020</td>
<td>Engaging Women in Computer Science - Past, Present and Future.</td>
</tr>
<tr>
<td>2020</td>
<td>Smart Collaboration in Global Virtual Teams: The Influence of Culture on Technology Acceptance and Communication Effectiveness.</td>
</tr>
<tr>
<td>2020</td>
<td>Collaboration and Content-Based Measures to Predict Task Cohesion in Global Software Development Teams.</td>
</tr>
<tr>
<td>2020</td>
<td>Beyond Team Makeup: Diversity in Teams Predicts Value Outcomes in Computer-Mediated Collaborations.</td>
</tr>
<tr>
<td>2019</td>
<td>ISCLD - Brainstorming and Collaborative Learning Optimization Algorithms.</td>
</tr>
<tr>
<td>2019</td>
<td>Design a Collaborative Visualization-Based Learning System for Problem-Solving to Transform the Classroom Ecosystem.</td>
</tr>
<tr>
<td>2019</td>
<td>Active Learning and CS Attainment through Collaborative Learning in Engineering Chemistry.</td>
</tr>
<tr>
<td>2019</td>
<td>Large-Scale Agile Development Program in a German Consumer Electronics Company.</td>
</tr>
<tr>
<td>2019</td>
<td>Focus on Personalized Collaborative Learning: What Can We Learn from the Indigenous Sámi Teachers’ Supplementary Study Program on Digital Learning Tools?</td>
</tr>
<tr>
<td>2019</td>
<td>A Learning Analytics Study of the Effect of Group Size on Social Dynamics and Performance in Online Collaborative Learning.</td>
</tr>
<tr>
<td>2019</td>
<td>High-Quality Learning Resource Dissemination Based on Opportunistic Networks in Campus Collaborative Learning Context.</td>
</tr>
<tr>
<td>2019</td>
<td>Hybrid learning environment: Collaborative or competitive learning?</td>
</tr>
<tr>
<td>2019</td>
<td>Learning Styles in a Collaborative Algorithmic Problem-Based Learning.</td>
</tr>
<tr>
<td>2019</td>
<td>Improving Students’ Scientific Writing Ability through Blended learning-Based Collaborative Learning.</td>
</tr>
<tr>
<td>2019</td>
<td>Learning computer-based learning machine with a confidence interval for F2P learning in healthcare.</td>
</tr>
<tr>
<td>2019</td>
<td>Learning analytics in collaborative learning supported by Slack: From the perspective of engagement.</td>
</tr>
<tr>
<td>2019</td>
<td>Computer-supported collaborative learning: An analysis of the relationship between interaction, emotional support and online collaborative tools.</td>
</tr>
<tr>
<td>2019</td>
<td>Validation of TAM Model on Social Media Use for Collaborative Learning to Enhance Collaborative Authoring.</td>
</tr>
<tr>
<td>2019</td>
<td>Video Games and Collaborative Learning in Education: A Systematic Review.</td>
</tr>
<tr>
<td>2019</td>
<td>Using Social Network Analysis to Investigate the Collaboration Between Architects and Agile Teams: A Case Study of a Large-Scale Agile Development Program in a German Consumer Electronics Company.</td>
</tr>
<tr>
<td>2019</td>
<td>Accepting the reality as a tool for open science platform by research collaboration in virtual teams.</td>
</tr>
<tr>
<td>2019</td>
<td>Social support for collaboration and group awareness in life science research teams.</td>
</tr>
<tr>
<td>2019</td>
<td>The mechanism of trust affecting collaboration in virtual teams and the moderating role of the culture of autonomy and task complexity.</td>
</tr>
<tr>
<td>2019</td>
<td>Interprofessional collaboration between general physicians and emergency department teams and continuity of care for patients in the French speaking regions of Belgium.</td>
</tr>
<tr>
<td>2019</td>
<td>How Can Computer Science Faculties Increase the Proportion of Women in Computer Science by Using Robots?</td>
</tr>
<tr>
<td>2019</td>
<td>The benefits of collaboration in computer-mediated preference exchange in teams: A psychological perspective.</td>
</tr>
<tr>
<td>2019</td>
<td>Gender Disparity in Computer Science Education in Latin America: A Study of Women’s Participation in Computer Science.</td>
</tr>
<tr>
<td>2019</td>
<td>Group Cognition and Collaborative AI.</td>
</tr>
<tr>
<td>2018</td>
<td>Latent Relational Metric Learning for Memory-Based Attention for Collaborative Ranking.</td>
</tr>
<tr>
<td>2018</td>
<td>Robust Transfer Learning for Cross-domain Collaborative Filtering Using Multiple Rating Patterns Approximation.</td>
</tr>
<tr>
<td>2018</td>
<td>A New Machine Learning-based Collaborative DDS Mitigation Mechanism in Software-Defined Network.</td>
</tr>
<tr>
<td>2018</td>
<td>Evaluating the Effectiveness of Head-Mounted Display Virtual Reality (HMD VR) Environment on Students’ Learning for a Virtual Collaborative Engineering Assembly Task.</td>
</tr>
<tr>
<td>2018</td>
<td>Regulating Collaborative Learning in SQL-Tutor.</td>
</tr>
<tr>
<td>2018</td>
<td>Like it or die: using social networks to improve collaborative learning in higher education.</td>
</tr>
<tr>
<td>2018</td>
<td>Integrated Telegram and Web-based Forum with Automatic Assessment of Questions and Answers for Collaborative Learning.</td>
</tr>
<tr>
<td>2018</td>
<td>Robust Head Detection in Collaborative Learning Environments Using AM-FM Representations.</td>
</tr>
<tr>
<td>2018</td>
<td>User-Sensitive Human Activity Classification in Collaborative Learning Environments.</td>
</tr>
<tr>
<td>2018</td>
<td>Interactive Distance Media Learning Collaborative Based on Virtual Reality with Solar System Subject.</td>
</tr>
<tr>
<td>2018</td>
<td>Automated Knowledge Base Completion Using Collaborative Filtering and Deep Reinforcement Learning.</td>
</tr>
<tr>
<td>2018</td>
<td>Clustering collaborative filtering approach for Diftari E-Learning platform’ recommendation system.</td>
</tr>
<tr>
<td>2018</td>
<td>Leveraging Visual Programming Language and Collaborative Learning to Broaden Participation in Computer Science.</td>
</tr>
<tr>
<td>2018</td>
<td>A Collaborative Learning Environment: A Participative I’s Participation in Computer Science.</td>
</tr>
<tr>
<td>2018</td>
<td>Quantified Self: An Interdisciplinary Immersive Theater Project Supporting a Collaborative Learning Environment for CS Ethics.</td>
</tr>
<tr>
<td>2018</td>
<td>Analysis of Collaborative Learning in a Computational Thinking Class.</td>
</tr>
<tr>
<td>2018</td>
<td>Collaborative learning through integration of environments real and virtual-immersive.</td>
</tr>
<tr>
<td>2018</td>
<td>Active learning in multi-domain collaborative filtering recommender systems.</td>
</tr>
<tr>
<td>2018</td>
<td>Towards Multi-touch Learning Applications in Coll-Motivational Education.</td>
</tr>
<tr>
<td>2018</td>
<td>NECTAR: Knowledge-based Collaborative Active Learning for Activity Recognition.</td>
</tr>
<tr>
<td>2018</td>
<td>Generating scene semantics by robots and human.</td>
</tr>
<tr>
<td>2018</td>
<td>Learning Collaborative Generation Correction Modules for Blind Image Deblurring and Beyond.</td>
</tr>
<tr>
<td>2018</td>
<td>Blending Classroom, Collaborative, and Individual Learning Using Backstage 2.</td>
</tr>
</tbody>
</table>
Facilitating collaborative learning in innovation practice oriented courses utilizing mobile internet platforms.

Selecting NLP Techniques to Evaluate Learning Design Objectives in Collaborative Multi-perspective Elaboration Activities.

SRC-Disp: Synthetic-Realistic Collaborative Disparity Learning for Stereo Matching.

Face Completion with Schematic Knowledge and Collaborative Adversarial Learning.

Collaborative ensemble learning under differential privacy.

Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning.

Cross-Domain Collaborative Learning via Discriminative Nonparametric Bayesian Model.

Privacy-Preserving Collaborative Model Learning: The Case of Word Vector Training.

A study of crowd-collaborative learning: an empirical study.

An improved genetic approach for composing optimal collaborative learning groups.

CPLR: Collaborative pairwise learning to rank for personalized recommendation.

Effects of a Novel Sympathy-Expression Method on Collaborative Learning Among Junior High School Students and Robots.

Relational Equity and Mathematics Learning: Mutual Construction During Collaborative Problem Solving.

A novel metadisk algorithm for collaborative learning group formation.

Children’s Acceptance of a Collaborative Problem Solving Game Based on Physical Versus Digital Learning Spaces.

Collaborative Interactive Learning.

Understanding collaborative language learning in novice-level foreign language classrooms: perceptions of teachers and students.

Knowledge organization through multiple representations in a computer-supported collaborative learning environment.

The impact of an online collaborative learning program on students’ attitude towards technology.

Group trust, communication media, and interactivity: toward an integrated model of collaborative learning.

Process Mining and Interaction Data Analytics in a Web-Based Multi-Tabletop Collaborative Learning and Teaching Environment.

Learning from appropriation practices: Towards the next generation of e-participation environments enabling collaborative writing in-situ and ex-situ.

Collaborative learning for hyperspectral image classification.

Learning a collaborative multiscale dictionary based on a robust empirical mode decomposition.

Lessons learned from the successful countries and distinguished authors by reviewing 2007-2016 journal publications on education-technology-supported collaborative learning.

Application of Computer aided Collaborative Learning Model in English Virtual Electronic Teaching.

Collaborative Learning at Engineering Universities: Benefits and Challenges.

MultiCAI: Agents for Intelligent Multi-Science Collaborative Learning (SMC) for STEAM Learning.

Evaluation of Automatic Collaborative Learning Process Coding Using Deep Learning Methods Based on Multi-Dimensional Coding Scheme.

Relationships between Collaborative Problem Solving, Learning Performance and Learning Behavior in Science Education.

Towards a Smart Learning Management System (smart-LMS) to Improve Collaborative Learning in Higher Education.

A Collaborative learning algorithmic problem-based learning environment using learners’ learning styles.

Effects of a Two-Stage Concept Mapping-Based Collaborative Gaming Approach on the English Learning Achievement and Behavioral Patterns of Students with Different Learning Anxiety Levels.

An Effective Group Incentive Mechanism in a Collaborative Problem-Based Learning System for Enhancing Positive Peer Interaction and Learning Performance.

Evaluating Learning Style-Based Grouping Strategies in Real-World Collaborative Learning Environment.

The Use of On-line Collaborative Learning to Facilitate Learning, Development and Professional Identify Transformation of Careers and Employment Practitioners.

CBR-Mining Approach to Improve Learning System Engineering in a Collaborative E-Learning Platform.

A Theory Based Dialogic Learning Architecture for Sustained Innovative Collaborative Learning Across Diversity and Professional Borders.

Facilitating effective digital game-based learning behaviors and learning performances of students based on a collaborative knowledge construction strategy.

The Impact of Collaborative Learning on Web Quest Strategy Used in Learning Educational Psychology.

An evaluation of the learning effectiveness of a formulated ideal social collaborative mobile learning environment application towards cognitive level in biology.

E-collaborative learning experience, interdependencies of presences and learning outcomes: evidence of mediating and moderating effects.

A systematic review of cloud computing tools for collaborative learning: Opportunities and challenges to the blended learning environment.

Monitoring Collaborative Learning Activities: Exploring the Differential Value of Collaborative Flow Patterns for Learning Analytics.

Modeling Supervisor Safe Sets for Improving Collaboration in Human-Robot Teams.

Flexible Scheduling for Human Robot Collaboration in Intralogistics Teams.

Toward Increasing Collaboration Awareness in Software Engineering Teams.

Domino: A Descriptive Framework for Hybrid Collaboration and Coupling Styles in Partially Distributed Teams.

Impact of a Pre-College Summer Workshop on Women in Undergraduate Computer Science Studies: (Abstract Only).

Encouraging Women to Pursue a Computer Science Career in the Context of a Third World Country.

On Temporal Aspects in Cross-Cultural e-Collaboration Between Finland and a Rural Research Team.

Women in computer science: A liberal arts perspective.

A Social Network to Increase Collaboration and Coordination in Distributed Teams.

Sexism in remote collaboration in student teams.

Infering the Student Social Loading State in Collaborative Learning with a Hidden Markov Model: A Case on Slack.

Collaborative Metric Learning.
2016 - Conceptual framework of educational resources adaptation for improve collaborative learning in virtual learning environment.
2017 - The effect of personality and learning styles on individual and collaborative learning: Obtaining criteria for adaptation.
2017 - A model of using social media for collaborative learning to enhance learners' performance on learning.
2017 - Incorporating Wiki Technology in a Traditional Biostatistics Course: Effects on University Students’ Collaborative Learning, Approaches to Learning and Course Performance.
2017 - Exploring collaborative learning effect in blended learning environments.
2017 - Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course.
2017 - Investigating the effects of peer to peer prompts on collaborative argumentation, consensus and perceived efficacy in collaborative learning.
2017 - A collaborative digital pen learning approach to improving students’ learning achievement and motivation in mathematics courses.
2017 - Evaluating peer learning and assessment in online collaborative learning environments.
2017 - Technological presence and its association with learning in computer-supported collaborative learning: a case study in English learning and its evaluation.
2017 - A New Form of Collaboration in IT Teams - Exploring the DevOps Phenomenon.
2017 - Survey of communication and awareness as the most relevant socio-technical aspects of requirements-driven collaboration among software development teams.
2017 - Forming Grouped Teams with Efficient Collaboration in Social Networks.
2017 - Towards a 3D Virtual Programming Language to increase the number of women in computer science education.
2017 - Women planning to major in computer science: Who are they and what makes them unique?
2017 - Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.
2017 - Patterns of Collaboration Driven by Requirements in Agile Software Development Teams - Findings from a Multiple Case Study.
2017 - Understanding Collaboration in Global Software Engineering (GSE) Teams with the Use of Sensors: Introducing a Multi-sensor Setting for Observing Social and Human Aspects in Project Management.
2017 - Requirements for a Seamless Collaborative and Cooperaive eLearning System.
2017 - Collaborative Social Learning: Rewards and Challenges in Mainstream Higher Education.
2017 - Collaborative Learning Supported by Mobile Devices: A Case Study in Portuguese High Education Institutions.
2017 - Open Course Ware (OCW) as Support to the Social and Collaborative Learning Experience.
2017 - Collaborative Recommendation of Informal Learning Experiences.
2017 - An approach to Spanish primary school teachers’ attitudes towards collaborative learning with video games and the influence of teacher training.
2017 - HIBITAT EXPLORER: Designing Educational Games for Collaborative Learning on Interactive Surfaces.
2017 - Collaborative Game Based Learning of Post-Disaster Management: Serious Game on Incident Management Frameworks for Post Disaster Management.
2017 - Class specific dictionary learning based kernel collaborative representation for fine-grained image classification.
2017 - Using cloud computing and a multi-agents system to improve collaborative e-learning in LMS.
2017 - Collaborative Learning Eliminates the Negative Impact of Gender Stereotypes on Women’s Self-Concept (Abtract Only).
2017 - Educational platform for collaborative learning.
2017 - Touch recognition and learning from demonstration (LfD) for collaborative human-robot firefighting teams.
2017 - Collaborate-it: A tool for promoting knowledge building in face-to-face collaborative learning.
2017 - CoDeDeS: multi-device support for collocated collaborative learning design.
2017 - Collaborative Q-Learning Based Rotuing Control in Unstructured P2P Networks.
2017 - Individual versus collaborative learning in a virtual world.
2017 - Collaborative and participatory learning: the coLAB model.
2017 - Fostering 21st century literacies through a collaborative critical reading and learning analytics environment: user-perceived benefits and problematics.
2017 - A pedagogical framework for learning analytics in collaborative inquiry tasks: an example from a teamwork competency awareness program.
2017 - Investigating collaborative learning success with physiological coupling indices based on electrodermal activity.
2017 - A collaborative active learning for enhancing creativity for multiple disciplinary problems.
2017 - Collaborative Social Learning of Domain Knowledge Development of Domain Information Space for Learning and Scientific Research.
2017 - Insertion of Surprise Elements in the Collaborative Learning Process through Graphic Representations for Synthesis (GRS): A Qualitative Study.
2017 - Towards automatic urban traffic control with collaborative multi-policy reinforcement learning.
2017 - “sRead”: A Collaborative Learning Environment to Support Students with Low Reading Abilities.
2017 - Collaborative Content Creation among All Students in a Class through a Literature Review Activity (and an Informal Introduction to Machine Learning).
2017 - Computer engineering students’ readiness and motivations for using dialog games in collaborative learning.
2017 - RepliCollabo: A tool for promoting knowledge building in face-to-face collaborative learning.
2017 - The SRI Speech-Based Collaborative Learning Corpus.
2017 - Small Group Processes on Computer Supported Collaborative Learning.
2017 - Location-based correlation estimation in social network via Collaborative Learning.
2017 - Exploratory and Collaborative Learning Experience in Immersive Environments - Implementation and Findings from an Archaeological Domain.
2017 - Multimedia Synchronization on IP Multimedia Subsystem to Support Collaborative Learning.
2017 - Multiple Constraint Framework for Collaborative Learning Flow Orchestration.
2017 - Using Mindtool-Based Collaborative Learning Approach for Higher Education to Support Concept Map Construction.
2017 - Collaborative Decision in Multi-Agent Learning of Action Models.
2017 - A Collaborative Learning Environment of the Medical Diagnosis on the Basis of the Clinical Reasoning Theory.
2017 - Group and collaborative dictionary pair learning for face recognition.
2017 - Collaborative multi-view metric learning for visual classification.
2017 - Collaborative facial color feature learning of multiple color spaces for face recognition.
2017 - Measures for Predicting Task Cohesion in a Global Collaborative Learning Environment.
2017 - A hybrid FFDG2 method for composing heterogeneous groups in collaborative learning.
2017 - Big data oriented partner selection in collaborative learning.
2017 - Collaborative Approaches for Blended Learning - Extending Current Blended Learning Models.
2017 - Exploring the Relationship Between Social Media, Collaborative Learning and Learners’ Satisfaction.
A Pilot Study of Students' Perceptions of Collaborative Knowledge Building in 21st Century Learning with Their Knowledge Building Behaviors.

CMAC: Collaborative multi agent computing for multi perspective multi screen immersive e-learning system.

Learning from Demonstrations Facilitates Human-Robot Collaborative Task Execution.

The Appropriation of Collaborative Learning - Qualitative Insights from a Flipped Classroom.

Collaborative Learning Based Collaborative Learning Community with Google+.

Interactive Augmented Reality: A New Approach for Collaborative Learning.

Impact of collaborative learning on student perception of virtual computer laboratories.

Social epistemic cognition and engineering students' collaborative learning in emerging areas: An implementation case study in a course for social networking.

A cost-effective computer supported collaborative learning for online education.

DeepCham: Collaborative Edge-Mediated Learning for Mobile-Object Recognition.

Multi-device Territoriality to Support Collaborative Activities - Implementation and Findings from the E-Learning Domain.

Collaborative Layer-Wise Discriminative Learning in Deep Neural Networks.

Towards e-tutors training in on-line collaborative learning.

Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem.

Online Collaborative Learning for Open-Vocabulary Visual Classifiers.

Collaborative Ensemble-Learning Based Intrusion Detection Systems for Clouds.

Using indirect blockmodeling for monitoring students roles in collaborative learning networks.

CityCompass: A Collaborative Online Language Learning Application.

Crystallize: An Immersive, Collaborative Game for Second Language Learning.

Towards a collaborative e-learning platform based on a multi-agents system.

An event detection approach for identifying learning evidence in collaborative virtual environments.

An empirical suggestion for collaborative learning in motor imagery-based BCI.

Content-Based Collaborative Filtering of Heterogeneous Implicit Feedbacks.

Collaborative learning of stochastic bandits over a social network.

A Joint Framework for Collaborative Filtering and Metric Learning.

Collaborative Conversational Language Learning with CityCompass.

Preparatory development of a collaborative / interactive learning game using bodily movements for deaf children.

Collaborative Approach Learning Network for Face Attribute Prediction.

Learning Physical Collaborative Robot Behaviors From Human Demonstrations.

Using Mobile Eye-Trackers to Unpack the Perceptual Benefits of a Tangible User Interface for Collaborative Learning.

An Approach Based on Social Network Analysis Applied to a Collaborative Learning Experience.

Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

Transfer Learning for Semisupervised Collaborative Recommendation.

Collaborative Graph Embedding: A Simple Way to Generally Enhance Subspace Learning Algorithms.

Exploring the behavioral patterns of Co-regulation in mobile computer-supported collaborative learning.

Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion.

Mining students activities from a computer supported collaborative learning system based on peer to peer network.

Utilizing transfer learning for in-domain collaborative learning.

Developing a Collaborative Learning Environment Using Web Services Techniques.

Information Technology as a Way To Support Collaborative Learning: What In-Service Teachers Think, Know and Do.

A Case Study on Computer Supported Collaborative Learning in Spanish Schools.

Collaborative rule generation: An ensemble learning approach.

A Method to Analyze Computer Science Students’ Teamwork in Online Collaborative Learning Environments.

A design science research (DSR) case study: building an evaluation framework for social media enabled collaborative learning environments (SMECLEs).

Evaluating the effectiveness of social media enabled collaborative learning environments (SMECLEs).

Cognitive presence in virtual collaborative learning: Assessing and improving critical thinking in online discussion forums.

Primary objects in collaborative work and learning.

Development of a mobile learning system based on a collaborative problem-posing strategy.

Toward effective group formation in computer-supported collaborative learning.

The effects of room design and computer-supported collaborative learning in a multi-touch classroom.

Creating Collaborative and Convenient Learning Environment Using Cloud-Based Moodle LMS: An Instructor and Administrative Perspective.

Meeting the challenges of the new business universe through virtual collaborative learning.

Kernel collaborative representation based dictionary learning and discriminative projection.

A survey of transfer learning for collaborative recommendation with auxiliary data.

Face recognition using class specific dictionary learning for sparse representation and collaborative representation.

Fostering Collaborative Learning with Mobile Web 2.0 in Semi-Formal Settings.

Computer-based systems for automating instructional design of collaborative learning scenarios: a systematic literature review.

Task-Technology Fit Assessment of Cloud-Based Collaborative Learning Technologies.

Providing a Multi-fold Assessment Framework to Virtualized Collaborative Learning in Support for Engineering Education.

Multidisciplinary Project Based Learning Within a Collaborative Framework: A Case Study on Urban Drone Conception.

CMAC: Collaborative multi agent computing for multi perspective multi screen immersive e-learning system.

Collaborative Environment for Remote Clinical Reasoning Learning.

Sparsely Online Learning for Collaborative Filtering.

Speaker-Independent Speech Emotion Recognition Based Multiple Kernel Learning of Collaborative Representation.

A Computer-Supported Collaborative Learning Design for Quality Interaction.

The effects of sentiments and co-regulation on group performance in computer supported collaborative learning.

Transfer Learning for Heterogeneous One-Class Collaborative Filtering.

A visual recommender tool in a collaborative learning experience.

Transforming a large-lecture course into an active, engaging, and collaborative learning environment.

Preservice teachers' experiences of scaffolded learning in science through a computer supported collaborative inquiry.

A survey of active learning in collaborative filtering recommender systems.

A methodological approach for trustworthiness assessment and prediction in mobile online collaborative learning.

Provening Demos in the classroom: Text mining based graphical representation.

Quantitative approach to collaborative learning: performance prediction, individual assessment, and group composition.

Experiences of youth with Autism in 3D collaborative virtual learning environment: A case study.

Collaborative e-learning systems using semantic data interoperability.

Online collaborative learning in dyads: Effects of knowledge distribution and awareness.

Knowledge building and the quantity, content and quality of the interaction and participation of students in an online collaborative learning environment.

Collaborative science learning in an immersive flight simulation.

Iterative learning control with time-partitioned update for collaborative output tracking.

Agent-based modeling of collaborative interaction in ubiquitous learning environment using local dynamic behavior.

Different Futures of Adaptive Collaborative Learning Support.

Effectiveness of the Multi-Mouse Quiz System for Collaborative Learning in Elementary Schools.
VR based Collaborative Errorless Learning System using Humanoid Avatar for People with Alzheimer's Disease.

A Secure Collaborative Machine Learning Framework Based on Data Locality.

Resilience-Preserving Collaborative Learning for Mobile-Health Monitoring.

Smart grouping tool portal for collaborative learning.

WebRTC based remote collaborative online learning platform.

Graph Patterns, Reinforcement Learning and Models of Reputation for Improving Coalition Formation in Collaborative Multi-agent Systems.

A new model for collaborative learning of programming using source code similarity detection.

Collaborative learning with cyber-physical systems.

Collaborative learning from Mobile Crowd Sensing: A case study in electromagnetic monitoring.

Do autonomously motivated students benefit from collaborative learning methods?

Towards MOOCs scenarios based on collaborative learning approaches.

Collaborative Learning Orchestration Using Smart Displays and Personal Devices.

Designing the assessment of the collaborative learning process in LMS courses.

A Behaviour Awareness Mechanism to Support Collaborative Learning.

A collaborative distributed multi-agent reinforcement learning technique for dynamic agent shortest path planning via selected sub-goals in complex cluttered environments.

A Methodology to Evaluate Complex Learning Resources to Improve e-Assessment from Collaborative and Networking Settings.

Experiences in a Collaborative Space for Learning Digital Systems.

Explorations of collaborative learning by multi-agent systems.

A Hybrid Collaborative Filtering recommendation algorithm for Web-based Learning systems.

The Effects of Temperament and Team Formation Mechanism on Collaborative Learning of Knowledge and Skill in Short-Term Projects.

Item Similarity Learning Methods for Collaborative Filtering Recommender Systems.

Toward Combining Individual and Collaborative Learning With an Intelligent Tutoring System.

Predictive Knowledge Modeling in Collaborative Inquiry Learning Scenarios.

Steps Towards the Gamification of Collaborative Learning Scenarios Supported by Ontologies.

Supporting collaborative work on ontology based relational databases.

Lifelong learning lab: collaborative design of hands-on science for chinese schools.

The Composition of Creating Homogeneous and Heterogeneous Collaborative Learning Groups in Intelligent Tutoring Systems.

A Novel Continuous Learning and Collaborative Decision Making Mechanism for Real-Time Cooperation of Humanoid Service Robots.

Towards a Notification System for Mobile Devices to Support Collaborative Learning.

Collaborative work with linear classifier and extreme learning machine for fast text categorization.

Collaborative work with linear classifier and extreme learning machine for fast text categorization.

Dynamic Group Formation as an Approach to Collaborative Learning Support.

Collaborative Active and Semisupervised Learning for Hyperpectral Remote Sensing Image Classification.

SCULS: A Smartphones-Supported Collaborative Learning System.

Collaborative feature learning from social media.

Analysis of collaborative learning in social network sites used in education.

A ‘Mixed’ Approach to Group Formation in Collaborative Learning.

Collaborative Learning Automata-Based Routing for Rescue Operations in Dense Urban Regions Using Vehicular Sensor Networks.

Collaborative-Learning-Automata-Based Channel Assignment With Topology Preservation for Wireless Mesh Networks Under QoS Constraints.

Building an evaluation framework for social media-enabled collaborative learning environments (SMECLEs).

Assessing learners’ perceived readiness for computer-supported collaborative learning (CSCL): a study on initial development and validation.

Using wikis and collaborative learning for science teachers’ professional development.

The effects of gender diversity and power disparity in collaborative learning groups.

Design ‘the Pori hidden treasures geocaching series’: computer-supported collaborative web-based learning and sharing experiences.

Collaborative video blended learning for exercising higher-order thinking - evaluation using community of inquiry framework.

Evaluation and selection of group recommendation strategies for collaborative searching of learning objects.

TSCSL: A conceptual model to inform understanding of collaborative learning processes at interactive tabletops.

Collaborative experience sharing with the support of M-Learning 2.0: a fundamental framework, a case study and research issues.

Applicability of virtual collaborative learning environment in Saudi Arabian Universities.

Pilot Study on the Feasibility and Indicator Effects of Collaborative Online Projects on Science Learning for English Learners.

Gaining Hands-on Experience via Collaborative Learning: Interactive Computer Science Courses.

Young Language Learners’ Collaborative Learning and Social Interaction as a Motivational Aspect of the iPad.

Transforming Teacher Education with Digital and Collaborative Learning and Leadership.

Collaborative learning using tabletop and interactive whiteboard systems.

Network-structured discussions for collaborative concept mapping and peer learning.

Mobile augmented-reality artifact creation as a component of mobile computer-supported collaborative learning.

Designing a role engine to engage students in computer-supported collaborative learning.

Transforming collaborative filtering into supervisory learning.

Scalable learning of probabilistic latent models for collaborative filtering.

A semisupervised learning algorithm for relevance feedback and collaborative image retrieval.

Process modeling and decision mining in a collaborative distance learning environment.

An approach to collaborative learning and the serious game development.

Collaborative group engagement in a computer-supported inquiry learning environment.

Investigating the effects of prompts on argumentation style, consensus and perceived efficacy in collaborative learning.

Constructing illusory blends in a collaborative augmented-reality learning environment.

Organizational Learning for Library Enhancements: A Collaborative, Research-Based Analysis of Academic Department Needs.

Mapping development of social media research through different disciplines: Collaborative learning in management and computer science.

Effects of gender grouping on students’ group performance, individual achievements and attitudes in computer-supported collaborative learning.

Electronic service quality of Facebook social commerce and collaborative learning.
Investigating the Mediating Role of Affective Commitment in a Computer Supported Collaborative Learning Environment. Research of the blog platform-assisted collaborative learning model in the teaching of ‘micro-controller principles and applications’.

Collaborative learning via Web 2.0 tools in adult education: predicting learner satisfaction by off-task interaction and social feedback.

Twitter’s capacity to support collaborative learning.

YELLing for collaborative learning in teacher education: users’ voices in the social platform LearnWeb2.0.

Collaborative Language Learning in Immersive Virtual Environments: Advantages of Peer Feedback and Open Learner Modeling.

A generalised framework to support field and in-class collaborative learning.

Collaborative Work and Learning with Large Amount of Graphical Content in a 3D Virtual World Using Texture Generation Model Built on Stream Processors.

Designing interaction in digital tabletop games to support collaborative learning in children.

Guideline-based reasoning approach for utilisation of past remarks as advice for collaborative learning: BG-PC Med Learner: a personalised and collaborative e-learning materials recommendation system using an ontology-based data matching strategy.

Development of a Collaborative Learning Game Using External Plastic Cards as an Input Device on an iPad.

Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning.

An Experience on Airplay and Multi-User Virtual Environments: Manipulating Identity to Increase Learning from Online Collaborative Discussion.

Using Activity Theory as Analytical Framework for Evaluating Contextual Online Collaborative Learning.

Wiring Role Taking in Collaborative Learning Environments. SNA and Semantic Web can improve CSCL script?

Collaborative Learning Environment in Higher Education: A Case Study of Jordan.

Collaborative e-Learning Adoption Model: A Case Study to Solve Problems in Programming Online Judges.

Collaborative BM Learning via an Academia-Industry Partnership.

Use of Moodle as a Tool for Collaborative Learning: A Study Focused on Wiki.

Analysis of Project-Based Learning Based on Performance Factors of Collaborative Learning.

Mapping students’ ideas to understand learning in a collaborative programming environment.

Understanding collaborative learning activities in an information ecology: A distributed cognition approach.

Different leaders: Emergent organizational and intellectual leadership in children’s collaborative learning groups.

Perceptions and experiences of, and outcomes for, university students in culturally diversified dyads in a computer-supported collaborative learning environment.

An evaluation of students’ motivation in computer-supported collaborative learning of programming concepts.

Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific knowledge in computer-supported collaborative learning.

Group regulation and social-emotional interactions observed in computer supported collaborative learning: Comparison between good vs. poor collaborators.

Structural model of team-based learning using Web 2.0 collaborative software.

Exploring young students’ talk in iPad-supported collaborative learning environments.

An Experience on Airplay and Multi-User Virtual Environments: Manipulating Identity to Increase Learning from Online Collaborative Discussion.

Using collaborative multi-agent reinforcement learning based on a novel coordination tree frame with dynamic partition.

Mapping students’ ideas to understand learning in a collaborative programming environment.

Understanding collaborative learning activities in an information ecology: A distributed cognition approach.

Different leaders: Emergent organizational and intellectual leadership in children’s collaborative learning groups.

Perceptions and experiences of, and outcomes for, university students in culturally diversified dyads in a computer-supported collaborative learning environment.

An evaluation of students’ motivation in computer-supported collaborative learning of programming concepts.

Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific knowledge in computer-supported collaborative learning.

Group regulation and social-emotional interactions observed in computer supported collaborative learning: Comparison between good vs. poor collaborators.

Structural model of team-based learning using Web 2.0 collaborative software.

Exploring young students’ talk in iPad-supported collaborative learning environments.

An Experience on Airplay and Multi-User Virtual Environments: Manipulating Identity to Increase Learning from Online Collaborative Discussion.

Using collaborative multi-agent reinforcement learning based on a novel coordination tree frame with dynamic partition.

Mapping students’ ideas to understand learning in a collaborative programming environment.

Understanding collaborative learning activities in an information ecology: A distributed cognition approach.

Different leaders: Emergent organizational and intellectual leadership in children’s collaborative learning groups.

Perceptions and experiences of, and outcomes for, university students in culturally diversified dyads in a computer-supported collaborative learning environment.

An evaluation of students’ motivation in computer-supported collaborative learning of programming concepts.

Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific knowledge in computer-supported collaborative learning.

Group regulation and social-emotional interactions observed in computer supported collaborative learning: Comparison between good vs. poor collaborators.

Collaborative Platform for Virtual Practice Enterprise Learning.

A new model of on-line collaborative activity for building ontology in e-learning.

Youtopia: a collaborative, tangible, multi-touch, sustainability learning activity.

Building Intelligent Emotion Awareness for Improving Collaborative E-Learning.

A Hybrid Algorithm Combining an Evolutionary Algorithm and a Simulated Annealing Algorithm to Solve a Collaborative...

A Collaborative Authoring of Learning Scenarios Using the LPCEL Editor.

Collaborative System for Learning Based on Questionnaires and Tasks.

Learning-Based Modeling of Endovascular Navigation for Collaborative Robotic Catheterization.

Synote: Collaborative Mobile Learning for All.

Designing and supporting collaborative learning activities.

CoFiSet: Collaborative Filtering via Learning Pairwise Preferences over Item-sets.

Flexible tools for online collaborative learning: integration of adaptation patterns functionality in the WebCollage tool.

Twin Bridge Transfer Learning for Sparse Collaborative Filtering.

Interaction patterns for assessment of learners in tabletop based collaborative learning environment.

Evaluating landmark attraction model in collaborative wayfinding in virtual learning environments.

Seek’N’Share: a platform for location-based collaborative mobile learning.

A Wiki-Based Assessment System Towards Social-Empowered Collaborative Learning Environment.

Model for interactive, collaborative and multimedia mobile learning environment.

Learning-Based Modeling of Endovascular Navigation for Collaborative Robotic Catheterization.

Visualization System for Analyzing Collaborative Learning Interaction.

Advancing Collaborative Learning with Cloud Service.

Scenarios for peer-to-peer learning in construction with emerging forms of collaborative computing.

CoCLAI: An AmI-Based Framework to Design and Develop Content-Aware Collaborative Learning Activities.

Towards Software Infrastructure for the Systematic Virtualization of Collaborative Learning Sessions.

Building Intelligent Emotion Awareness for Improving Collaborative E-Learning.

Extensive Learning Machine combining matrix factorization for collaborative filtering.

Factors Influencing Hybrid Self-Regulated and Collaborative Learning for End-User Training: A Systematic Literature Review.

A secure collaborative multimedia learning scheme in cultural environments.

Utilization of Past Remarks of Similar Speech Pattern as Advice for Collaborative Learning.

Facilitating Collaborative Learning on a Multi-Touch Tabletop.

Collaborative Platform for Virtual Practice Enterprise Learning.

A Genetic Algorithm-Based Multiple Characteristics Grouping Strategy for Collaborative Learning.

E-FOCAD: A collaborative learning environment based ontology.

Unravelling the interaction strategies and gaze in collaborative learning with online video lectures.

Learning collaborative decision-making parameters for multimodal emotion recognition.

Improving the effectiveness of collaborative learning processes in Libyan Higher Education.

Mobile Collaborative Experiential Learning (MCIEL): Personalized Formative Assessment.

Mobile Education for Collaborative Learning Using Tabletop Surfaces.

WELD: collaborative toolkit for learning, engaging and deciding.

Collaborative Active Learning of a Kernel Machine Ensemble for Recognition.

An Inquiry Based Collaborative Learning Using in E-NOTEBOOK System.

A Collaborative Authoring of Learning Scenarios Using the LPCEL Editor.

Developing a Well-Focused Learning through a Kinect-Based Collaborative Setting.

Design of Collaborative Learning Activities.

Architecture for Social Interactions Monitoring in Collaborative Learning Environments as a Support for the Teacher’s Awareness.

LOCALe - Location-Oriented Collaborative Authentic Learning Environment.

Semantic Collaborative Filtering for Learning Objects Recommendation.

Identifying Factors Influencing Hybrid Self-regulated and Collaborative Learning: Toward an End-User Training Framework.

Mobile Inquiry-Based Learning - A Study of Collaborative Scaffolding and Performance.

A Framework to Support Social-Collaborative Personalized e-Learning.

What Is Age’s Affect in Collaborative Learning Environments?

An Experimental Environment for Analyzing Collaborative Learning Interaction.

Utility of a Social Network as a Collaborative Learning Platform Tool for Medical Students.

Recommendation of Collaborative Activities in E-Learning Environments.

A Hybrid Algorithm Combining an Evolutionary Algorithm and a Simulated Annealing Algorithm to Solve a Collaborative Learning Team Building Problem.

Management of distributed collaborative learning environments based on a concept map paradigm and natural interfaces.

Learning to manage uncertainty in collaborative engineering design projects from a fifth grade class.

A new model of on-line collaborative activity for building ontology in e-learning.

Tracking a Collaborative Web2.0 E-Learning Environment.

Signal Orchestration System for Face-to-Face Collaborative Learning Flows.

An Environment to Support Collaborative Learning by Modding.

Synote: Collaborative Mobile Learning for All.

The Negotiation of Knowledge and Knowing: The Challenge of Using Wiki Technology in Computer Supported Collaborative Learning.

The Mefora Design Principles for a Collaborative, Interoperable Learning Framework.

Fuzzy Dissimilarity based Multidimensional Scaling and its Application to Collaborative Learning Data.

Supporting collaborative work by learning process models and patterns from cases.

Prototyping a Cognitive Assessment System to Enrich the Virtualization of Collaborative Learning.

Exploring tangible collaborative distance learning environments for the blind and visually impaired.

Pedagogical conversational agents for supporting collaborative learning: effects of communication channels.

Designing and Evaluating Collaborative Learning Scenarios in Moodle LMS Courses.

Personality-Based Active Learning for Collaborative Filtering Recommender Systems.

Tangible Collaborative Learning with a Mixed-Reality Game: EarthShake.

Repairing Disengagement in Collaborative Dialogue in Game-Based Learning.

Intelligent Tutoring Systems for Collaborative Learning: Enhancements to Authoring Tools.

Designing for science learning and collaborative discourse.

Voutopia: a collaborative, tangible, multi-touch, sustainability learning activity.
Developing an argumentation support system for face-to-face collaborative learning.

Shilling attack detection utilizing semi-supervised learning method for collaborator recommender system.

The Collaborative Lecture Annotation System (CLAS): A New TOOL for Distributed Learning.

Tag-Based Collaborative Filtering Recommendation in Personal Learning Environments.

Designing Technologies for Content-Independent Collaborative Mobile Learning.

The Role of iPads in Constructing Collaborative Learning Spaces.

Active learning strategies for e-learning: elicitation in collaborative filtering: A system-wide perspective.

Collaborative spam filtering based on incremental ontology learning.

Teaching evidence-based software engineering: learning by a collaborative mapping study of open source software.

Collaborative Learning 2.0: Open Educational Resources.

Users’ experiences and perceptions on using two wiki platforms for collaborative learning and knowledge management.

Application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation.

Collaborative e-Learning through Drag & Share in Synchronous Shared Workspaces.

The effects of a shared free form rationale space in collaborative learning activities.

Collaborative learning in multi-user virtual environments.

Construction of Latent Hypotheses on Collaborative Learning from the Perceptions of Future Educators.

Creating a collaborative learning community in the CIS Sandbox.

Collaborative Learning 2.0: Open Educational Resources.

Facebook group as a space for interactive and collaborative learning.

Investigating Influences Among Individuals and Groups in a Collaborative Learning Setting.

Collaboration factors, teamwork satisfaction, and student attitudes toward online collaborative learning.

Facilitation of computer-supported collaborative learning in mixed- versus same-culture dyads: Does a collaboration script help?

Gender divide and acceptance of collaborative Web 2.0 applications for learning in higher education.

A Strategy to Join Adaptive and Reputation-Based Social-Collaborative E-Learning, Through the Zone of Proximal Development.

Classroom in the cloud: from virtual to social collaborative learning.

Cote-Programming: Shaping Collaborative Learning Support in Eclipse.

Facilitation of computer-supported collaborative learning in mixed- versus same-culture dyads: Does a collaboration script help?

Gender divide and acceptance of collaborative Web 2.0 applications for learning in higher education.

A case study of using a social annotation tool to support collaboratively learning.

Recommender system in collaborative learning environment using an influence diagram.

Enhancing primary school children collaborative learning experiences in maths via a 3D virtual environment.

An application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation.

From boring to scoring: a collaborative serious game for learning and practicing mathematical logic for computer science education.

Collaborative Learning at CSCL 2013.

Real-time mutual gaze perception enhances collaborative learning and collaboration quality.

The educational impact of metacognitive group coordination in computer-supported collaborative learning at an enriched interactive tabletop.

Collaborative learning in multi-user virtual environments.

Mobile computer-supported collaborative learning: A review of experimental research.

Distributed leadership and digital collaborative learning: A synergistic relationship?

The effects of a Creative Commons approach on collaborative learning.

Transfer learning in heterogeneous collaborative filtering domains.

Theories of Collaborative Cognition: Foundations for CSCL and CSCW Together.

CSCL@Networking: Regional Learning in Software Industries.

Pivotal Moments for Decision Making in Collaborative Design: Are They Teachable?

Collaborative Virtual Environments for Reflective Community Building at Work: The Case of TARGET.

Robot That Can Promote Learning by Observing in Collaborative Learning.

Web-Based Learning and Computer Supported Collaborative Learning for Psychomotor Skill Acquisition: Perspectives of Medical Undergraduate Students.

Incorporating Learning Management System with Social Network Sites to Support Online Collaborative Learning.

Preliminary Analysis.

Medical Undergraduate Students.

Experience on knowledge convergence.
Self-learning and neural network adaptation by embedded collaborative learning engine (cCLE) - An overview.

A New Social Aspect in Collaborative Mobile Learning: Design Challenges and Learning Effects.

Social Media Learning: An approach for composition of multimedia interactive object in a collaborative learning environment.

An approach for supporting P2P mobile collaborative communication to suggest learning objects based on learning profile.

How to Involve Students in an Online Course: A Redesigned Online Pedagogy of Collaborative Learning and Self-Regulated Learning.

Collaborative game-based learning approach to improving students’ learning performance in science courses.

A Semantic Web-based authoring tool to facilitate the planning of collaborative learning scenarios compliant with learning theories.

Using stickers in class. The role of interactivity, active collaborative learning and engagement in learning performance.

An effective online teaching method: the combination of collaborative learning with initiation and self-regulation learning with feedback.

Collaborative Reflection for Learning at the Healthcare Workplace.

Online Personal Networks of Knowledge Workers in Computer-Supported Collaborative Learning.

Collaborative learning and anxiety: a phenomenographic study of collaborative learning activities.

CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering.

Online Places Across Established Boundaries.

Computer-Supported Collaborative Learning at the Workplace.

How Does Kaushan Impact Communication and Collaboration in Software Engineering Teams?

Emergence of developer teams in the collaboration network.

Individual contribution and collaboration in student software teams.

Interview Findings on Middle Schools’ Collaboration in Self-Organizing Game Design Teams.

A large-scale quantitative study of women in computer science at Stanford University.

Professional development for mid-career women in computer science and engineering.

Studying relevant socio-technical aspects of requirements-driven collaboration in agile teams.

Prototype Tools for the Flexible Design of CSCL Activities Based on the Adaptation Pattern Perspective.

Validating Empirically a Rating Approach for Quantifying the Quality of Collaboration.

The Design of a Teacher-Driven Intelligent Agent System for Supervising Lessons in LAMS.

Reuse of Data Flow Designs in Complex and Adaptive CSCL Scripts: A Case Study.

Reinventing Prototyping: Making Interactive and Intelligent Systems Meaningful for the User.

Internet-Mediated Communities of Practice: Identifying a Typology of Critical Elements.

Mobile Digital Storytelling for Promoting Creative Collaborative Learning.

Supporting Field and In-class Collaborative Learning: Towards a Generalized Framework.

A Generalized Framework to Support Field and In-class Collaborative Learning.

Combinatorix: a tangible user interface that supports collaborative learning of probabilities.

Constructing Open E-Learning Framework Based on Collaborative Ontology.

Building collaborative technology learning environments.

CoLDEP: a real-time, collaborative IDE for enhanced learning in computer science.

Information Sharing and Searching via Collaborative Reinforcement Learning.

A Quality Control Model for Trustworthy Crowdsourcing in Collaborative Learning.

CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering.

Collaborative learning of preference rankings.

A Framework for a Multi-agent Collaborative Virtual Learning Environment (MACVILLE) Based on Activity Theory.

Introducing a Collaborative Peer-Evaluation Learning Model in Higher Education Programming-Based Courses.

Adaptation Model for PCMAT - Mathematics Collaborative Learning Platform.

Detection of Attacks for Restoring Privacy of Users to Improve Mobile Collaborative Learning (MCL) over Heterogeneous Network.

A mobile application for collaborative learning.

Learning analytics for collaborative writing: a prototype and case study.

Learning binary codes for collaborative filtering.

Error diagnosis in computer-supported collaborative multiple language learning using user classification.

Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning.

Exploring the Potential of Tabletops for Collaborative Learning.

Towards an Ontology-Based System to Improve Usability in Collaborative Learning Environments.

Evaluation of a collaborative instructional framework for programming learning.

Predictions of Learning Objects Supported by Collaborative Recommendations.

Distributed Cognition Learning in Collaborative Civil Engineering Projects Management.

Using a Conversational Agent for Promoting Collaborative Language Learning.

Enterprise Portal Technology in Computer-Supported Collaborative Learning.

Collaborative Reflection to inform the development and evaluation of work-based learning technologies.

Online learning for collaborative filtering.

Design and Evaluation of Collaborative Learning Management System (CLMS) Framework for Teaching Technical Subject.

Collaborative Processes in Virtual Learning Spaces - Does Structuring Make a Difference?

Fuzzy Enhancement of Creativity in Collaborative Online Learning.

Perceived Support in E-Collaborative Learning: An Exploratory Study Which Make Use of Synchronous and Asynchronous Online-Teaching Approaches.

Activity Theory as a Design Framework for Collaborative Learning Using Google Applications Technology.

Developing Online Collaborative Games for e-Learning Environments.

Graduate students’ information seeking in a collaborative learning setting.

Task-learning policies for collaborative task solving in human-robot interaction.

Collaborative learning and wiki.

Practical Research on the Assessment of Online Collaborative English Learning - A Case Study of Blackboard-Based Course "Intercultural Communication".

Exploiting the FLOSS paradigm in collaborative e-learning: application to e-government.
Mass Collaborative Product Development System Simulation Model Based on Participants Learning.

Identifying Barriers to Collaborative Learning for the Blind.

Designing a Technology Enhanced Collaborative Space for Learning Entity-Relationship Modeling.

Utilizing Multiplayer Video Game Design Principles to Enhance the Educational Experience in 3D Virtual Computer Worlds.

Supported Collaborative Learning Environments.

A System for the Automatic Analysis of Computer-Supported Collaborative Learning Chats.

Using Collaborative Activities on tabletops to Enhance Learning and Knowledge Transfer.

Behavioral Patterns and Learning Performance of Collaborative Knowledge Construction on an Augmented Reality System.

Enhancing Collaborative Filtering of Learning Resources with Semantically-Enhanced Social Tags.

Opportunities and Challenges for Adaptive Collaborative Support in Distributed Learning Environments: Evaluating the GLUE! Suite of Tools.

Effects of Computerized Collaborative Concept Map Approach on Students’ Learning Achievements and Cognitive Loads.

Modeling Global Pattern Formations for Collaborative Learning Environments.

Collaborative Filtering via Group-Structured Dictionary Learning.

ABKD: Multimodal Mobile Language Game for Collaborative Learning of Chinese Hanzi and Japanese Kanji Characters.

Remote Mixed Reality Collaborative Laboratory Activities: Learning Activities within the InterReality Portal.

Investigation and Prototype Design of Collaborative Virtual Learning Environments.

Virtual facilitation as a collaborative e-learning tool.

Engaging and Supporting Students in Exploratory and Collaborative Activities: The Use of e-ECLip and ACT Environments.

Modelling Global Pattern Formations for Collaborative Learning Environments.

A System for the Automatic Analysis of Computer-Supported Collaborative Learning Chats.

Matchballs - A Multi-Agent-System for Ontology-Based Collaborative Learning Games.

CSCL@work revisited - beyond CSCL and CSCW?: are there key design principles for computer supported collaborative learning at the workplace?

Accelerating human-computer collaborative search through learning comparative and predictive user models.

Work in progress: Implementation of enhanced guided notes and collaborative note-taking in learning electric circuit games.

Civil and geological engineering service-learning projects as part of a Pre-Engineering Education Collaborative.

Learning Comparative User Models for Accelerating Human-Computer Collaborative Search.

Enhancing an Augmented Reality Enhanced Tabletop System as a Collaborative Learning Tool: A Case Study on Mathematics at the Primary School.

Effective collaborative learning in biomedical education using a web-based infrastructure.

Encouragement of Collaborative Learning Based on Dynamic Groups.

Computer Supported Collaborative Learning: A Study on Challenges as Perceived by Students.

Collaborative learning in education: a scenario of research in Brazil (1999-2010).

Collaborative Constellation Learning Environment with Sharing Learners’ Gazing Points in the Real Night Sky.

Virtual facilitation as a collaborative e-learning tool.

The One Room School House & Design Challenge Based Learning for design-oriented HCI education: Initial results, reflective hypotheses, & collaborative issues.

Leveraging social media to support collaborative e-learning.

Learning to Write Programs with Others: Collaborative Quadruple Programming.

Map-A-ArcNet - A Multi-Agent-System for Ontology-Based Collaborative Learning Games.

Software Requirements to Support QoS in Collaborative M-Learning Activities.

Development of analytical abilities and collaborative learning assessment in undergraduate students through simulation games.

Incentivizing collaborative learning through visual feedback about conflict in Wiki.

Collaborative e-learning through open social student modeling and Progressive Zoom navigation.

Towards a Multi-fold Assessment Approach to Enrich the Virtualization of Collaborative Learning.

Addressing Students’ Attitudes to Address Emotions in Live and Virtualized Collaborative Learning.

Towards the Representation of Emotional Information from On-line Collaborative Learning Sessions.

Bootstrapping-Based Equivalent Pattern Learning for Collaborative Question Answering.

Proposition: a tablet app for collaborative learning.

A collaborative management model in learning and teaching process (CollIMod-LTP): An application for problem solving and algorithms problem.

Localizing Global Game Jam: Designing Game Development for Collaborative Learning in the Social Context.

Conjunctive Patchos Subspace Learning With Side Information for Collaborative Image Retrieval.

Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments.

Integration of the tagging mechanism in the collaborative e-learning system.

CC-LO: Embedding Interactivity, Challenge and Empowerment into Collaborative Learning Environments.

Research of personalized Web-based intelligent collaborative learning.

Designing a Mobile-app-based Collaborative Learning System.

Developing Digital Literacy through Collaborative Inquiry Learning in the Web 2.0 Environment - An Exploration of Implementing Strategy.

Collaborative Learning in Online Study Groups: An Evolutionary Game Theory Perspective.

A Meta-learning-based Approach for Detecting Profile Injection Attacks in Collaborative Recommender Systems.

Measuring flow experience in an immersive virtual environment for collaborative learning.

Integrating computer-supported collaborative learning into the classroom: the anatomy of a failure.

Smart 3D collaborative virtual learning environments: A preliminary framework.

Ambient intelligence and collaborative e-learning: a new definition model.

Finding similar questions in collaborative question answering archives: towards bootstrapping-based equivalent pattern learning.

The collaborative language learning attributes of cyber face-to-face interaction: the perspectives of the learner.

Assessing the application of three-dimensional collaborative technologies within an e-learning environment.

Understanding collaborative learning behavior from Moodle log data.

Supporting collaborative inquiry during a biology field trip with mobile peer-to-peer tools for learning: a case study with K-12 learners.

Activity Theory to Guide Online Collaborative Learning Instructional Design.

Distributed data collection and storage algorithms for collaborative learning vision sensor devices with applications to pavement想象.

Investigating user experience in Second Life for collaborative learning.

Experiences in implementing and using a technological framework for mobile collaborative learning of mathematics and Chinese.

Evaluating automatic group formation mechanisms to promote collaborative learning - a case study.

Interactive Prototypes to Foster Pedagogical Activities for Mobile Collaborative Learning Environment (MCLE).

Collaborative Learning for the Net Generation: Using Social Networks in an Undergraduate Course.

Designing the Online Collaborative Learning Using the Wikispaces.

Towards identifying Collaborative Learning groups using Social Media.

Using Online Presence to Improve Online Collaborative Learning.

A Comparison of 3D Collaborative Virtual Learning Environments: OpenSim vs. Second Life.

Engaging and Supporting Students in Exploratory and Collaborative Activities: The Use of e-ECLip and ACT Environments.

Perspectives on Tools for Computer-Supported Collaborative Learning.

An Adaptive System Supporting Collaborative Learning Based on a Location-Based Social Network and Semantic User Modeling.

Exploiting the Semantic Web to Represent Information from On-line Collaborative Learning.

Investigating technical and pedagogical usability issues of collaborative learning with wikis.
Bibliography

Bibliography

[LS22] Julia C Lapan and Katie N Smith. “no girls on the software team”: Internship experiences of women in computer science. *Journal...

[MCD+] Alexandre Mazéas, Aïna Chalabaev, Martine Duclos, Bruno Pereira, and DRCI CHU Clermont-Ferrand. Prisma-p (preferred reporting items for systematic review and meta-analysis protocols) 2015 checklist: recommended items to address in a systematic review protocol. (cited on Page 9)

