
1

Faster Variational Execution with Transparent Bytecode
Transformation

CHU-PAN WONG, Carnegie Mellon University, USA

JENS MEINICKE, Carnegie Mellon University, USA and University of Magdeburg, Germany

LUKAS LAZAREK, Northwestern University, USA

CHRISTIAN KÄSTNER, Carnegie Mellon University, USA

Variational execution is a novel dynamic analysis technique for exploring highly configurable systems and

accurately tracking information flow. It is able to efficiently analyze many configurations by aggressively

sharing redundancies of program executions. The idea of variational execution has been demonstrated to be

effective in exploring variations in the program, especially when the configuration space grows out of control.

Existing implementations of variational execution often require heavy lifting of the runtime interpreter,

which is painstaking and error-prone. Furthermore, the performance of this approach is suboptimal. For

example, the state-of-the-art variational execution interpreter for Java, VarexJ, slows down executions by 100

to 800 times over a single execution for small to medium size Java programs. Instead of modifying existing

JVMs, we propose to transform existing bytecode to make it variational, so it can be executed on an unmodified

commodity JVM. Our evaluation shows a dramatic improvement on performance over the state-of-the-art,

with a speedup of 2 to 46 times, and high efficiency in sharing computations.

Additional Key Words and Phrases: Java Virtual Machine, Bytecode Transformation, Variational Execution,

Configurable System

1 INTRODUCTION
Computer programs often come with variations that allow programs to act differently according to

a user’s need. A classic example of variation is command-line options or configuration files, which

often trigger new behaviors or tweak existing functionalities. Configuration options are widely used

because they provide flexible extension points for adding new features. However, this flexibility

often comes at the cost of potential feature conflicts. Feature conflicts arise when one feature

interferes with another in an unintended way (also known as feature interaction problem [Calder

et al. 2003; Nhlabatsi et al. 2008]). Problems similar to feature interactions have also been studied

in other contexts, such as security policies, where the sensitivity of a program to various private

values is explored by comparing different executions varying in privacy levels for values [Austin

and Flanagan 2012; Austin et al. 2013]. To tackle these problems, we need a principled yet efficient

way of detecting and managing interactions of variations.
There are several challenges posed by interactions of variations. First, the number of possible

interactions is exponential to the number of variations, making exhaustive testing of all configura-

tions unrealistic in most practical cases. Second, interactions are often impossible to foresee, for

example in the context of plugin-based systems where plugins are often developed independently

by different developers, making it easy to miss interactions when sampling only few configura-

tions [Medeiros et al. 2015; Nie and Leung 2011; Thüm et al. 2014]. Third, effects of variations often

propagate globally in programs, making it hard to detect interactions involving lots of variations

even with complex data-flow analysis [Lillack et al. 2014].

Authors’ addresses: Chu-Pan Wong, Carnegie Mellon University, USA; Jens Meinicke, Carnegie Mellon University, USA,

University of Magdeburg, Germany; Lukas Lazarek, Northwestern University, USA; Christian Kästner, Carnegie Mellon

University, USA.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

ar
X

iv
:1

80
9.

04
19

3v
1

 [
cs

.P
L

]
 1

1
Se

p
20

18

https://doi.org/

1:2 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

To tackle these challenges, researchers have proposed dynamic analysis techniques that analyze

the effects of multiple variations by efficiently tracking variations at runtime. Researchers have

applied these techniques to various scenarios, such as testing highly configurable systems [Nguyen

et al. 2014], understanding feature interactions [Meinicke et al. 2016] and configuration faults [Su

et al. 2007], monitoring information flow of sensitive data [Austin and Flanagan 2012; Austin et al.

2013; Devriese and Piessens 2010; Kim et al. 2015; Kolbitsch et al. 2012; Kwon et al. 2016], and

detecting inconsistent updates [Hosek and Cadar 2013; Maurer and Brumley 2012; Tucek et al.

2009]. These techniques are similar, and often called differently in different communities, such as

variability-aware execution [Kästner et al. 2012; Meinicke et al. 2016; Nguyen et al. 2014], faceted

execution [Austin and Flanagan 2012; Austin et al. 2013], coalescing execution [Sumner et al. 2011],

shared execution [Kim et al. 2012], and multi-execution [De Groef et al. 2012; Devriese and Piessens

2010]. Our work is built on these ideas, and we use the name variational execution in this work, as

we target primarily analyzing and testing configuration options in programs.

Previous studies have shown that variational execution can be useful in many scenarios with

promising results. Since variational execution itself is not a core contribution in this work, we defer

the comprehensive discussion of different applications to Section 7. Nonetheless, we highlight a few

interesting results: Nguyen et al. [2014] applied variational execution to identify plugin conflicts

in WordPress. Their variational execution engine can analyze 2
50
combinations out of 50 plugins

within seven minutes and found a previously unknown plugin conflict. Meinicke et al. [2016] used

variational execution to understand the shape of configuration spaces in different programs and

found interesting characteristics of how options interact. Austin and Flanagan [2012] and Austin

et al. [2013] demonstrated usefulness of variational execution in guaranteeing non-interference

of sensitive data between different confidentiality levels. Their prototype implementations in

JavaScript and Jeeves can prevent cross-site scripting attacks and handle complex information

flow in a conference management system. Sumner et al. [2011] showed that a form of variational

execution can exploit similarities among data processing of similar inputs and gain a speedup of

2.3 without precision lost. Although variational execution has been explored before with promising

results, a universal and scalable implementation is still missing. Existing implementations typi-

cally have severe scalability issues and work only with small academic examples. With a better

implementation, we have a better chance of scaling existing applications and applying variational

execution to broader application scenarios and more use cases.

Existing implementations rely on eithermanual modification to the source code [Austin et al. 2013;

Schmitz et al. 2018, 2016] or modification to the language interpreter [Meinicke et al. 2016; Nguyen

et al. 2014]: On the one hand, variational execution can be achieved by writing the source code

to use some libraries or programming language constructs, so that the programs compute with

multiple values in parallel [Austin et al. 2013; Schmitz et al. 2018, 2016]. Implementations of this

kind put a heavy burden on developers because the use of these libraries or language constructs

usually obscures the original programs. Moreover, rewriting existing programs is often tedious and

error-prone. On the other hand, variational execution can be achieved by executing a normal pro-

gram with a special execution engine, such as an interpreter that tracks multiple values in parallel

with special operational semantics for each instruction [Austin and Flanagan 2012; Meinicke et al.

2016; Nguyen et al. 2014]. Modified interpreters often suffer from a conflict between functionalities

and engineering effort: It would be painstaking to modify a mature interpreter like OpenJDK,

though it fully supports all functionalities of the language, whereas it takes less engineering effort

to modify a research interpreter such as Java PathFinder [Havelund and Pressburger 2000], which

however provides incomplete language support and often mediocre performance.

We present a new way of implementing variational execution. Our approach sidesteps manual
modification to the source code and brittle modification to the language interpreter. The key idea is to

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:3

automatically transform programs in their intermediate representation. Specifically, we transparently
modify Java bytecode automatically to mirror the effects of a manual rewrite. The resulting bytecode

can then be executed on an unmodified commodity JVM.

Transforming programs at the intermediate language level has several benefits. First, intermedi-

ate languages often have simple forms and strong specifications, both of which facilitate automatic

transformation. Second, source code is not required, allowing us to transform also libraries used in

the target programs. We can even analyze other programming languages that are compilable to the

same intermediate language. Third, existing optimizations of the execution engine can be reused; in

our case, our transformed bytecode can take advantage of just-in-time compilation and other opti-

mizations provided bymodern JVMs. Finally, modifications at the intermediate level remain portable.

Our transformed bytecode can be executed on any JVM that implements the JVM specification.

Transformations are nontrivial and not always local. While many bytecode instructions can

be transformed in isolation, encoding conditional control flow in a commodity JVM requires

careful encoding, such that both branches of control-flow decisions can be executed in different

configurations, before subsequent computations are merged again, to maximize sharing overall.

In additional, data-flow analyses are required to handle values on the operand stack between

blocks and object initialization sequences for variational execution. Finally, we perform additional

optimizations to statically pinpoint instructions that do not need to be transformed, because they

are guaranteed to be not related to variations in the program.

We formally prove that our transformation of control flow is correct, statically guarantee optimal

sharing for a large subset of possible control-flow graphs. Additionally, we empirically evaluate

performance, comparing execution time andmemory consumption on seven highly configurable sys-

tems against VarexJ, a state-of-the-art variational execution implementation. The results show that

our approach is 2 to 46 times faster than VarexJ, with 75 percent less memory. The performance re-

sults also indicate that our approach is efficient for analyzing highly configurable systems in practice.

We summarize our contributions as follow:

• We propose a novel strategy for variational execution using automatic bytecode transforma-

tion, without any manual modifications to the source code or to the language interpreter.

• We prove that our automatic transformation of bytecode is correct for all control-flow graphs

and optimal with regard to sharing for a large subset.

• We propose further optimizations by performing data-flow analysis and using specialized

data structures.

• We implement a bytecode transformation tool that covers nearly the entire instruction set

of the Java language, with minor exceptions that we explain in Section 5. The transformed

bytecode is portable to any implementation of the JVM specification.

• An empirical evaluation with 7 subject systems showing that our approach is up to 46 times

faster while saving up to 75 percent memory when compared to the state-of-the-art. In

addition to statically guaranteeing optimal sharing for 89.7 percent of methods, our approach

achieves optimal sharing at runtime for 99.8 percent of all other method executions.

We hope that the way we transform bytecode can inspire more efficient implementation of

similar techniques such as symbolic execution. Although we focus on Java bytecode in this work,

we can potentially generalize the core ideas to other programming languages and other analyses,

by performing a similar transformation at the well-defined intermediate representation form of

existing compiler frameworks like LLVM.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:4 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Listing 1: Original version

1 boolean SMILEY;
2 boolean WEATHER;
3 boolean FAHRENHEIT;
4
5 public String toHTML () {
6 String h = getHTMLHeader ();
7 String c = getContent ();
8 if (SMILEY)
9 c = c.replace(":]", "<img...>");

10 if (WEATHER) {
11 String w = getWeather ();
12 c = c.replace("[:w:]", w);
13 }
14 String f = getHTMLFooter ();
15 return h + c + f;
16 }
17
18 private String getWeather () {
19 float t = getCelsius ();
20 if (FAHRENHEIT)
21 return (t * 1.8 + 32) + "◦F";
22 else
23 return t + "◦C";
24 }

SMILEY = 〈α, true, false〉
WEATHER = 〈β, true, false〉

FAHRENHEIT = 〈γ, true, false〉

h = 〈“<header>...</header>”〉

c = 〈“It’s [:w:]”〉

c = 〈α, “It’s [:w”, “It’s [:w:]”〉

w = 〈γ, “86◦F”, “30◦C”〉

c = 〈α, “It’s [:w<img...>” , 〈β, 〈γ, “It’s 86◦F”, “It’s 30◦C”〉, “It’s [:w:]”〉〉

f = 〈“<footer>...</footer>”〉

L6[true]: String h = getHTMLHeader();

L7[true]: String c = getContent();

L8[true]: if (SMILEY) L9[α]: c=c.replace(":]","<img...>");

L10[true]: if (WEATHER) L11[β]: String w = getWeather();

L12[β]: c = c.replace("[:w:]", w);

L14[true]: String f = getHTMLFooter();

L15[true]: return h + c + f;

Listing 2: Transformed version

25V<Boolean > SMILEY =
26new V<>(new PropExpr("SMILEY"), true , false);
27V<Boolean > WEATHER =
28new V<>(new PropExpr("WEATHER"), true , false);
29V<Boolean > FAHRENHEIT =
30new V<>(new PropExpr("FAHRENHEIT"), true , false);
31
32public V<String > toHTML(PropExpr ctx) {
33PropExpr subCtx;
34V<String > h = getHTMLHeader(ctx);
35V<String > c = getHTMLContent(ctx);
36subCtx = whenTrue(SMILEY).and(ctx);
37if (subCtx.isSatisfiable ())
38c = new V<>(subCtx ,
39c.smap(subCtx , x->x.replace(":]","<img...>")),
40c);
41subCtx = whenTrue(WEATHER).and(ctx);
42if (subCtx.isSatisfiable ()) {
43V<String > w = getWeather(subCtx);
44c = new V<>(subCtx ,
45c.sflatMap(subCtx ,
46x->w.smap(subCtx ,
47y->x.replace("[:w:]", y))), c);
48}
49V<String > f = getHTMLFooter(ctx);
50return c.sflatMap(ctx ,
51x->h.sflatMap(ctx ,
52y->f.smap(ctx ,
53z->y + x + z)));
54}
55
56public V<String > getWeather(PropExpr ctx) {
57PropExpr subCtx;
58V<Float > t = getCelsius(ctx);
59V<String > ret = new V<>(null);
60subCtx = whenTrue(FAHRENHEIT).and(ctx);
61if (subCtx.isSatisfiable ())
62ret = new V<>(subCtx ,
63t.smap(subCtx , x->x * 1.8 + 32 + "◦F"),
64ret);
65subCtx = whenFalse(FAHRENHEIT).and(ctx);
66if (subCtx.isSatisfiable ())
67ret = new V<>(subCtx ,
68t.smap(subCtx , x->x + "◦C"),
69ret);
70return ret;
71}

Construct a conditional
value containing two alter-
native values

Method whenTrue takes a
V instance and returns the
variability context under
which the value is true

Method smap builds a new
V by applying a function
to elements selected by a
context

Method sflatMap is similar
to the smap except that the
function should return a V

Construct a conditional
value from two V instances

Construct a con-
ditional value
containing only
one concrete
value

Fig. 1. Running example of this paper, modeled after WordPress [Meinicke et al. 2016]. Listing 1 shows the original source
code without variational execution. Bottom left illustrates variational execution by showing the execution trace. Listing 2
hints at our variational execution transformation. The transformation is shown in Java for better readability.

2 BACKGROUND ANDMOTIVATION
As necessary background for our approach, we introduce the core concepts of variational execution

and show how it can be achieved with manual source-code transformation, hinting at the key ideas

of our automatic bytecode transformation.

2.1 Variational Execution
There are two main concepts that distinguish variational execution from concrete execution:

conditional values and variability contexts.
The key idea of variational execution is to execute a program with concrete values, but support

multiple alternative concrete values for different configurations. That is, whereas each variable has

one concrete value in concrete execution (e.g., x = 1), the concrete value of a variable may depend on

the configuration in variational execution—we say the variable has a conditional value [Erwig and
Walkingshaw 2013]. A conditional value does not store a separate value for each configuration (expo-

nentiallymany), but partitions the configuration space into partial spaceswhich share the same value.

That is, all configurations sharing the same concrete value are represented only once in the condi-

tional value. Partial configuration spaces are expressed through propositional formulas over configu-

ration options, such as (a∨b)∧¬c representing the potentially large set of all configurations in which

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:5

configuration optionsa orb are selected but not c ; a tautology (denoted as true) describes all configu-
rations, a contradiction (denoted as false) none. Conditional values are typically expressed through
possibly-nested choices over formulas (or if-then-else expressions), such as x = ⟨a, ⟨¬b ∨ c, 1, 3⟩, 2⟩,
which means: x has the value 1 in the partial space a ∧ (¬b ∨ c), 3 in a ∧ ¬(¬b ∨ c), and 2 in ¬a.
With this representation, we can reason about configuration spaces with SAT solvers and BDDs.

Variational execution uses conditional values with the notion of performing a computation

conditionally in a variability context, similar to a path condition in symbolic execution: An

operation will only modify values in the part of the configuration space indicated by the current

variability context (that is, we conceptually split the execution). Again, formulas over configuration

options are used to express the variability context.

We assume a finite configuration space in which we know concrete values for all configuration

options. Throughout this paper, we focus on boolean options when we discuss configuration options

because they are common and easy to reason about with standard tools. Other options (e.g., strings,

numeric values) with finite domains can be encoded as a set of boolean options. Using other solvers

to circumvent the encoding is possible as well. The support of options with finite domains is entirely

hidden behind the abstraction of conditional values, so it is orthogonal to the discussion in this paper.

Operations on conditional values can often be shared. If none of the used variables have alternative

values, an instruction only needs to be executed once for all configurations (we say that we are

executing under the true context). We begin execution in the true context, and only split into

restricted variability contexts when configuration options influence execution—directly or indirectly.

This conservative execution splitting strategy allows us to aggressively share executions that would

otherwise be repeated once per configuration. This sharing avoids nonessential computations and

makes variational execution efficient in many scenarios.

Comparing to Symbolic Execution. Despite some similar concepts, there are important differ-

ences between variational execution and symbolic execution. A conditional value in variational

execution is fundamentally different from a symbolic value in symbolic execution, in that the former

represents a finite number of concrete values while the latter often represents an infinite set of possible
values of a given data type. Unlike symbolic execution where operations are carried out on symbolic

values, variational execution always computes with concrete values; symbols are used only to

describe configuration spaces for distinguishing alternatives and for describing contexts, but never

intermixwith concrete values. For this reason, loop bounds are always known concrete values in vari-

ational execution, and we avoid other undecidability problems. By considering finite configuration

spaces, reasoning about configuration space of conditional values involves inexpensive and decidable
satisfiability checkswith SAT solvers or BDDs, while symbolic execution is often limited by expensive
constraint solving and the types of theories the underlying constraint solver supports. For instance,

reasoning about array elements in variational execution is fast, because we know the concrete array

indexes and elements, in contrast to symbolic execution where a symbolic array index can dramat-

ically slow down constraint solving because it can potentially refer to every element in the array.

Furthermore, variational execution has different concepts of managing state and forking and

joining when compared to symbolic execution. Symbolic execution often forks new states either

completely or partially at every conditional branch, often resulting into exponentially many paths

in practice, commonly known as the path explosion problem. For example, Meinicke et al. [2016] has

demonstrated that state-of-the-art symbolic execution implementations for Java split of separate

executions on variability and share only a common prefix. Some symbolic execution engines merge

state from different paths to share executions after control flow decisions, for example, introducing

new symbolic values or using if-then-else expressions to represent differences among values from

different paths—different designs make different tradeoffs with regard to performance, precision,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:6 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

and implementation effort [Baldoni et al. 2018; Sen et al. 2015]. Our implementation of variational

execution uses a design that maximizes sharing. It maintains a single representation of all state

throughout the execution where differences are represented at fine granularity (variables and fields)

with conditional values. State is always modified under the current variability context, which is

equivalent to merging state after every single statement. In addition, we join control flow as early

as possible to avoid repeating executions, as we will discuss in Section 4.

Example of Variational Execution. As an example, consider Listing 1 in Figure 1, a simplified

implementation of a blogging system modeled after WordPress. The blogging system has three

variations, based on options for smiley rendering and inlining weather reports, which affect how

HTML code is generated. In its current form, there is an issue: if both SMILEY and WEATHER are

enabled, the replacement of a smiley image takes precedence and breaks the expansion of weather

information, resulting in outputs like “[:w ”.

In order to ensure the absence of interaction bugs like this, typical testing techniques would try

all combinations one by one, resulting into 8 executions of the same program in this case. Moreover,

single executions alone reveal little information about the causes of interaction bugs, especially for

cases where interactions of options have global effects on the execution.

Variational execution is much more efficient for detecting interactions like this. The execution

trace in the bottom left of Figure 1 illustrates how variational execution explores all possible

interactions among SMILEY, WEATHER and FAHRENHEIT in a single run. Boxes represent relevant
program states and arrows denote execution steps. The executed statements are displayed beside

arrows, together with the variability contexts. An execution trace like this can also be generated by

logging and aligning concrete executions of all possible configurations, but Meinicke et al. [2018]

showed that variational execution is much more efficient, sidestepping correctness and performance

issues of alignment.

After marking the three boolean fields as options (e.g. via Java annotation), variational execution
initializes them with conditional values, representing both true and false. The symbols α , β , γ
denote the three options respectively. Variational execution runs Line 6 and Line 7 once under the

variability context of true, meaning that they are shared across all configurations. Sharing like this

enables variational execution to explore large configuration spaces efficiently. To highlight sharing,

we put all shared statements to the left of the arrows in the execution trace. The execution is split

when it comes to the first if statement, where c is modified only under the variability context of
SMILEY. At this point, the content of c changes from containing one value for all configurations
to having two alternative values depending on option SMILEY, and this change is reflected in the

conditional value assigned to c. Finally, variational execution is able to share the execution of

common code again at Line 14, after splitting executions in two if branches.
This example illustrates the benefits of variational execution. We can spot the problematic

interaction of SMILEY and WEATHER by inspecting the conditional value of c, as shown in the

execution trace. In fact, all possible interactions are recorded and detectable by inspecting conditional
values during the variational execution. All information about how options interact can be obtained

after one single run of variational execution, in contrast to exponentially many with normal

execution, and the difference would still not be obvious without aligning all traces of normal

execution. The effectiveness of variational execution comes from using variability context to
manage splitting and sharing of executions.

VarexJ. The state-of-the-art implementation of variational execution for Java is VarexJ [Meinicke

et al. 2016]. VarexJ is implemented on top of Java PathFinder’s (JPF) interpreter for bytecode [Havelund

and Pressburger 2000]. For this reason, VarexJ also inherits several limitations that restrict the

programs it can analyze. First, JPF is not a complete implementation of the JVM specification, so

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:7

it provides incomplete support for language features, such as concurrency and native methods.

Second, unlike commodity JVMs, JPF does not provide any optimizations over programs being

executed, such as just-in-time compilation. Third, executing programs on JPF is slow because JPF

itself is implemented as a single-process Java application. The nature of meta-circular interpreting

causes a significant performance penalty. Our approach sidesteps these problems by not modifying

the JVM, but transforming the Java bytecode.

2.2 A Manual Rewrite
To illustrate how variational execution can be achieved on a commodity JVM, we illustrate how

the source code of our WordPress example in Figure 1 can be manually rewritten in Listing 2 of

Figure 1. We show the rewrite in Java source code for better readability, as the same program in

bytecode is typically longer and harder to read, potentially obscuring the essential ideas of our

rewriting. This manual rewrite in Listing 2 also introduces the key ideas (highlighted as floating

boxes) used later in our automated bytecode transformation. A rewrite in bytecode is also available

in the appendix.

We introduce variability contexts in all methods, represented by instances of the PropExpr class,

which model propositional expression over configuration options. Variables are rewritten to use

a new V type to store conditional values, either a single value for all configurations or different
values for different configurations. To manipulate values in V objects, we use smap and sflatMap
methods. The smap method applies a function to each alternative value of a V, and the sflatMap
method does the same but allows to split configuration spaces, producing more alternatives. For

example, the operation v.smap(ctx, f) on a conditional value v of type V<T> takes as arguments

(1) a variability context ctx and (2) a function literal f of type T => U, representing the pending
operation. It returns a new V instance of type V<U> that results from applying the function f to
each concrete element that exists under ctx in v (recall that a conditional value stores concrete
values along with the variability contexts under which they exist). The sflatMap method works

similarly, but takes functions of type T => V<U>.
Note that the manual rewrite shown in Listing 2 is not exactly the same as our bytecode

transformation, but close enough to show the key ideas. An automatic rewrite of our running

example in bytecode is available in the appendix for reference. We will discuss in detail how such

a rewrite can be automated in bytecode in Section 3 and Section 4. Nonetheless, we can already

preview a few key points from this manual rewrite:

• Variables store conditional values, represented by V objects.

• Most operations on conditional values (e.g., calling the replacemethod, String concatenation)

are redirected with smap and sflatMap and applied to all alternative concrete values. It fact,

this replacement is sufficient for most bytecode instructions, as we will see in Section 3.1.

• Both the if branch and the else branch of an if-else statement are transformed into an if
statement, a statement that checks whether there exists any partial configuration under which

the surrounded code will be executed. If such a partial configuration exists, the surrounded

code will be executed under a restricted variability context (e.g., Line 36–40). We will discuss

transformation of control-transfer instructions in Section 4.

• All method calls have one additional parameter ctx, representing the variability context

under which this method is called. The variability context restricts all instructions of that

method invocation. Also, multiple return statements in the same method are replaced

with temporary assignment to a local variable, which is returned in the end of the method.

Transformation of method calls and method returns will be further discussed in Section 3.2.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:8 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

The transformation from normal code to variational code is nontrivial and obscures the program.

For example, we almost double the size of Listing 1 in order to transform a simple example into

a variational execution version. The introduction of smap calls and complicated control-transfer

structures also obscure the intention of the original program, making it hard to understand and

debug. This puts a heavy burden on the developers to understand variational execution and how

to use it correctly. All of these issues can be resolved if we adapt an automatic transformation

approach that is transparent to developers. As we will see later in Section 5, our transformation is

also able to automatically decide which parts of a program need to be transformed, as it is likely

that some parts are not related to variations, such as the code before the first if statement (Line 7)

and the code after the second if statement (Line 14) in Listing 1.

3 BYTECODE TRANSFORMATION
We discuss our transformation in two steps. First, in this section, we discuss how to transform all

instructions that are executed in a given variability context. The transformation of control flow,

which may change variability context, is nontrivial and orthogonal, so we discuss it second in

Section 4. We describe transformations for similar instructions together, following the grouping

of the JVM specification [Lindholm et al. 2015].

In a nutshell, we transform each bytecode instruction of the original program into a sequence of

bytecode instructions. Ideally, the transformation of most instructions should be local, meaning that

the transformation of the current instruction should not be affected by other instructions around it.

However, this locality assumption is not generally possible because an instruction often affects

another instruction by leaving data on the operand stack. The operand stack is used internally in

the JVM for exchanging data between instructions. Some instructions load values (e.g., constants or

values from local variables or fields) onto the operand stack, while other instructions take values

from the operand stack and operate on them. Results might be pushed back onto the operand stack

as a result of an operation. The operand stack is also used to prepare parameters to be passed to

method invocations and to receive return values.

To assist local transformation of individual instructions, we introduce several transformation

invariants:

Invariant 1 All local variables and fields store conditional values.

Invariant 2 All values on the operand stack are conditional values.

Invariant 3 All methods take conditional values as parameters and return conditional values.

We ensure that these invariants hold before and after the execution of each transformed bytecode

sequence. They help us establish a common ground about the environment, enabling concise

transformations of most instructions. In addition, we assume that each instruction is executed in a

local variability context. We will explain how variability contexts are propagated and changed as

part of our discussion of control flow in Section 4.

3.1 Basic Lifting
To achieve our invariants, we change all parameters and local variables in a method frame to the V
type to store conditional values. Primitive types are boxed in the process.

Load and Store Instructions. Load and store instructions transfer values between the local

variables and the operand stack. Since we assume local variables and stack values to represent

conditional values (Invariant 1, Invariant 2), we can directly load themwith the aload instruction (re-
placing load instructions for primitive types if needed). Store instructions require more attention, be-

cause theymay be executed under a restricted variability context, in which case not all values shall be

overwritten. For example, suppose we have x = 1 under context true, but store 2 to x under context

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:9

A, then x stores the conditional value ⟨A, 2, 1⟩ instead of 2. To this end, we always create a new condi-

tional value, compressing the updated values under the current context with possibly unaffected old

values. As an example, consider the V constructor call when c is updated in Line 38–40 of Listing 2.

Arithmetic and Type Conversion Instructions. Arithmetic and type conversion instructions

compute a result based on one or two values from the operand stack, and then push the result

back on the operand stack. For example, the iadd instruction takes two int values from the stack,

adds them together and pushes the result back. Given Invariant 2, we need to pop and push

conditional values. We achieve this by invoking smap with the current variability context on the

stack’s conditional values, performing the original arithmetic or type conversion operation on

each alternative concrete value. For operations on two conditional values, we combine sflatMap
and smap to compute results for all possible combinations. For example, the original floating point

calculation in Line 21 of Figure 1 is transformed to a smap call in Line 63.

Operand Stack Management Instructions. Operand stack management instructions directly

manipulate entries on the operand stack, such as pop for discarding the top value, and swap for
swapping the top two values. They work the same for conditional values and concrete values, and

therefore do not need to be transformed. A technical subtlety in Java is that some primitive values

(e.g., long, double) are represented by two 32-bit values on the stack, but only by a single reference

value for a conditional value; here we adjust stack operations accordingly.

3.2 Method Invocation and Return
Method invocations pass the top stack values as arguments to the method and push the method’s

result back to the stack. Non-static methods also take their receiver from the stack. Since method

arguments and return types are conditional values, just as stack values (Invariant 2, Invariant 3),
they can be passed along directly. If a method call has multiple receiver objects, we call the method

for each of them in the corresponding variability context and merge results using a sflatMap call.

Special handling is required though in cases in which Invariant 3 does not hold for the target.

Ideally, all classes and all methods in variational execution should be transformed, but this is

not always possible in practice because of the environment barrier. At some point, variational

programs may need to interact with an environment that does not know about variational values

and variability contexts. The environment barrier can be at different places, depending on how the

system is implemented (e.g., between user code and library code, between Java code and native

code, between the program and the operating system or network), but can never be avoided entirely.

When hitting the environment barrier, we have three options:

Multiple invocations. For side effect free methods, we can invoke the target method multiple

times for each feasible combinations of concrete argument values, merging the results into a sin-

gle conditional value. Since the method is side effect free, invoking it repeatedly with different

arguments does not change the program states, it just forgoes potential sharing.

Model classes. We can always provide variational models for the environment, for example,

replacing all reads and writes to a file with a special implementation that can store alternative file

context under different contexts. Such model classes are common in model checking and symbolic

execution [d’Amorim et al. 2008; Sen et al. 2015; von Rhein et al. 2011] and have been explored in

variants of variational execution for database storage [Yang et al. 2016]. Model classes can also be

used to provide more efficient variational implementations for classes than would be achieved with

our automated transformation, as we will discuss in Section 5.

Abort. Finally, we can execute the program but abort execution when we reach the environment

barrier at runtime. This way, we can still support executions that do not cross the barrier, even

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:10 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

though the source code refers to nonvariational methods. Furthermore, we can allow calls to

nonvariational methods during the execution when they are shared by all configurations (with

variability context true) in which all parameters have only a single concrete value.

In our approach, we transform all methods possible, including libraries, to push the environment

barrier as far outside as possible. In the JVM, the environment barrier often manifests as native

methods, i.e., methods that are hard-coded in the JVM in other programming languages such as C

and C++. We maintain a list of model classes and side-effect free methods that are automatically

applied when encountered. For all remaining calls to nonvariational code, we issue warnings

during transformation and abort the execution at runtime when invoked. We then manually and

incrementally inspect aborts in our executions andmarkmethods as side-effect free or developmodel

classes as needed. In fact, so far, we needed to implement model classes only for a small number of

classes. We have not yet encountered executions that heavily rely on variational interactions with

the environment and thus require additional model classes.

Return instructions are more straightforward to transform than method invocation instructions.

To not prematurely end the execution of a method at a return instruction, we rewrite the method

to use a single return instruction at the end of the method. If the method being transformed has

more than one return instructions, we rewrite all of them to jump to a single return at the end of

the transformed method. If necessary, we store the values of different original return instructions

in a variable. Technically, we again replace all non-void returns by a single areturn instruction,
returning a reference to the resulting conditional value. For example, see how Line 21 and 23 are

transformed to Lines 62, 67 and 70 in Figure 1.

3.3 Using Objects
In the JVM, both class instances and arrays are objects, but the JVM creates and manipulates class

instances and arrays using distinct sets of instructions. This section presents our transformation

of them respectively.

Class Instances. We transform all fields of a class instance to have the conditional value type.

The key idea is to maximize sharing of data across similar class instances. If two instances of the

same class only differ in one field, we represent the difference in a conditional value for that field,

rather than as a conditional reference to two copies of the object. This design stores variability

as local as possible to avoid redundancy in memory and in computations [Meinicke et al. 2016].

As fields store conditional values (Invariant 1), reads and writes to fields work just as loads and

stores to local variables.

A technical challenge to independent transformation of bytecode instructions arises for the

new instruction used to instantiate classes and push them to the operand stack. The challenge is

that the new instruction creates an uninitialized object that cannot be passed as a reference for

safety reasons until the object’s constructor is invoked on it, and thus cannot be wrapped in a V
type as needed for Invariant 2. Instead, we treat new and the subsequent initialization sequence

as one bytecode instruction for our transformation. Whenever we encounter a new instruction, we
use a data-flow analysis to identify the relevant following initialization sequence, re-arranging

the original bytecode if necessary to separate object initialization from other instructions (e.g.,

instructions to compute constructor parameters).

Arrays. For a given array, we transform it into an array of conditional values to again store variabil-

ity as local as possible to preserve sharing. To support arrays of different length though and fulfill

our invariants, we support also variations of arrays. That is, an array of objects (Object[]) would
be represented as a conditional array of conditional objects (V<V<Object>[]>). Type erasure in Java

complicates the implementation, but this can be solved by inserting additional dynamic type checks.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:11

We arrived at this design after considering several tradeoffs: Our representation can store vari-

ability more locally, avoiding that a single variation in an entry requires to copy the entire array;

also load and store operations are simple and fast. Overheads are only encountered for arrays with

different length in different configurations, which is less common than variability in values in our ex-

perience. An alternative design could loosen our invariants for arrays and create a single maximum-

length array of conditional values (based on the length of the configuration with the longest array;

V<Object>[]) and a shadow variable and extra instructions for bookkeeping and length checking,

but we only expect marginal performance benefits from this more complicated design.

4 CONTROL TRANSFER
After describing how to transform bytecode instructions within a given variability context, we now

focus on how to transform control-flow related constructions that may change variability contexts

by splitting or joining executions. For example, in a branching statement the condition may differ

among configurations, such that we may need to execute both branches under corresponding

variability contexts, but join afterward to maximally share subsequent executions.

We significantly change the way programs are executed and track and change variability contexts.

As introduced in Section 2, variability contexts are propositional formulas over configuration options

that describe the partial configuration space for which an instruction is executed, similar to path

conditions in symbolic execution. Instructions executed in a variability context only have an effect

on the state of that partial configuration space, as discussed, for example, for store instructions in

Section 3.1. The challenge is now to propagate and change variability context to achieve a shared

execution for all configurations with maximal sharing.

In this section, we explain how we structure the program in blocks with the same variability

context, and how we transfer control and contexts among these blocks. Subsequently, we then

discuss two important properties of our design: (1) that variational execution preserves behavior

of the original program (Correct Execution Property) and (2) that control transfer among blocks

is efficient (Optimal Sharing Property). Finally, we present some technical challenges and their

solutions regarding stack values during control transfer.

4.1 VBlock
We group all instructions that are statically guaranteed to always share the same variability context

at runtime in a VBlock. VBlocks are separated by conditional jumps, that is, jumps that may depend

on conditional values, in which case we may “split” the execution. After executing multiple VBlocks

we may “join” the execution in another VBlock with a broader variability context (such joining

is rare in symbolic execution approaches). For example, String replacement of a smiley image (Line

9) in Listing 1 has a more restricted context than the getHTMLHeader call (Line 6) because Line 9 is

only executed when SMILEY is true, whereas the later getHTMLFooter call is again shared among

all configurations.

VBlocks are similar to basic blocks in traditional program analyses. However, unlike basic blocks,

which group individual instructions together because they are always executed in sequence, VBlocks

group basic blocks together because they always share the same variability context. Thus, there

can be jumps inside a VBlock as long as they do not depend on conditional values and thus share

the same variability context.

Bytecode instructions can be partitioned into VBlocks by merging basic blocks in a control-flow

graph iteratively until a fixpoint is reached. A block B1 can be merged with a successor B2 if

the jump between B1 and B2 is not conditional (e.g., goto or if statement with non-conditional

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:12 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

expression)
1
and all predecessors of B2 are in the same VBlock. The latter condition is needed to

recognize potential join points, when a block can be reached from two different VBlocks. Hence, a

VBlock can be terminated by either a conditional jump or an unconditional jump. A VBlock can

end with an unconditional jump if, for example, while merging basic blocks to form VBlocks, basic

block A has an unconditional jump to basic block C, while basic block B has a conditional jump to C.
We cannot merge A and C into one VBlock because of the conditional jump from B. Thus, A and C
have to be separated into two different VBlocks with an unconditional jump between them.

4.2 Execution Strategy
This subsection presents how VBlocks are used. We first outline the goals of using VBlocks to

achieve splitting and joining execution. Then, we present a solution that achieves our goals and

provide an example.

Goals. Whereas variational-execution approaches that modify interpreters (such as VarexJ) can

track multiple instruction pointers and their variability contexts, we need to cope with the fact

that the instruction pointer of an unmodified JVM can only point to a single location at a time. So

instead of changing the control transfer mechanism of the JVM, we use VBlocks to organize and

create the execution order we want. At a high level, we pursue the following:

• Both branches of a conditional jump can be executed under corresponding restricted contexts

(we call them “subcontexts”). That is, we are able to split execution.

• The code after both branches of a conditional jump should be executed only once for mutually

exclusive contexts. That is, we should join execution as early as possible.

Context propagation. Using VBlocks, we modify control flow decisions and manipulate vari-

ability contexts to achieve splitting and joining. The key idea of our design is to associate each

VBlock with a variability context (a fresh local variable). We dynamically update variability contexts

along execution to keep track of which VBlock(s) can be executed next and under which context.

At any point in a method’s execution, all VBlocks with a satisfiable variability context (i.e., the

proposition formula is satisfiable) can be executed. The order in which multiple VBlocks with

satisfiable contexts are executed does not matter for correctness, but does matter for performance,

as we will show in Section 4.3.

At a jump between VBlocks, we transfer the current block’s variability context to the target

block’s context. If the jump is conditional, we split the current variability context and transfer the

two mutually exclusive contexts to the two successor VBlocks of the jump. The split is determined

by the partial configuration space in which the if statement’s expression evaluates to true.

To describe the control transfer more precisely, let us denote the sequence of VBlocks as

b0,b1, . . . ,bn(n ≥ 0), where b0 represents the entry node in the control flow graph and bn represents
the exit node. Let us denote the variability context of a VBlock bi as ϕ(bi) (stored in a fresh local

variable for each VBlock).

• At the beginning of a method execution, we initialize ϕ(b0) with the method context, and

ϕ(bi) = False for all other VBlocks to indicate that only the initial VBlock of the method can

be executed.

• After executing a VBlock bi , we remember its variability context Φ = ϕ(bi) and then set that

variability to False, indicating that this block should not be immediately executed again. We

subsequently propagate its prior variability context Φ as follows:

1 Invariant 2 implies that all values evaluated in an if statement are conditional, however, as we will discuss later in Section 5,

we can optimize the transformation to statically recognize values that will not depend on configuration options, including,

in the simplest case, constants.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:13

b0

b1

b2

b3

b4

b5

b0

int i = 0;
Update: ϕ(b1) Goto b1

b1

Skip to b2 unless SAT (ϕ(b1))
while (i < b) {

Update: ϕ(b2), ϕ(b5) Goto b2

b2

Skip to b3 unless SAT (ϕ(b2))
i++
if (i != a)

Update: ϕ(b3), ϕ(b4) Goto b3

b3

Skip to b4 unless SAT (ϕ(b3))
continue;

Update: ϕ(b1) Goto b1

b4

Skip to b5 unless SAT (ϕ(b4))
. . .

} Update: ϕ(b1) Goto b1

b5 return;

Fig. 2. An example illustrating control-flow encoding through updates of variability contexts and jumps between blocks.

(1) If the execution of VBlock bi ends with an unconditional jump (e.g., goto instruction)

to another VBlock bj , the context of bj is updated as a disjunction between the current

context of bj and bi ’s prior context Φ. A disjunction is required because the target block

may already have been executable under a different context, which we now broaden to

join executions.

ϕ ′(bj) = ϕ(bj) ∨ Φ (1)

(2) If the execution of VBlock bi ends with a conditional jump with two possible target VBlocks

bj and bk ,
2
we split the execution based on the condition of the jump (usually the top value

on the stack representing result of evaluating an if statement’s expression). Let us denote

the variability context in which the jump condition indicates a jump to bj asX . For example,

the condition of the first if statement in our WordPress example is ⟨SMILEY , 1, 0⟩, which
indicates the then branch should be taken under context X = SMILEY . We update the

variability contexts of bj and bk as follows, again considering potential joins:

ϕ ′(bj) = ϕ(bj) ∨ (X ∧ Φ) ϕ ′(bk) = ϕ(bk) ∨ (¬X ∧ Φ) (2)

• After propagating the variability context, the control transfer (i.e., the actual instruction

pointer in the JVM) does not actually follow the jump.

Execution Order. The actual execution order though (in terms of moving the instruction pointer)

is independent from the transfer of variability contexts. We start execution at the beginning of the

method with b0. At the end of a VBlock bi , we jump to the next VBlock bi+1 by default, even if the

block ended with a different jump. If that VBlock’s variability context is unsatisfiable, we proceed

to the next VBlock, and so forth. We only jump back to a VBlock with a lower index (using a plain

goto instruction) when we update the variability context of an earlier block to be satisfiable as part

of the described context transfer. This way, the instruction pointer is always at an unsatisfiable

block (to be skipped) or at the satisfiable block with the lowest index. This strategy ensures that

later VBlocks are always executed with joined variability contexts from earlier VBlocks and that

VBlock bn is executed last with the full method context. For that reason, the indexing order of

VBlocks matters. Figure 2 illustrates the idea of jumping among VBlocks with a concrete example.

Ordering VBlock Execution. Given that we always execute the first VBlock with a satisfiable

variability context and always join at later VBlocks, we can execute the same method in different

ways by changing the way we order the VBlocks. We can reorder VBlocks in different orders as

2
We transform switch statements into an equivalent series of if-else statements to simplify our design of control transfer.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:14 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

long as the first and last VBlock remain constant (the last block ending with a return statement

must be executed last) and always achieve equivalent (i.e., correct) results, as we will show in

Section 4.3. However, as the block order determines the join points, different orders may be more

or less effective at joining early and sharing subsequent computations.

To maximize sharing during the execution (i.e., prefer executing a block once under a broader

variability context rather than multiple times under narrow contexts), we order VBlocks based on

the strict transitive predecessor relation in the control-flow graph. A VBlock bi is a strict transitive
predecessor of bj if there is a path from bi to bj in control-flow graph, but not from bj to bi (i.e.,
not in a loop). For any pair of VBlocks, if one VBlock is a strict transitive predecessor of the other,
the transitive predecessor shall have the lower VBlock index to be executed first. For other pairs, we
preserve the original lexical order produced by the compiler as a default.

In the next subsection, wewill show that the above partial order is sufficient to statically guarantee

optimal sharing on a subset of control-flow graphs, regardless of the original lexical order of the

bytecode, but that optimality cannot be statically guaranteed for all control-flow graphs. We will

also experimentally show in Section 6 that this order is nearly always optimal for the remaining

control-flow graphs.

Example. Let us exemplify our solution by stepping through the getWeather method in Listing

2. There are four VBlocks: code before the if statement (b0, Line 57-59), then branch (b1, Line 60-

64), else branch (b2, Line 65-69) and return block (b3, Line 70). These blocks are already indexed

according to the strict transitive predecessor relation: b0 is executed first, b1 and b2 are executed

beforeb3; the order betweenb1 andb2 is merely derived from the lexical order and could be switched.

Initially, ϕ(b0) = MCtx (method context) and ϕ(b1) = ϕ(b2) = ϕ(b3) = False. After executing b0 at

Line 59, ϕ(b1) and ϕ(b2) are updated to ϕ(b1) = False ∨ (FAHRENHEIT ∧MCtx) and ϕ(b2) = False ∨
(¬FAHRENHEIT∧MCtx), thus splitting the execution. Note that this update of contexts is not shown
in Listing 2 becausewe transform the control flow in bytecode differently from howwe show for Java.

At this point, both ϕ(b1) and ϕ(b2) are satisfiable and execution continues with the next VBlock b1.

After executingb1 at Line 64,ϕ(b3) is updated toϕ(b3) = False∨(FAHRENHEIT∧MCtx) becauseb3 is

the sole successor of b1 in the control flow graph. We execute the next satisfiable block, which is b2,

after which ϕ(b3) is updated to ϕ(b3) = (¬FAHRENHEIT∧MCtx) ∨ (FAHRENHEIT∧MCtx) = MCtx;
thus, b3 at Line 70 is executed last under the joined context MCtx.

4.3 Properties
We have presented how we choose VBlocks for execution. While splitting executions, we need

to ensure that the execution order is correct. By always executing the satisfiable VBlock with the

lowest index first and ordering VBlocks deliberately, we make sure that the joining happens as

early as possible. This section formalizes these properties.

Correctness. The following property ensures that our variational execution is correct, in a sense

that it preserves the semantics of the original program.

Property (Correct Execution Property). At any point of execution, if there aremultiple VBlocks
with satisfiable contexts, the order in which they are executed does not affect correctness of execution.

To prove this, we first introduce a useful lemma:

Lemma (Disjoint Context Lemma). At any point of variational execution, the context of two
different VBlocks are mutually exclusive. That is, ϕ(bi) ∧ ϕ(bj) = False for any i , j.

Mutual exclusion is guaranteed by the way we propagate contexts in Equations 1 and 2. A proof

by induction can be found in the appendix. With this lemma, we prove our Correct Execution
Property as follows:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:15

Proof. Ensuring that VBlocks have mutually exclusive variability contexts guarantees that each

VBlock operates on mutually exclusive runtime states. As we have discussed in Section 3, states

(e.g., local variables, fields) are stored separately for different contexts using conditional values.

Our variability contexts further ensure that all state changes only update values in the (disjoint)

contexts referred to by the current variability context. Thus, execution order among satisfiable

VBlocks does not affect correctness of overall variational execution. □

Optimal sharing. The main utility of variational execution is its ability to share common compu-

tations; our execution scheme pursues to perform executions with the broadest variability context

possible. While we cannot share repeated executions under the same context, we can avoid execut-

ing the same VBlock under mutually exclusive contexts and rather execute it once, shared, under a

broader context. In a nutshell, what we want to achieve is to execute every VBlock as few times as

possible by sharing the execution of VBlocks in different contexts. This sharing is crucial for the

overall performance of variational execution, otherwise it may degrade to executing each variation

in a brute-force way or sharing only common prefixes of traces, conceptually equivalent to joining

only after the very last instruction.

In order to formalize optimal sharing, we define a variational trace as a chronological sequence
of VBlocks executed during variational execution. We denote a variational trace as a sequence

of executed VBlocks with corresponding variability context, e.g., tv = [bT rue
0
,bα

1
,b¬α

2
,bT rue

3
].

Conceptually, a variational trace corresponds to a separate concrete trace for each configuration, in

our example tα = [b0,b1,b3] and t¬α=[b0,b2,b3]. Another variational execution trace that represents

the same concrete traces could be t ′v = [bT
0
,bα

1
,bα

3
,b¬α

2
,b¬α

3
]. It is likely that tv is more efficient

than t ′v because b3 is executed twice in t ′v .
A variational trace can be seen as the result of aligning multiple concrete traces. Different aligning

schemes produce different variational traces (e.g., tv and t ′v). Given a set of concrete traces, we can

use sequence alignment algorithms (e.g., Needleman-Wunsch algorithm [Needleman and Wunsch

1970]) to obtain a globally optimal solution of merging concrete traces. For example, two optimal

matchings of tα and t¬α are to = [b0,b1,b2,b3] and [b0,b2,b1,b3]. We use lenдth(t) to denote the

number of elements in a trace. For example, lenдth(tv) = 4, and lenдth(t ′v) = 5.

Definition 4.1 (Optimal Sharing). Given a variational trace tv and its corresponding set of concrete

traces t1, t2, . . . , tm , we say tv has optimal sharing if and only if lenдth(tv) = lenдth(to), where to
is the optimal matching of t1, t2, . . . , tm .

b0

b1

b2

b3

b1

b2

b4

b1

b5

b0

b1

b2

b4

b1

b5

b0

b1

b2

b4

b1

b2

b3

b1

b5

b0

b1

b2

b3

b1

b5

Fig. 3. An example where static order between
VBlocks cannot not achieve optimal sharing. The
control-flow graph is shown in Figure 2

It would be ideal if optimal sharing could be achieved

for all possible programs in the wild, but there is no join

strategy that could statically order blocks to guarantee

optimal sharing for all executions of all programs. Fig-

ure 3 illustrates an example: In order to achieve optimal

sharing (with optimal defined as the optimal trace align-

ment in the figure), there is both a case where b3 needs

to be executed before b4 and a case where b4 needs to be

executed before b3 after a control-flow decision at b2 (crit-

ical nodes highlighted in the trace). That is, we cannot

statically decide an ordering between b3 and b4, and even

an optimal decision at runtime would have to depend on

knowing the future execution trace. We could apply some

greedy strategies to approximate optimality, but that the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:16 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

required runtime monitoring is unlikely to justify the performance benefits of additional sharing

execution.

Fortunately, we can prove optimal sharing for static VBlock ordering for many shapes of control-

flow graphs and will show in our empirical evaluation that the remaining ones (often with nontrivial

interleaving of looping and branching instructions) are often optimal for actual executions.

Property (Optimal Sharing Property). Given a control flow graph where each node represents
a VBlock, our variational execution based on the strict transitive predecessor relation on this graph
has optimal sharing if it is acyclic or only contains simple loops. A loop is a simple loop if it satisfies
the following three criteria: (1) has only one loop header; (2) has only one exiting node; (3) has no
conditional jumps among nodes in the loop.

The proof can be found in the appendix. Intuitively, we prove by case analysis that our variational

trace has the same length as the optimal alignment of corresponding concrete traces in every possible

case. Since we only consider simple control-flow graphs, the length of our variational trace and the

length of the optimal alignment trace can be determined from the structure of the control-flow

graph.

4.4 Values on the Stack between VBlocks

b0

ALOAD 0
GETFIELD a
ICONST_1
IFEQ b2

b1

ICONST_1
GOTO b3

b2 ICONST_0
b3 . . .

Fig. 4. A snippet of bytecode showing
the scenario where VBlocks could leave
some values on the operand stack after
execution.

In Java, blocks can leave values on the operand stack to be con-

sumed by subsequent blocks. Since, in variational execution,

there might be multiple successor blocks that will be executed,

and successor blocks may not be executed immediately after

their predecessor, sharing values on the stack becomes tricky.

Since the operand stack in a commodity JVM is not variational it-

self, we cannot pop the same value from the stack under different

variability contexts as possible when modifying the interpreter

itself (e.g., done in VarexJ [Meinicke et al. 2016]).

Figure 4 shows a concrete example in which VBlock b0 leaves

some value on the operand stack after execution, that both blocks

b1 and b2 try to read. Conversely, those two blocks each leaves

a (different) value on the stack that b3 attempts to consume.

To make the transition between VBlocks possible in all cases, we need one more invariant:

Invariant 4 A VBlock does not leave any values on the operand stack at the VBlock boundary.

To meet this invariant, we store all remaining values on the operand stack (if they exist) to local

variables, at the end of each VBlock. Then at the beginning of each VBlock, we check if the current

VBlock expects some values from the operand stack, and load those values from corresponding

local variables if so. Since we support loading and storing under different variability contexts, as

discussed above, this solution generalizes to all control-flow graphs.

5 IMPLEMENTATIONS, OPTIMIZATIONS, LIMITATIONS
We implemented a bytecode transformation tool for the ideas discussed in Section 3 and Section 4,

and we call it VarexC. We use the ASM
3
library to implement our data flow analysis and transfor-

mation of bytecode. Transformations happen at class loading time via our own class loader that

transforms classes before they are actually loaded. We also save the previously transformed classes

and reuse them if there are no changes. To ensure correct implementation of variational execution,

we apply differential testing to compare execution results and execution traces in variational

3
http://asm.ow2.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

http://asm.ow2.org/

Faster Variational Execution with Transparent Bytecode Transformation 1:17

execution against brute-force concrete executions for our subject systems [Kästner 2017]. Our im-

plementation is available on GitHub.
4
We implement transformations for all bytecode instructions

and provide a mechanism for model classes, as discussed in Section 3.2. In addition to implementing

the full transformation described previously, we explored two optimizations and briefly outline

them. Finally, we discuss the current limitations of our tool.

5.1 Optimization: Deciding What to Transform
Not all bytecode instructions in a programmay depend on configuration options. If we can statically

guarantee that parts of the program never depend on conditional values or conditional jumps, we can

reduce our transformation to relevant parts; this reduces the overhead of computingwith conditional

values and conditional jumps where not needed. Guaranteed non-conditional computations happen

often in the beginning of methods and typically involve initialization sequences or constants, such

as in logging statements “System.out.println("done");”.
We designed a simple data-flow analysis to decide which instructions need to be transformed.

Along the lines of a standard taint analysis, we mark all local variables and values on the operand

stack as conditional or unconditional with a ‘lift’ bit, marking them as conditional when instructions

based on other conditional values write to them.

So far, we implemented an intra-procedural analysis that assumes all fields (including fields

representing configuration options, as in our WordPress example) and method parameters and

method results are conditional. As such, all stack values produced by field reads, loads of method

parameters, and results from method invocations are marked with the lift bit. We then propagate

the lift bit to all values resulting from computations in which operands had the lift bit and to

local variables when such values are stored. Based on the lift bit, we decide which control-flow

decisions are conditional (i.e., potentially depend on conditional values) and compute VBlocks

correspondingly. Finally, we determine with a simple control-flow analysis, which VBlocks are

guaranteed to be executed with the method’s variability context (in a nutshell, all VBlocks that

dominate the method exit) and mark all variables stored in other VBlocks as conditional, as they

may be stored only in restricted contexts. As is common for data-flow analyses, we repeat these

computations until a fixpoint is reached.

Based on our analysis, we transform bytecode based on a potentially smaller number of VBlocks

(because some jumps are statically guaranteed to be non-conditional when their expression does

not have the lift bit). We also transform only variables and instructions with the lift bit. We in-

troduce additional instructions to translate concrete values into conditional values when values

flow from unmodified into transformed code (i.e., just wrapping the concrete value in a V instance,

boxing primitive types if necessary), such that our invariants still hold from the perspective of the

transformed instructions.

Our current analysis is very conservative, because it assumes all fields and method signatures

are conditional, thus most savings relate to constants and initialization sequences. Nonetheless, in

the programs of our evaluation (Sec. 6), we can statically decide to not lift up to 32.6 percent of

all instructions, which however has only a marginal impact on performance. We hope that future

work can push this analysis even further by performing an inter-procedural analysis to determine

which methods and method arguments need to be transformed, potentially providing multiple

transformed or partially transformed copies of the same method.

4
https://github.com/chupanw/vbc

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://github.com/chupanw/vbc

1:18 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

5.2 Optimization: Using Model Classes
As discussed in Section 3.2, we provide a mechanism for model classes with which we can implement

custom implementations for classes where automated transformations are not possible (e.g., native

methods, environment barrier) or inefficient. In fact, it is often possible to provide more efficient

implementations of common data-structure implementations that are specifically designed for

variability [Meng et al. 2017; Walkingshaw et al. 2014]. Our model-class mechanism allows drop-in

replacements for such classes.

Variational data structures. We implemented a small number of custom variational data struc-

tures for commonly used collections. For example, instead of an automated transformation of the

java.util.LinkedList class, which would support conditional values and conditional successors

of linked-list nodes, we use a custom implementation that internally stores a list of optional elements

and provides corresponding accessor functions. Similarly, rather than automated transformation

of java.util.HashSet objects, we can represent variational sets as a mapping from values to

variability contexts that describe the configuration space in which the set contains that value. As

explored by Walkingshaw et al., such tailored representations are often (though not generally)

much more efficient, especially when they hold many optional elements with different conditions

[Meng et al. 2017; Walkingshaw et al. 2014].

Depending on different computations in different programs, the effectiveness of model classes

varies. For example, our model LinkedList is optimized for iterating elements, so programs that

iterate lists of optional entries frequently gain more benefits from our model classes. Our evaluation

shows different levels of improvement after the drop-in replacement of some model classes, with

up to 6 times speedup for GPL.

Custom access patterns. While custom data structures can store conditional entries more effi-

ciently, common accessor patterns to iterate over list entries can still be very inefficient. For example,

getting first the first, then the second element of a list with optional entries [1α , 2β , 3γ , 4, 5] would
create large conditional values (e.g., ⟨α , 1, ⟨β, 2, ⟨γ , 3, 4⟩⟩⟩ for the first element).

Instead, we detect common access patterns and transform them more intelligently. Instead of

iterating over all elements of the list one by one (where each element can be a conditional value),

we iterate over all optional elements, where the element is a concrete value, but the iteration is

executed under a restricted variability context based on that element’s condition, which marks

under what context this element exists in the list. We integrate the most recent detection and

rewrite of such access patterns of Lazarek [2017]. Our current implementation detects loops that

use iterator and automatically transform such loops to use our specialized list more efficiently.

In our evaluation, there were only few instances that benefited from this optimization, but if they

did, the improvements were substantial. For example, in CheckStyle (see Sec. 6), the program iterates

over a list of 135 optional checks. The basic transformation results in exponential behavior, that

makes it infeasible to execute the code without manual rewrites of the CheckStyle implementation,

whereas our optimization of access patterns allows to execute this code fragments efficiently. Overall,

several researchers have explored variational data structures and access patterns recently [Meng

et al. 2017;Walkingshaw et al. 2014]. Model classes and additional rewrites during the transformation

allow us to easily integrate such advances to improve performance of variational execution on

real-world systems.

5.3 Limitations
Our current implementation of variational execution has some limitations, most of which are related

to low-level details of the JVM or restrictions posed by the Java runtime (e.g., we cannot directly

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:19

modify classes in the java.lang package for safety reasons). Most limitations are engineering chal-

lenges that can be overcome with additional implementations, typically in the form of model classes.

Exception. We distinguish two types of exceptions: non-variational exceptions and variational

exceptions. Non-variational exceptions are thrown or propagated under the current method context.

Variational exceptions are thrown or propagated under a smaller context than the current method

context (i.e., only in some partial configurations). Semantically, non-variational exceptions represent

cases where invoking a method under ctx would always result in the same exception under all
configurations of ctx, whereas variational exceptions occur only in some partial configurations.
Non-variational exceptions are easy to support because the control flow is the same for all

configurations. In fact, we only found non-variational exceptions when executing our subject

systems in evaluation.

Variational exceptions are trickier to handle because method execution might be interrupted

under some partial configurations. If the exception is not caught inside method invocation, returning

from a method results into a normal return value in some configurations and an uncaught exception

in other configurations. Although it is possible to support variational exceptions by delaying

throwing them and wrapping them together with normal return values as a conditional value,

the transformation would complicate the control flow of transformed bytecode in a nontrivial

way, especially if exceptions are supposed to be caught inside the current method or some outer

methods. Since variational exceptions are not that common in our experience, we adopt a less

efficient but easier approach to support variational exceptions: The key idea is to throw an exception

immediately when it occurs and continue the rest of the variational execution only under the

variability context of the exception; then we restart variational execution under the remaining

contexts that did not result in the previous exception, and keep repeating until all contexts have

been explored. Re-executions might affect overall efficiencies of variational execution, but we only

observed variational exceptions in our own artificial examples.

Model classes. We only implemented a handful of model classes (9 classes and in total 1030 lines

of Java code) to tackle the environment barrier required by our subject programs. We consider

all classes that have native methods and classes that are closely related to internals of the JVM

to be behind the environment barrier and use the strategies discusses above, including repeated

invocations and model classes.

Currently we support a large set of Java programs, but wemay need to provide moremodel classes

if another program uses certain advanced language features. We adopt an incremental approach, in

which we carefully monitor the need for model classes at runtime (i.e., when conditional values

are passed across environment barriers). When implementing model classes, our main focus is to

support conditional values. Symbolic execution and model checking face a similar challenge, but we

argue that the implementation effort is lower for variational execution, because we compute with

concrete values and can therefore delegate to existing implementations rather than reimplement

abstractions of those operations.

Reflection. Reflection is relatively simple to handle due to the dynamic nature of our approach.

Since reflection cannot modify bytecode (i.e., we cannot introduce conditional instructions at

runtime), it does not affect our bytecode transformation of classes. We intercept reflection calls

and replace them with our special call stubs, where we wrap arguments into conditional values,

append variability context to the argument list, and invoke the transformed method, just as we

would transform bytecode statically. We have implemented partial support for reflection as needed

by our subject systems incrementally.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:20 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Synchronization. Two instructions (monitorenter and monitorexit) are used to synchronize

concurrent operations. We currently keep them as is, which implies that we lock sections for all

configurations, not just in the current variability context; this may lead to over-synchronization

and potential liveness issues.

Array. As we will see in Section 6, array operations are generally expensive in their current form.

Especially when crossing the environment barrier, we may need to translate conditional arrays into

plain concrete arrays, which can be relatively expensive if the arrays are large. A more efficient

implementation of variational arrays would be future work.

Comparing to VarexJ. Our approach comes with its own limitations, but most of them can be

improved with additional engineering effort. We sidestep most bottlenecks of the state-of-the-art

approach (VarexJ) by transforming bytecode instead of modifying the underlying JVM. Although

the limitations of VarexJ can potentially also be removed by more engineering effort, we argue that

the effort in VarexJ is much higher because of those additional complexities from the JVM itself.

As an example, native methods are notoriously difficult to support in Java PathFinder (JPF), the

underlying JVM of VarexJ, largely because JPF has its own memory model for objects, which cannot

be passed to native methods directly and therefore require additional conversion. In contrast, native

methods can be supported in our approach by providing simple model classes to handle conditional

values so that concrete values can be passed to native methods.

6 EMPIRICAL EVALUATION
In an empirical evaluation, we now execute a number of configurable systems to assess perfor-

mance (time and memory consumption) and effectiveness of sharing. Specifically, we compare our

implementation against repeatedly executing the unmodified code in all configurations (brute-force

execution)
5
and against VarexJ [Meinicke et al. 2016], a state-of-the-art variational execution engine

for Java, which executes bytecode with a modified virtual machine based on Java Pathfinder. While

performance measures implicitly indicate the benefits of sharing, we additionally empirically assess

how often our VBlock ordering results in optimal sharing at runtime, especially for methods for

which we cannot guarantee optimal sharing statically.

6.1 Experimental Setup

Benchmarks. Table 1 shows the benchmark programs used in this study. For comparability, we use

the same set of benchmark programs from VarexJ [Meinicke et al. 2016], which includes programs

from various domains: Jetty 7 is a HTTP server; Checkstyle is a static coding style checker for Java

programs; Prevayler is an in-memory database system; QuEval is an academic evaluation framework

for database index structures; Elevator, GPL and E-Mail are commonly used benchmarks from the

software product-line community that are designed to have many variations. These programs have

6 to 141 options, each of which is a boolean controlling inclusion or exclusion of a feature. Feature

combinations are usually restricted by a feature model [Schroeter et al. 2012]. The goal of analyzing

these programs is to estimate the effort of exploring a big configuration space, which can be useful

for testing, static analysis, and so forth. We execute each programwith a representative input, which

in each system covers all configuration options and significant parts of implementation. For example,

we feed Checkstyle with 4 Java source code files and use 135 different checkers to check coding style.

Implementation and Hardware. To compare with our tool VarexC, we use the latest VarexJ code
base as of 12/12/2017, which includes the most recent optimizations, added after the last publication.

5
For benchmark programs that have more than 20 configuration options, we randomly select 1 million valid configurations

for measuring.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:21

Both VarexC and VarexJ are executed with Java HotSpot
TM

64-bit Server VM (v1.8.0_161). We use a

laptop with 2.30GHz Intel Core i7 CPU and 16GB system memory. All results are measured when

the machine is idle and unloaded.

Performance Measurement. We measure performance in three different settings:

• First, we measure the performance of executing the unmodified program in every single con-

figuration separately on a commodity JVM. Since the execution time may differ significantly

between configurations, we report both the average execution time (reported as µJVM) and

the execution time of the slowest configuration (reported as max JVM).

• Second, we measure the time it takes VarexJ, the state of the art variational interpreter built on

top of Java Pathfinder, to execute the program across all configurations (reported as VarexJ).
• Finally, we measure how long it takes to execute the program across all configurations by

executing the modified bytecode with a commodity JVM (reported as VarexC).

Ideally, the performance of variational execution (VarexJ and VarexC) would be between the

execution time of the slowest configuration (max JVM) and the combined execution time of all con-

figurations (µJVM ·number of configurations): Variational execution needs to at least execute all in-

structions of the slowest configuration, but it can usually share effort amongmultiple configurations.

In all three cases, we measure steady-state performance for each benchmark, based on repeated

executions [Georges et al. 2007]. Steady-state measurement excludes JVM startup time, which

typically dominates by JIT compilation and class loading. We do not compare startup performance

because VarexJ is implemented as a Java interpreter itself—in addition to loading classes of bench-

mark programs, VarexJ needs to load a lot of necessary classes for the meta-circular interpreter to

work, which would bias our results against VarexJ. For VarexC, we exclude the bytecode transfor-

mation time from measurement because transformation happens once for each program, similar to

compiling source code. We only measure VarexC with all optimizations (see Section 5) for brevity.

Following the suggestion from Georges et al. [2007], we measure steady-state performance in the

following steps:

(1) Start a JVM invocation i and iterate the benchmark until a steady-state is reached, i.e., once the

coefficient of variation (CoV) of 10 consecutive iterations falls below a predefined threshold,

which is 0.02 in our case.

(2) For the JVM invocation i , compute the mean execution time of those 10 steady iterations,

and denote it as x̄i .

(3) Repeat Step (1) and (2) for 10 times and compute the overall mean x̄ =
∑

10

i=1
x̄i

10
. Finally, we

report x̄ as the measurement result.

In the abovemeasurement, Step (1) and (2) are designed towarm up the JVM, excluding factors like

class loading and JIT compilation. These factors are less interesting to our evaluation because our

main goal is to measure performance of variational execution. The coefficient of variation threshold

is useful for controlling the effect of garbage collection. Step (3) is designed to minimize non-

determinism of JIT compilation across JVM invocations, because JVM uses timer-based sampling

to drive JIT optimization (e.g., which methods to optimize, at what level). Other main sources

of non-determinism include thread scheduling and garbage collection. Thread scheduling is less

of a concern for us because all programs except Jetty are single-threaded. Regarding Jetty, we

configure Jetty to run a small server that has minimal thread scheduling. Georges et al. [2007]

recommends reporting a confidence interval instead of the mean alone. However, as we will show,

the performance difference between our approach and VarexJ is so large that reporting confidence

intervals is unnecessary. The difference is so obvious and the variation so small in comparison

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:22 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Subject LOC #Opt #Config µJVM max JVM VarexJ VarexC VarexJ/ VarexJ/ VarexC/

(in ms) (in ms) (in ms) (in ms) VarexC maxJVM maxJVM

Jetty 145, 421 7 128 949 1, 246 166, 340 4, 660 36x 133x 4x

Checkstyle 14, 950 141 > 2
135

811 946
∗89, 366 3, 825 23x 94x 4x

Prevayler 8, 975 8 256 13 44 33, 124 725 46x 753x 16x

QuEval 3, 109 23 940 0.03 0.38 2, 354 1, 244 2x 6, 195x 3, 274x

GPL 662 15 146 0.55 6.23 4, 691 479 10x 753x 479x

Elevator 730 6 20 0.03 0.07 45 7.88 6x 643x 113x

E-Mail 644 9 40 0.02 0.06 21 6.19 3x 350x 103x

Table 1. Statistics about benchmark programs and performance comparison among JVM, VarexJ and VarexC. Statistics
include lines of code, number of (boolean) options, and number of valid configurations. Numbers in bold denote the
cases where VarexC or VarexJ outperforms brute force execution. The last three columns denote the relative speedup or
slowdown.
∗ Checkstyle contains a loop over a list of many optional elements. For VarexJ, we had to manually rewrite that loop to allow measurement (due to exponential

behavior, we would run out of memory otherwise).

that statistical tests are not needed. Due to this large effect size, we omit confidence intervals for

brevity.

Memory usage. To measure memory usage, we calculate the used heap space by calling APIs of

java.lang.Runtime at every method entry, and then record themaximum heap space used through-

out the entire JVM invocation. Even with this frequent sampling, we cannot guarantee accurate

measurement of memory usage, largely because of the non-deterministic garbage collection and

bulk memory allocation. Thus, the memory measurement is only useful for coarse-grained compar-

ison. For VarexC and VarexJ, we perform each single measurement on a given subject program by

executing it once. As a comparison goal, we also measure the memory usage of executing one repre-

sentative configuration on a commodity JVM (reported as JVM). The representative configuration

is chosen as a valid configuration with the most features enabled. Since VarexC and VarexJ explore

the entire configuration space, their memory consumption is strictly larger than execution of a

single configuration. To reduce noise, we repeat each measurement 10 times and report the average.

Sharing Efficiency. As discussed in Section 4.3, our approach is able to give static guarantees of

optimal sharing to methods that satisfy certain conditions. To assess sharing for other methods, we

monitor the sharing in our benchmark executions. Specifically, we collect traces of which VBlocks

are executed under which conditions and subsequently analyze whether those traces were optimal,

with regard to sharing. For each variational trace, we expand it into a set of all distinct concrete

traces that it represents, and then compute the alignment of these concrete traces. Since an optimal

alignment of n traces is NP-hard [Wang and Jiang 1994], we compute pairwise alignments between

all distinct concrete executions using Needleman-Wunsch algorithm [Needleman and Wunsch

1970]. If the observed variational trace is longer than the longest pairwise alignment, we consider

the sharing as not optimal. This pairwise approximation is conservative in that we may consider

executionswith optimal sharing as not optimal if the n-way alignment is longer than the longest pair-

wise alignment; conversely, if the variational trace is not longer than the longest pair-wise alignment

we can be sure that the sharing is optimal. Our pairwise alignment approach sidesteps the need

of computing optimal alignment, but it still has scalability issues if there are too many pairs, which

happen sometimes in our evaluation. For those cases, we conservatively mark them as suboptimal.

6.2 Execution Time
Table 1 summarizes the performance results, showing that VarexC outperforms VarexJ by a factor

between 2 to 46. Variational execution is obviously significantly slower than executing a single

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:23

configuration (between 4 and 3200 times slower), but as configuration spaces grow exponentially,

this slowdown is often practical to cover the entire space.

VarexC vs. VarexJ. Comparing VarexC and VarexJ, we can see that VarexC outperforms VarexJ

in all cases, with a speedup of 2 to 46. To better understand the speedup, it is useful to divide our

subject programs into two groups and discuss them separately.

QuEval, GPL, Elevator, E-mail are academic examples that only need basic language features, such

as arithmetic computation and array operations. Thus, a comparison between VarexC and VarexJ

on these programs reveals the performance gap between bytecode transformation and interpreter

instrumentation. As we can see, we are up to 10 times faster than VarexJ, due to lower interpreter

overhead and JVM optimizations. QuEval is dominated primarily by heavy computations with arrays

with only moderate sharing that are expensive in both VarexC and VarexJ. In a micro-benchmark,

we confirmed that sorting on an array of 1000 variational elements with VarexC is roughly 2 times

faster than VarexJ, which likely explains the low performance difference for this program.

Jetty, Prevayler, Checkstyle are medium-sized real-world programs that are widely used in

practice. These programs use various more advanced JVM features, including dynamic class loading

(CheckStyle), network access (Jetty) and file access (Prevayler). Since VarexJ is built upon a research

JVM, it inherits limitations from its underlying JVM in this regard, whereas code transformed with

VarexC remains portable across JVMs.

VarexC vs. Individual Executions. To investigate how useful configuration-complete analyses

are in practice, we compare VarexC (and for comparison also VarexJ) with the time it takes to

execute individual configurations, both average configurations and worst-case configurations.

The overhead of variational execution is generally high, which is explained both by the instru-

mentation overhead (creating and propagating conditional values, boxing, control-flow indirections,

SAT solving at runtime), and by doing the additional work of executing all configurations. The over-

head is usually only justified for large configuration spaces, and so VarexC (as VarexJ) outperforms

the brute-force execution of all configurations only for Jetty, CheckStyle, and Prevayler.

QuEval, GPL, Elevator, Email represent extreme cases where variations are used heavily. As we

can see from Table 1, up to 940 configurations are encoded in merely 3, 109 lines of code for QuEval.

When program variations (we called them features interchangeably) present compactly, the sharing

of data and execution becomes less frequent, and thus explains why VarexC and VarexJ cannot

outperform brute force because variational execution relies on sharing to be efficient. In fact, there

is a loop in Checkstyle that causes state space explosion for VarexJ because of looping a list that

has 2
135

variants. VarexC uses a model class to handle this loop gracefully, as discussed in Section 5.

However, unlike these extreme cases, programs in practice often adopt separation of concerns and

thus features do not interact very heavily all the time [Meinicke et al. 2016].

Jetty, Prevayler, Checkstyle implement configuration options such that they are often orthogonal

to each other or have relatively local effects, which facilitates sharing better. As we can see in Table 1,

by exploiting sharing, the performance of VarexC for exploring the entire configuration space is even

relatively close to executing only the slowest configuration, with a slowdown as small as a factor of 4.

Verdict. We argue that the runtime overhead of VarexC is reasonable except for one case (QuEval)

where expensive array operations with little sharing dominate the performance. Runtime overhead

does increase for the cases where interactions of variations are heavily used, but the overhead

amortizes quickly in large configuration spaces, which grow exponentially with the number of

options, unless all options interact. More importantly, research shows that interactions do not

increase with the worst-case exponential behavior in most cases [Meinicke et al. 2016; Reisner et al.

2010]. Even the academic programs that are designed to interact heavily are still well-behaved with

plenty of sharing despite many interactions. Finally, we argue that the overhead is worthwhile if

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:24 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Subject JVM VarexJ VarexC VarexJ/ VarexJ/ VarexC/

(in MB) (in MB) (in MB) VarexC JVM JVM

Jetty 268 2, 739 648 4.2 10.2 2.4

Checkstyle 504 1, 106 835 1.3 2.2 1.7

Prevayler 65 1, 378 288 4.8 21.1 4.4

QuEval 59 301 282 1.1 5.1 4.8

GPL 141 342 151 2.3 2.4 1.1

Elevator 58 92 67 1.4 1.6 1.2

E-Mail 59 67 67 1.0 1.1 1.1

Table 2. Memory usage comparison of JVM, VarexJ and VarexC.

we consider the ability to identify all interactions among all options, for which the alternative is

sampling only a small set of configurations.

In summary, VarexC outperforms VarexJ with a speedup of 2 to 46 times. The performance gain
comes from various factors, including further optimizations at low level and portability to mature JVM
implementations, all of which benefit from our strategy of transforming bytecode instead of modifying
a language interpreter. Moreover, VarexC is performant and efficient for practical use in analyzing the
whole configuration space of programs.

6.3 Memory Usage
Table 2 summarizes the memory usage results, showing that VarexC is more memory efficient

than VarexJ in all cases except for a tie in E-Mail. Conceptually, VarexC and VarexJ perform a

similar computation, so the extra memory consumed by VarexJ could result from two main aspects:

less efficient sharing in data and the overhead of the underlying meta-circular interpreter. As

the differences are fairly consistent across benchmarks, we attribute most efficiency gains to the

interpreter’s overhead rather than to differences in sharing. Both VarexC and VarexJ, as expected,

consume more memory when compared to the execution of a single configuration, with the gaps

noticeably smaller for VarexC. The memory overhead of VarexC largely comes from analyzing

other configurations. We argue that the extra memory overhead shown in Table 2 is acceptable for

modern machines.

In summary, VarexC is more memory efficient than VarexJ, due to more efficient sharing in data
and less overhead from the implementation. Moreover, VarexC has the memory efficiency to analyze
the entire configuration space in practice.

6.4 Sharing Efficiency
Table 3 shows how efficient our sharing of VBlocks is in practice. As we can see, we can make static

guarantees for 89.7 percent of all the methods in our benchmark programs. When observing the

executions, those methods with static guarantees account for 88.2 percent of the executed methods,

and we observed that 99.8 percent for the remaining ones were optimal as well. The number of

method executions that redundantly execute VBlocks with suboptimal sharing is minimal.

In summary, sharing in VarexC is efficient, with static guarantees to 89.7% of all methods. For methods
with no static guarantees, VarexC achieves runtime optimality for 99.8% of those method invocations.

7 RELATEDWORK
We implement variational execution by transforming bytecode.

Variational execution. Variational execution is a technique to execute a program for different

values while sharing common computations as far as possible. It has similarities with model

checking and symbolic execution, but performs concrete executions, where multiple concrete

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:25

Method analysis (static) Method execution (dynamic)

Guaranteed No Guaranteed Observed as Observed as

Subject Optimal Guarantee Optimal Optimal Non-Optimal

Jetty 2, 667 257 19, 043 3, 734 0

Checkstyle 2, 878 281 1, 992, 879 268, 689
∗
230

Prevayler 722 108 58, 274 5, 036 0

QuEval 458 103 57, 383 8, 920 267

GPL 244 44 34, 641 3, 476 0

Elevator 119 13 2, 453 218 1

E-Mail 314 40 2, 264 120 0

Total 7, 402 846 2, 166, 937 290, 193 498

Table 3. Sharing efficiency of VarexC. We analyze methods both statically and at runtime. At runtime, we distinguish
between method executions that are statically guaranteed to be optimal, that are dynamically observed to be optimal, and
that are dynamically observed to be not optimal.
∗ Our alignment analysis has scalability issues with some variational traces of Checkstyle, mainly because there are too many features (up to 130) in each single

trace, resulting into too expensive pairwise alignment. For those variational traces, we conservatively report them as non-optimal.

values are distinguished with conditions external to the program, and focuses on maximizing

sharing during the execution by storing variations in data locally and by aggressively merging

control-flow differences. Variational execution has a number of existing and potential application

scenarios in different lines of work. In each case, a program shall be executed for many similar

inputs, typically to observe the similarities and differences among executions, often with the focus

on interactions among multiple differences.

• A common use case is testing configurable systems, in which a single test case should be

executed over a large configuration space. For example, Nguyen et al. [2014] used variational

execution to render the content of WordPress while controlling how various plugins interact

and affect the execution; Meinicke et al. [2016] and Kim et al. [2012] executed Java programs

with configuration parameters (as used in our evaluation) to observe differences among different

configurations. Given test cases to provide global or feature-specific specifications, variational

execution can efficiently check such specifications by executing test cases over large configuration

spaces [Kästner et al. 2012; Kim et al. 2012; Nguyen et al. 2014]. Soares et al. [2018] furthermore

used differences among executions as clues to find suspicious feature interactions. Reisner et al.

[2010] used symbolic execution to also detect feature interactions, which however required a lot of

effort (80 machine weeks to symbolically execute 319 tests with less than 30 configuration options

for 10KLOC programs) due to limited sharing abilities of symbolic execution [Meinicke et al. 2016].

• Austin and Flanagan [2012] uses variational execution (under the name faceted execution) to

track information flows in a program. In this context, the program is evaluated with sensitive

and nonsensitive values at the same time, where the equivalent of options are decisions who is

allowed to see which value. In contrast to prior multi-execution work which observes differences

between two executions, Austin’s analysis based on variational execution can track interactions

among multiple decisions. This line of work has been extended with models for variational

database storage [Yang et al. 2016]. There are also libraries to enable developers to directly write

variational programs for this information-flow analysis, rather than relying on a variational

execution engine [Austin et al. 2013; Schmitz et al. 2018, 2016].

• Variational execution can further be used to explain the differences in program executions among

multiple inputs [Meinicke et al. 2018], in line with delta debugging [Kwon et al. 2016; Sumner

and Zhang 2013; Zeller 2002].

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:26 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

• Variational execution is potentially useful for approaches that speculatively change source code

or execution to evaluate the consequences. For example, mutation testing [Jia and Harman 2011]

and generate-and-validate automatic program repair [Le Goues et al. 2012] typically try many

small changes to the source code and re-execute the test suite for each change to evaluate test

suite quality or find patches. Zhang et al. [2007] speculatively switches predicates in program

and re-executes the program to detect execution omission errors. Brun et al. [2011] proactively

merges different versions and repeatedly executes the test suite to detect collaboration conflicts

early. By encoding changes as variations, variational execution can explore the effects of changes

efficiently and uncover interesting interactions of changes [Wong et al. 2018].

• Finally, variational execution can be used to speed up similar computations if there is sufficient

sharing to offset the overhead. For example, Sumner et al. [2011] shares similarities among exe-

cutions of simulation workloads and computes with several values in parallel. Wang et al. [2017]

shares executions of mutated programs with equivalence modulo states in the same process

and forks new processes only if there are differences in program states after executing mutated

statements. Tucek et al. [2009] executes patched and unpatched programs together to share

redundant computations when testing a patch. Variational execution has the potential to scale

such use cases to exploring interactions among multiple changes.

Variational execution is fundamentally different from traditional approaches of multi-

execution [De Groef et al. 2012; Devriese and Piessens 2010; Hosek and Cadar 2013; Kolbitsch

et al. 2012; Su et al. 2007] and delta debugging [Kwon et al. 2016; Sumner and Zhang 2013; Zeller

2002] that execute programs repeatedly (either variants of the program or the same program with

different inputs) to compare those executions to identify, for example, information-flow issues or

causes of bugs. These kinds of approaches execute programs repeatedly in parallel and align those

executions either afterward or through probes at specific points of the executions. In contrast,

variational execution exploits sharing and allows to observe differences among executions during

the execution.

Ideas similar to variational execution can be found also in approaches for model checking and

symbolic execution [d’Amorim et al. 2008; Sen et al. 2015; von Rhein et al. 2011], specifically

concepts to store variations as local as possible to increase sharing and facilitate joining. Such

tools can potentially be used for similar purposes when differences among inputs are modeled as

symbolic decisions, but all other inputs are concrete. However, as Meinicke et al. [2016] has shown,

current approaches are less effective at sharing than the aggressive sharing in variational execution.

Implementing Variational Execution. Existing variational execution approaches (and related

approaches) are typically implemented by modifying the execution engine [Austin and Flanagan

2012; Barthe et al. 2012; Kästner et al. 2012; Kim et al. 2012; Maurer and Brumley 2012; Meinicke

et al. 2016; Sen et al. 2015], typically research prototypes or metacircular interpreters that cause

significant overhead and provide only limited support for all language features. Schmitz et al. [2018,

2016] provided a library for Haskell with which users can directly implement programs to use

variational execution, similar to our example in Section 2.

Instead, we pursue an approach in which we transparently modify Java bytecode to achieve

variational execution on a commodity JVM. Our approach was inspired by Phosphor [Bell and

Kaiser 2014], a dynamic taint analysis for Java that tracks taints by instrumenting bytecode. In

contrast to Phosphor, our modifications are significantly more extensive, as we need not only

track additional data, but entirely change how computations and control flow happen in the

program. CROCHET allows to explore different inputs to the same function by modifying bytecode

to perform checkpoints and rollbacks on the heap of a commodity JVM [Bell and Pina 2018].

Comparing to CROCHET, our approach can achieve a more fine-grained sharing of executions while

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:27

exploring different alternative values. The only other approach to execute programs variationally

with commodity infrastructure is the implementation behind Jeeves [Yang et al. 2016], that uses

metaprogramming to achieve similar changes for a small subset of Python. Their transformations

are incomplete and not described beyond their implementation for a small example program.

Quality assurance for configurable systems. A main goal of variational execution is testing

configurable systems. There are a wide range of approaches to analyze configurable systems

with large configuration spaces, typically focused on reusing test cases across product variants,

on sampling and on static analysis [Engström and Runeson 2011; Medeiros et al. 2016; Nie and

Leung 2011; Pohl et al. 2005; Thüm et al. 2014]. Sampling strategies analyze or execute a subset

of configurations, but such analysis is neither exhaustive nor does it allow to easily compare

executions [Nie and Leung 2011]. For static analyses (including type checking, model checking,

and data-flow analysis), researchers have explored many sharing strategies to encode variability

locally (e.g., alternative types for expressions), to reason about large configuration spaces with

propositional formulas, and to join computations early [Liebig et al. 2013; Thüm et al. 2014]. In

a sense, variational execution can be seen as a generalization of these sharing techniques for an

interpreter [Kästner et al. 2012]. Bodden et al. [2013] and Dimovski et al. [2017] describe how to lift

existing static analyses by providing a variational framework on how to execute them.

8 CONCLUSIONS
While variational execution has been applied in different areas such as testing highly configurable

systems and tracking information flow, an efficient implementation is still missing for practical

use. In this work, we propose to achieve variational execution by transforming programs at the

bytecode level. Our approach is transparent to the developers, and has various advantages such as

making use of underlying optimizations of the JVM and remaining portable to different JVMs. Our

approach transforms individual instructions and modifies the control flow of methods to exploit

sharing of common execution across configurations. Even with aggressive modification to the

control flow decisions, we formally prove that our transformation to the control flow is correct for

all cases, and optimal for a large subset of cases. We further optimize our implementation with

two different optimizations, each of which optimizes our approach from different aspects. With

an empirical evaluation on 7 highly configurable systems, we show that our approach is 2 to 46

times faster while saving up to 3 quarters of memory usage when compared to the state-of-the-art.

A monitoring at runtime further confirms that we achieve 99.8% optimality for the methods that

we cannot guarantee optimal sharing. Overall, our results indicate that our approach is useful for

analyzing highly configurable systems in practice.

ACKNOWLEDGMENTS
This work has been supported in part by the NSF (awards 1318808, 1552944, and 1717022) and

AFRL and DARPA (FA8750-16-2-0042). Lazarek was supported through Carnegie Mellon’s Research

Experiences for Undergraduates in Software Engineering. We thank Jonathan Bell for his advice on

bytecode transformation.

REFERENCES
Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Information Flow. In Proceedings of the ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 165–178.

Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. 2013. Faceted Execution of Policy-Agnostic

Programs. In Proceedings of the ACM SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS).
ACM, 15–26.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:28 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic

Execution Techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 50:1–50:39.
Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens, and Exequiel Rivas. 2012. Secure Multi-Execution

through Static Program Transformation. In Formal Techniques for Distributed Systems. Springer, 186–202.
Jonathan Bell and Gail E. Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow in Commodity JVMs. In Proceedings of

the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA). ACM,

83–101.

Jonathan Bell and Luís Pina. 2018. CROCHET: Checkpoint and Rollback via Lightweight Heap Traversal on Stock JVMs. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 17:1–17:31.

Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini. 2013. SPLLIFT: Statically

Analyzing Software Product Lines in Minutes Instead of Years. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, 355–364.

Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive Detection of Collaboration Conflicts. In

Proceedings of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 168–178.

Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. 2003. Feature Interaction: A Critical Review

and Considered Forecast. Computer Networks 41, 1 (2003), 115–141.
Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. 2008. Delta Execution for Efficient State-Space Exploration of

Object-Oriented Programs. IEEE Transactions on Software Engineering (TSE) 34, 5 (2008), 597–613.
Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012. FlowFox: A Web Browser with Flexible

and Precise Information Flow Control. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS). ACM, 748–759.

Dominique Devriese and Frank Piessens. 2010. Noninterference Through Secure Multi-Execution. In Proceedings of the IEEE
Symposium on Security and Privacy (SP). IEEE, 109–124.

Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, and Andrzej Brabrand, Clausand Wąsowski. 2017. Efficient Family-Based

Model Checking via Variability Abstractions. International Journal on Software Tools for Technology Transfer (STTT) 19, 5
(2017), 585–603.

Emelie Engström and Per Runeson. 2011. Software Product Line Testing - A Systematic Mapping Study. Information and
Software Technology 53, 1 (2011), 2–13.

Martin Erwig and Eric Walkingshaw. 2013. Variation Programming with the Choice Calculus. In Generative and Transfor-
mational Techniques in Software Engineering IV (GTTSE). Springer, 55–100.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications (OOPSLA). ACM, 57–76.

Klaus Havelund and Thomas Pressburger. 2000. Model Checking JAVA Programs using JAVA PathFinder. International
Journal on Software Tools for Technology Transfer (STTT) 2, 4 (2000), 366–381.

Petr Hosek and Cristian Cadar. 2013. Safe Software Updates via Multi-Version Execution. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 612–621.

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on
Software Engineering (TSE) 37, 5 (2011), 649–678.

Christian Kästner. 2017. Differential Testing for Variational Analyses: Experience from Developing KConfigReader. Technical
Report 1706.09357. arXiv.

Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel, Tillmann Rendel, and Klaus Ostermann.

2012. Toward Variability-Aware Testing. In Proceedings of the International Workshop on Feature-Oriented Software
Development (FOSD). ACM, 1–8.

Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. 2012. Shared Execution for Efficiently Testing Product Lines. In

Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE). IEEE, 221–230.
Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan Xu. 2015. Dual Execution for On

the Fly Fine Grained Execution Comparison. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 325–338.

Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2012. Rozzle: De-Cloaking Internet Malware.

In Proceedings of the IEEE Symposium on Security and Privacy (SP). IEEE, 443–457.
Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan Saltaformaggio, Xiangyu Zhang, and

Dongyan Xu. 2016. LDX: Causality Inference by Lightweight Dual Execution. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM, 503–515.

Lukas Lazarek. 2017. How to Efficiently Process 2
100

List Variations. In Proceedings Companion of the ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Applications: Software for Humanity (SPLASH). ACM,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:29

36–38.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, andWestleyWeimer. 2012. GenProg: A Generic Method for Automatic

Software Repair. IEEE Transactions on Software Engineering (TSE) 38, 1 (2012), 54–72.
Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and Christian Lengauer. 2013. Scalable Analysis

of Variable Software. In Proceedings of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 81–91.

Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking Load-Time Configuration Options. In Proceedings of the
ACM/IEEE International Conference on Automated Software Engineering (ASE). ACM, 445–456.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java® Virtual Machine Specification (1 ed.). Addison-

Wesley Professional.

Matthew Maurer and David Brumley. 2012. Tachyon: Tandem Execution for Efficient Live Patch Testing. In Proceedings of
the USENIX Security Symposium. USENIX, 617–630.

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. 2016. A Comparison of 10 Sampling

Algorithms for Configurable Systems. In Proceedings of the International Conference on Software Engineering (ICSE). ACM,

664–675.

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi. 2015. The Love/Hate Relationship with

the C Preprocessor: An Interview Study. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Vol. 37. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 495–518.

Jens Meinicke, Chu-Pan Wong, Christian Kästner, and Gunter Saake. 2018. Understanding Differences among Executions with
Variational Traces. Technical Report 1807.03837. arXiv.

Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter Saake. 2016. On Essential Configuration

Complexity: Measuring Interactions in Highly-Configurable Systems. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, 483–494.

Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian Kästner. 2017. A Choice of Variational

Stacks: Exploring Variational Data Structures. In Proceedings of the International Workshop on Variability Modelling of
Software-Intensive Systems (VAMOS). ACM, 28–35.

Saul B. Needleman and Christian D. Wunsch. 1970. A General Method Applicable to the Search for Similarities in the Amino

Acid Sequence of Two Proteins. Journal of Molecular Biology 48, 3 (1970), 443–453.

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring Variability-Aware Execution for Testing

Plugin-Based Web Applications. In Proceedings of the International Conference on Software Engineering (ICSE). ACM,

907–918.

A Nhlabatsi, R Laney, and B Nuseibeh. 2008. Feature Interaction: the Security Threat from within Software Systems. Progress
in Informatics (2008), 75–89.

Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing. ACM Computing Surveys (CUSR) 43, 2 (2011),
11:1–11:29.

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product Line Engineering: Foundations, Principles and
Techniques. Springer.

Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter. 2010. Using Symbolic Evaluation to

Understand Behavior in Configurable Software Systems. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 445–454.

Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo. 2018. Faceted Secure Multi Execution. In

Proceedings of the ACM Conference on Computer and Communications Security (CCS). ACM.

Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cormac Flanagan. 2016. Faceted Dynamic

Information Flow via Control and Data Monads. In Proceedings of the International Conference on Principles of Security
and Trust - Volume 9635. Springer, 3–23.

Julia Schroeter, Malte Lochau, and Tim Winkelmann. 2012. Multi-Perspectives on Feature Models. In Proceedings of the
International Conference on Model Driven Engineering Languages and Systems (MODELS). Springer, 252–268.

Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE: Multi-Path Symbolic Execution Using Value

Summaries. In Proceedings of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 842–853.

Larissa Rocha Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Eduardo Santana de Almeida. 2018. VarXplorer:

Lightweight Process for Dynamic Analysis of Feature Interactions. In Proceedings of the International Workshop on
Variability Modelling of Software-Intensive Systems (VAMOS). ACM, 59–66.

Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving Configuration Management with Operating

System Causality Analysis. In Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles (SOSP). ACM,

237–250.

William N. Sumner, Tao Bao, Xiangyu Zhang, and Sunil Prabhakar. 2011. Coalescing Executions for Fast Uncertainty

Analysis. In Proceedings of the International Conference on Software Engineering (ICSE). ACM, 581–590.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:30 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

William N. Sumner and Xiangyu Zhang. 2013. Comparative Causality: Explaining the Differences between Executions. In

Proceedings of the International Conference on Software Engineering (ICSE). IEEE, 272–281.
Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A Classification and Survey of Analysis

Strategies for Software Product Lines. ACM Computing Surveys (CSUR) 47, 1 (2014), 6:1–6:45.
Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. 2009. Efficient Online Validation with Delta Execution. In Proceedings of

the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM,

193–204.

Alexander von Rhein, Sven Apel, and Franco Raimondi. 2011. Introducing Binary Decision Diagrams in the Explicit-State

Verification of Java Code. In Proceedings of the Java Pathfinder Workshop.
EricWalkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden. 2014. Variational Data Structures: Exploring

Tradeoffs in Computing with Variability. In Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software (Onward!). ACM, 213–226.

Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao. 2017. Faster Mutation Analysis via Equivalence Modulo

States. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM,

295–306.

Lusheng Wang and Tao Jiang. 1994. On the Complexity of Multiple Sequence Alignment. Journal of Computational Biology
1 (1994), 337–348.

Chu-Pan Wong, Jens Meinicke, and Christian Kästner. 2018. Beyond Testing Configurable Systems: Applying Variational

Execution to Automatic Program Repair and Higher Order Mutation Testing. In Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering - New Ideas and Emerging
Results Track (ESEC/FSE-NIER). ACM.

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and Stephen Chong. 2016. Precise,

Dynamic Information Flow for Database-backed Applications. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, 631–647.

Andreas Zeller. 2002. Isolating Cause-Effect Chains FromComputer Programs. In Proceedings of the ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE). ACM, 1–10.

Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv Gupta. 2007. Towards Locating Execution Omission Errors.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,

415–424.

A PROOFS
Lemma (Disjoint Context Lemma). At any point of execution, the contexts of two different

VBlocks are mutually exclusive. That is, ϕ(bi) ∧ ϕ(bj) = False for any i , j.

Proof. We prove by induction and case analysis on the jumping targets of a given VBlock. In

the following, we use b to denote a VBlock, ϕ(b) to denote the variability context of b, and ϕ ′(b) to
denote the new context after context propagation.

Base case. At the beginning of execution, only the entry VBlock has a non-false context. Thus,

ϕ(bi) ∧ ϕ(bj) = False because at least ϕ(bi) or ϕ(bj) equals False.
Induction step. Suppose before execution step k , ϕ(bi) ∧ ϕ(bj) = False, for any i , j. After
execution of the next VBlock, say bl , we need to update the context of bl ’s jumping targets.

• If bl has only one jumping target bm , according to our context propagation, ϕ ′(bl) = False,
ϕ ′(bm) = ϕ(bl) ∨ ϕ(bm). Obviously, ϕ ′(bl) is mutually exclusive to other VBlock context. For

any VBlock context, say ϕ(bo):

ϕ ′(bm) ∧ ϕ(bo) = (ϕ(bl) ∨ ϕ(bm)) ∧ ϕ(bo)
= (ϕ(bl) ∧ ϕ(bo)) ∨ (ϕ(bm) ∧ ϕ(bo))

(3)

According to our induction hypothesis, we haveϕ(bl)∧ϕ(bo) = False andϕ(bm)∧ϕ(bo) = False,
thus induction hypothesis holds after execution of bl .

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:31

• Ifbl has two jumping targetsbm andbn , splitting the execution on conditionX , after executing

bl , we have ϕ
′(bl) = False, ϕ ′(bm) = ϕ(bm) ∨ (X ∧ ϕ(bl)) and ϕ ′(bn) = ϕ(bn) ∨ (¬X ∧ ϕ(bl)).

For any VBlock context, say ϕ(bo):

ϕ ′(bm) ∧ ϕ(bo) = (ϕ(bm) ∨ (X ∧ ϕ(bl))) ∧ ϕ(bo)
= (ϕ(bm) ∧ ϕ(bo)) ∨ (X ∧ ϕ(bl) ∧ ϕ(bo))

(4)

According to our induction hypothesis, we conclude that ϕ ′(bm) ∧ ϕ(bo) = False. Similarly,

we can conclude ϕ ′(bn) ∧ ϕ(bo) = False. Moreover:

ϕ ′(bm) ∧ ϕ ′(bn) = (ϕ(bm) ∨ (X ∧ ϕ(bl))) ∧ (ϕ(bn) ∨ (¬X ∧ ϕ(bl))
= (ϕ(bm) ∧ ϕ(bn))
∨ (ϕ(bm) ∧ ¬X ∧ ϕ(bl))
∨ (ϕ(bn) ∧ X ∧ ϕ(bl))
∨ (X ∧ ϕ(bl) ∧ ¬X ∧ ϕ(bl))

(5)

Again, our induction hypothesis guarantees that ϕ ′(bm) ∧ ϕ ′(bn) = False. Thus, induction
hypothesis holds after execution of bl .

□

Property (Optimal Sharing Property). Given a control flow graph where each node represents
a VBlock, our variational execution on this graph has optimal sharing if it is acyclic or only contains
simple loops. A loop is a simple loop if it satisfies the following three criteria: (1) has only one loop
header; (2) has only one exiting node; (3) has no conditional jumps among nodes in the loop.

As discussed in Section 4.2, the actual variational traces generated by our approach are influenced

by the lexical order of VBlocks in the bytecode. To help us focus on the essential ideas of proving

optimality on control-flow graphs, we introduce one precondition to the lexical order.

Precondition. We assume that the strict transitive predecessor relation aligns with the lexical
order of VBlocks in the bytecode. That is, for any pair of VBlocks bi and bj , if bi is a strict transitive
predecessor of bj , bi precedes bj in the lexical order of bytecode.

We also introduce two useful lemmas.

Lemma A.1. For any two concrete executions of the same simple loop expressed as traces of VBlocks,
the shorter execution is a prefix of the longer execution.

Proof. We prove by contradiction. Let us denote the shorter execution as [x1,x2, . . . ,xm], and
the longer execution as [y1,y2, . . . ,yn], where each xi or yj represents a VBlock in the control-flow

graph andm ≤ n. Since a simple loop has only one loop header and one exiting node, x1 must be

the same as y1, and xm must be the same as yn .
For the shorter trace, let us assume it differs from the longer trace at the element xi (the i − th

element). Thus, [x1,x2, . . . ,xi−1] is the same as [y1,y2, . . . ,yi−1]. Since xi is different from yi , there
must be a conditional jump at xi−1 that jumps to either xi or yi in the control-flow graph. This is

contradicting the simple loop criterion that there are no conditional jumps among nodes in the

loop.

□

Lemma A.2. For any variational execution of a simple loop, the variational trace is a prefix of the
longest concrete execution trace it represents.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:32 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

Proof. We prove by contradiction. Let us denote the variational execution as [v1,v2, . . . ,vm],
and the longest concrete execution as [x1,x2, . . . ,xn], where each vi or x j represents a VBlock
in the control-flow graph. Elements of a variational trace use superscripts to indicate variability

contexts of execution, but they are less important in this proof so we omit them for brevity. Since

a simple loop has only one loop header and one exiting node, v1 must be the same as x1, and vm
must be the same as xn .
Let us assume the variational trace differs from the longest trace at the element vi (the i − th

element). Thus, [v1,v2, . . . ,vi−1] is the same as [x1,x2, . . . ,xi−1]. Since vi is different from xi , there
could be two causes. First, there is a conditional jump at xi−1 that jumps to either vi or xi in the

control-flow graph. Second, during variational execution of the loop, two different VBlocks have

satisfiable contexts, which also requires at least a conditional jump among VBlocks in the loop

because conditional jumps are the only places where we split variability contexts. Both of these

cases contradict the simple loop criterion that there are no conditional jumps among nodes in the

loop.

□

With the precondition and lemmas above, we will prove the original property below. Again,

we prove that, given a control flow graph of VBlocks, our variational execution on this graph has

optimal sharing if it is acyclic or only contains simple loops.

Proof. We prove by case analysis on acyclic control-flow graphs and control-flow graphs with

simple loops, respectively.

Acyclic. For any acyclic control-flow graph, suppose our variational execution generates a trace

tv with n elements. Our static partial ordering between VBlocks ensures that these n elements are

different. Otherwise, suppose bi appears twice in tv , there must be a transitive predecessor of bi
between these two appearances of bi in tv because the control-flow graph is acyclic. However, this

is impossible because bi ’s transitive predecessors can only precede bi in our variational traces, due

to our static partial ordering.

As discussed in Section 4.3, tv represents a set of concrete execution traces under different

restricted contexts. These concrete traces have the following two properties:

• There is no duplicated VBlock in each concrete trace, because the control-flow graph is

acyclic.

• The n different VBlocks in tv must appear in one or more of these concrete traces, because

our variational execution only executes VBlocks with satisfiable contexts.

We denote the optimal sharing of these concrete traces as to . From these two properties, we

know that lenдth(to) = n because each VBlock must occur at least once, and at most once if the

traces are optimally aligned. So, the length of the optimal alignment must be n. Since lenдth(tv) is
also n, we achieve optimal sharing.

Simple Loop. For any control-flow graph with one or more simple loops, we denote a loop as Li ,
with the subscript distinguishing different loops. Suppose our variational execution generates a

trace tv . Our static partial ordering guarantees that tv has the following properties:

• If a loop Li is executed, VBlocks belonging to Li are adjacent to each other in tv , without
any VBlock that does not belong to Li in between. We call this region a looping region of Li ,
denoted as RVi . This can be proven by contradiction. If there is a VBlock b (not belonging to

Li) inside RVi , between bx and by (both bx and by are part of the loop Li), b must have the

same transitive predecessor relation with bx and by , because b is not part of the loop Li . If
this is the case, our static partial ordering would require b to either precede both bx and by

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:33

or fall behind bx and by in the trace. This is contracting to the assumption that b is between

bx and by in the trace tv .
• In tv , any VBlock b that is outside looping regions have no duplication. This can also be

proven by contradiction. Suppose b (not belonging to any loops) appears twice in tv , there
must be a transitive predecessor of b between these two appearances of b in tv because b
does not belong to any loops. However, b’s transitive predecessor cannot appear between
two occurrences of b in tv , due to our static partial ordering.

• For any loop Li , there is at most one looping region RVi in tv . Otherwise, Li must be a inner

loop of another bigger loop. If this is the case, there must be at least one conditional jump in

the outer loop, and therefore the outer loop fails to satisfy the simple loop premise.

Based on these properties, we have lenдth(tv) =
∑
i
lenдth(RVi) + n, where lenдth(RVi) denotes

the number of elements in RVi , and n denotes the number of VBlocks in tv that are not part of any

loops.

Now if we consider the concrete traces represented by tv , in order to produce the optimal merging

of these traces to , we need to take two steps: (1) merge looping regions of concrete traces and (2)

merge VBlocks that do not belong to any loop.

(1) From LemmaA.1, we know that the length of merging all looping regions of Li across concrete
traces is determined by the longest looping region, which we denote as lenдth(RMaxi).

(2) Merging VBlocks that do not belong to any loop would result in n elements. This is equivalent

to merging concrete traces of acyclic control-flow graphs, which we have already proven in

the first half of this proof.

Thus, we have lenдth(to) =
∑
i
lenдth(RMaxi) + n. For any loop Li , the length of its looping

region RVi in tv (if exists) is bounded by lenдth(RMaxi), (i.e., lenдth(RVi) ≤ lenдth(RMaxi)), as we
have proven in Lemma A.2. On the other hand, RVi is guaranteed to represent the longest looping

of Li in concrete traces because the context with the longest looping must be executed to satisfy

correctness. So, lenдth(RVi) ≥ lenдth(RMaxi), which gives us lenдth(RVi) = lenдth(RMaxi). Since
lenдth(tv) = lenдth(to), we achieve optimal sharing.

□

B EXAMPLE OF TRANSFORMED BYTECODE
As a concrete example of our bytecode transformation, we show the original and transformed

bytecode of the getWeather() method in Figure 1, which covers multiple kinds of bytecode

instructions.

Original bytecode for the getWeather() method shown in Figure 1

public static java.lang.String getWeather ();
Code:

0: invokestatic #19 // Method getCelsius :()F
3: fstore_0
4: getstatic #20 // Field FAHRENHEIT:Z
7: ifeq 36

10: new #15 // class java/lang/StringBuilder
13: dup
14: invokespecial #16 // Method java/lang/StringBuilder ."<

init >":()V
17: fload_0
18: ldc #21 // float 1.8f
20: fmul

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:34 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

21: ldc #22 // float 32.0f
23: fadd
24: invokevirtual #23 // Method java/lang/StringBuilder.

append :(F)Ljava/lang/StringBuilder;
27: ldc #24 // String F
29: invokevirtual #17 // Method java/lang/StringBuilder.

append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;
32: invokevirtual #18 // Method java/lang/StringBuilder.

toString :() Ljava/lang/String;
35: areturn
36: new #15 // class java/lang/StringBuilder
39: dup
40: invokespecial #16 // Method java/lang/StringBuilder ."<

init >":()V
43: fload_0
44: invokevirtual #23 // Method java/lang/StringBuilder.

append :(F)Ljava/lang/StringBuilder;
47: ldc #25 // String C
49: invokevirtual #17 // Method java/lang/StringBuilder.

append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;
52: invokevirtual #18 // Method java/lang/StringBuilder.

toString :() Ljava/lang/String;
55: areturn

Transformed bytecode for the getWeather() method shown in Figure 1

public static edu.cmu.cs.varex.V<java.lang.String >
getWeather____Ljava_lang_String(de.fosd.typechef.featureexpr.FeatureExpr);

Code:
0: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
3: astore 7
5: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
8: astore 6

10: invokestatic #18 // Method de/fosd/typechef/featureexpr
/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;

13: astore 5
15: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
18: astore 4
20: invokestatic #24 // Method edu/cmu/cs/varex/One.

getOneNull :() Ledu/cmu/cs/varex/V;
23: astore_3
24: invokestatic #24 // Method edu/cmu/cs/varex/One.

getOneNull :() Ledu/cmu/cs/varex/V;
27: astore_1
28: invokestatic #24 // Method edu/cmu/cs/varex/One.

getOneNull :() Ledu/cmu/cs/varex/V;
31: astore_2
32: aload_0
33: astore 4
35: aload 4
37: invokestatic #180 // Method getCelsius____F :(Lde/fosd/

typechef/featureexpr/FeatureExpr ;)Ledu/cmu/cs/varex/V;
40: aload 4
42: swap

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:35

43: aload_1
44: invokestatic #59 // InterfaceMethod edu/cmu/cs/varex/V.

choice :(Lde/fosd/typechef/featureexpr/FeatureExpr;Ledu/cmu/cs/varex/V;
Ledu/cmu/cs/varex/V;)Ledu/cmu/cs/varex/V;

47: astore_1
48: getstatic #182 // Field FAHRENHEIT:Ledu/cmu/cs/varex/

V;
51: invokestatic #70 // Method edu/cmu/cs/varex/VOps.whenEQ

:(Ledu/cmu/cs/varex/V;)Lde/fosd/typechef/featureexpr/FeatureExpr;
54: dup
55: invokestatic #76 // Method edu/cmu/cs/varex/VCache.not

:(Lde/fosd/typechef/featureexpr/FeatureExpr ;)Lde/fosd/typechef/
featureexpr/FeatureExpr;

58: aload 4
60: invokestatic #80 // Method edu/cmu/cs/varex/VCache.and

:(Lde/fosd/typechef/featureexpr/FeatureExpr;Lde/fosd/typechef/
featureexpr/FeatureExpr ;)Lde/fosd/typechef/featureexpr/FeatureExpr;

63: aload 5
65: invokeinterface #85, 2 // InterfaceMethod de/fosd/typechef/

featureexpr/FeatureExpr.or:(Lde/fosd/typechef/featureexpr/FeatureExpr ;)
Lde/fosd/typechef/featureexpr/FeatureExpr;

70: astore 5
72: aload 4
74: invokestatic #80 // Method edu/cmu/cs/varex/VCache.and

:(Lde/fosd/typechef/featureexpr/FeatureExpr;Lde/fosd/typechef/
featureexpr/FeatureExpr ;)Lde/fosd/typechef/featureexpr/FeatureExpr;

77: aload 6
79: invokeinterface #85, 2 // InterfaceMethod de/fosd/typechef/

featureexpr/FeatureExpr.or:(Lde/fosd/typechef/featureexpr/FeatureExpr ;)
Lde/fosd/typechef/featureexpr/FeatureExpr;

84: astore 6
86: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
89: astore 4
91: aload 5
93: invokestatic #89 // Method edu/cmu/cs/varex/VCache.

isContradiction :(Lde/fosd/typechef/featureexpr/FeatureExpr ;)Z
96: ifne 205
99: new #138 // class model/java/lang/StringBuilder

102: dup
103: aload 5
105: invokespecial #140 // Method model/java/lang/

StringBuilder ."<init >":(Lde/fosd/typechef/featureexpr/FeatureExpr ;)V
108: aload_1
109: ldc #183 // float 1.8f
111: invokestatic #189 // Method java/lang/Float.valueOf :(F)

Ljava/lang/Float;
114: aload 5
116: swap
117: invokestatic #95 // InterfaceMethod edu/cmu/cs/varex/V.

one:(Lde/fosd/typechef/featureexpr/FeatureExpr;Ljava/lang/Object ;)Ledu/
cmu/cs/varex/V;

120: aload 5
122: invokestatic #193 // Method edu/cmu/cs/varex/VOps.fmul:(

Ledu/cmu/cs/varex/V;Ledu/cmu/cs/varex/V;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

125: ldc #194 // float 32.0f

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:36 Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner

127: invokestatic #189 // Method java/lang/Float.valueOf :(F)
Ljava/lang/Float;

130: aload 5
132: swap
133: invokestatic #95 // InterfaceMethod edu/cmu/cs/varex/V.

one:(Lde/fosd/typechef/featureexpr/FeatureExpr;Ljava/lang/Object ;)Ledu/
cmu/cs/varex/V;

136: aload 5
138: invokestatic #197 // Method edu/cmu/cs/varex/VOps.fadd:(

Ledu/cmu/cs/varex/V;Ledu/cmu/cs/varex/V;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

141: aload 5
143: invokevirtual #200 // Method model/java/lang/

StringBuilder.append__F__Lmodel_java_lang_StringBuilder :(Ledu/cmu/cs/
varex/V;Lde/fosd/typechef/featureexpr/FeatureExpr ;)Ledu/cmu/cs/varex/V;

146: ldc #202 // String F
148: aload 5
150: swap
151: invokestatic #95 // InterfaceMethod edu/cmu/cs/varex/V.

one:(Lde/fosd/typechef/featureexpr/FeatureExpr;Ljava/lang/Object ;)Ledu/
cmu/cs/varex/V;

154: invokedynamic #207, 0 // InvokeDynamic #5: apply:(Ledu/cmu/cs
/varex/V;)Ljava/util/function/BiFunction;

159: aload 5
161: invokeinterface #121, 3 // InterfaceMethod edu/cmu/cs/varex/V.

sflatMap :(Ljava/util/function/BiFunction;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

166: invokedynamic #212, 0 // InvokeDynamic #6: apply :() Ljava/util
/function/BiFunction;

171: aload 5
173: invokeinterface #121, 3 // InterfaceMethod edu/cmu/cs/varex/V.

sflatMap :(Ljava/util/function/BiFunction;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

178: aload 5
180: swap
181: aload_2
182: invokestatic #59 // InterfaceMethod edu/cmu/cs/varex/V.

choice :(Lde/fosd/typechef/featureexpr/FeatureExpr;Ledu/cmu/cs/varex/V;
Ledu/cmu/cs/varex/V;)Ledu/cmu/cs/varex/V;

185: astore_2
186: aload 5
188: aload 7
190: invokeinterface #85, 2 // InterfaceMethod de/fosd/typechef/

featureexpr/FeatureExpr.or:(Lde/fosd/typechef/featureexpr/FeatureExpr ;)
Lde/fosd/typechef/featureexpr/FeatureExpr;

195: astore 7
197: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
200: astore 5
202: goto 205
205: aload 6
207: invokestatic #89 // Method edu/cmu/cs/varex/VCache.

isContradiction :(Lde/fosd/typechef/featureexpr/FeatureExpr ;)Z
210: ifne 287
213: new #138 // class model/java/lang/StringBuilder
216: dup
217: aload 6

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Faster Variational Execution with Transparent Bytecode Transformation 1:37

219: invokespecial #140 // Method model/java/lang/
StringBuilder ."<init >":(Lde/fosd/typechef/featureexpr/FeatureExpr ;)V

222: aload_1
223: aload 6
225: invokevirtual #200 // Method model/java/lang/

StringBuilder.append__F__Lmodel_java_lang_StringBuilder :(Ledu/cmu/cs/
varex/V;Lde/fosd/typechef/featureexpr/FeatureExpr ;)Ledu/cmu/cs/varex/V;

228: ldc #214 // String C
230: aload 6
232: swap
233: invokestatic #95 // InterfaceMethod edu/cmu/cs/varex/V.

one:(Lde/fosd/typechef/featureexpr/FeatureExpr;Ljava/lang/Object ;)Ledu/
cmu/cs/varex/V;

236: invokedynamic #219, 0 // InvokeDynamic #7: apply:(Ledu/cmu/cs
/varex/V;)Ljava/util/function/BiFunction;

241: aload 6
243: invokeinterface #121, 3 // InterfaceMethod edu/cmu/cs/varex/V.

sflatMap :(Ljava/util/function/BiFunction;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

248: invokedynamic #224, 0 // InvokeDynamic #8: apply :() Ljava/util
/function/BiFunction;

253: aload 6
255: invokeinterface #121, 3 // InterfaceMethod edu/cmu/cs/varex/V.

sflatMap :(Ljava/util/function/BiFunction;Lde/fosd/typechef/featureexpr/
FeatureExpr ;)Ledu/cmu/cs/varex/V;

260: aload 6
262: swap
263: aload_2
264: invokestatic #59 // InterfaceMethod edu/cmu/cs/varex/V.

choice :(Lde/fosd/typechef/featureexpr/FeatureExpr;Ledu/cmu/cs/varex/V;
Ledu/cmu/cs/varex/V;)Ledu/cmu/cs/varex/V;

267: astore_2
268: aload 6
270: aload 7
272: invokeinterface #85, 2 // InterfaceMethod de/fosd/typechef/

featureexpr/FeatureExpr.or:(Lde/fosd/typechef/featureexpr/FeatureExpr ;)
Lde/fosd/typechef/featureexpr/FeatureExpr;

277: astore 7
279: invokestatic #18 // Method de/fosd/typechef/featureexpr

/FeatureExprFactory.False :()Lde/fosd/typechef/featureexpr/FeatureExpr;
282: astore 6
284: goto 287
287: aload_2
288: aload 7
290: invokestatic #168 // Method edu/cmu/cs/varex/VOps.

verifyAndThrowException :(Ledu/cmu/cs/varex/V;Lde/fosd/typechef/
featureexpr/FeatureExpr ;)Ledu/cmu/cs/varex/V;

293: areturn

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Variational Execution
	2.2 A Manual Rewrite

	3 Bytecode Transformation
	3.1 Basic Lifting
	3.2 Method Invocation and Return
	3.3 Using Objects

	4 Control Transfer
	4.1 VBlock
	4.2 Execution Strategy
	4.3 Properties
	4.4 Values on the Stack between VBlocks

	5 Implementations, Optimizations, Limitations
	5.1 Optimization: Deciding What to Transform
	5.2 Optimization: Using Model Classes
	5.3 Limitations

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Execution Time
	6.3 Memory Usage
	6.4 Sharing Efficiency

	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Proofs
	B Example of Transformed Bytecode

