

Advanced Topics in Feature-Model Analysis Thesis Topics and Software Projects

April 4, 2024 <u>Elias Kuiter¹</u> <u>Unive</u>rsity of Magdeburg¹

1. Introduction

About Me

Short CV

- 2020: M.Sc. Computer Science in Magdeburg
- since 2021: PhD student in Magdeburg supervised by Gunter Saake (Magdeburg) and Thomas Thüm (UIm)

Research Interests

- Feature-Model Extraction, Transformation, and Analysis
- Satisfiability Solving, Formal Methods, Applied Category Theory
- P: Software Project
- B: Bachelor Thesis
- M: Master Thesis

Contact me: kuiter@ovgu.de

Modeling Features and their Dependencies

Modeling Features and their Dependencies

Feature Models

- tree models features
- cross-tree constraints model dependencies
- solver-based analyses for investigating the configuration space

 \neg (Directed \land Undirected) Hyper \rightarrow Undirected Directed \Leftrightarrow (Undirected \land Hyper)

The Linux Kernel

 114 dead features [20 151 reverse 	ullet > 13000 features	[201
• 151 reverse	ullet > 10 ⁷⁰⁰ products	[200
	• 114 dead features	[201
		[201

Φ

As a Formula $\Phi(FM)$ G $\land (N \leftrightarrow G) \land (E \leftrightarrow G)$ $\land ((L \lor C) \rightarrow N)$ $\land ((D \lor U \lor H) \rightarrow E)$ $\land \neg (D \land U) \land (H \rightarrow U)$ $\land (D \notin (U \land H))$

 $\downarrow \Theta$

2. Thesis Topics

Extracting Feature Hierarchies for KConfig-Based Feature Models (B/M)

Problem

- feature-model extractors for KConfig mostly ignore the feature hierarchy
- tooling for extracting hierarchies is now defunct, identification of feature parents in Kconfig is yet under-researched

1	namespace Root
2	
3	features
4	Root
5	optional
6	UNWINDER_ORC
7	UNWINDER FRAME POINTER
	UNWINDER GUESS
9	X86_64
10	IO_DELAY_0X80
11	IO DELAY 0XED
12	IO DELAY UDELAY
13	IO DELAY NONE
14	BRANCH_PROFILE_NONE
15	PROFILE ANNOTATED BRANCHES

Extracting Feature Hierarchies for KConfig-Based Feature Models (B/M)

Problem

- feature-model extractors for KConfig mostly ignore the feature hierarchy
- tooling for extracting hierarchies is now defunct, identification of feature parents in Kconfig is yet under-researched

1	namespace Root
2	
3	features
4	Root
5	optional
6	UNWINDER ORC
7	UNWINDER FRAME POINTER
	UNWINDER GUESS
9	X86_64
10	IO_DELAY_0X80
11	IO_DELAY_0XED
12	IO_DELAY_UDELAY
13	IO_DELAY_NONE
14	BRANCH_PROFILE_NONE
15	PROFILE_ANNOTATED_BRANCHES

Goal

- extract a feature hierarchy from KConfig specifications + evaluate accuracy
- and/or: reverse-engineer hierarchy from formula + compare with KConfig hierarchy

- interested in research
- adjusting KConfig parser written in C
- adjust or implement a tool for reverseengineering
- c.f. Yaman 2023, Yaman et al. 2024

Feature-Model Analysis with SAT Solvers: A Journey Through Time (B/M) [assigned]

Problem

- feature models grow more complex over time
- automated reasoning tools (e.g., SAT solvers) get more efficient over time
- but: which development is faster? can SAT solvers actually keep up?

[Photo: Laurent Simon]

Feature-Model Analysis with SAT Solvers: A Journey Through Time (B/M) [assigned]

Problem

- feature models grow more complex over time
- automated reasoning tools (e.g., SAT solvers) get more efficient over time
- but: which development is faster? can SAT solvers actually keep up?

[Photo: Laurent Simon]

Goal

- collect best SAT solvers of the last 20 years
- collect feature models from the last 20 years
- run selected feature-model analyses with solver from year X on model of year X
- evaluate evolution of SAT solving performance (cf. Moore's law)
- see time travel challenge

- interested in research
- methodology design, reading literature
- challenges: data availability and formats

Minimizing CNFs to Isolate Solver Bugs (B/M)

Problem

- CNFs of real-world feature models sometimes uncover bugs even in production-grade (#)SAT and SMT solvers
- e.g., in countAntom, sharpSAT/dSharp, Z3, clausy, FeatJAR
- during development and maintenance of such solvers, reducing problematic CNFs to a minimum non-working example can facilitate finding the causes of bugs, reporting them, and preventing future regressions
- however, this process is currently a manual task and time-consuming

Minimizing CNFs to Isolate Solver Bugs (B/M)

Problem

- CNFs of real-world feature models sometimes uncover bugs even in production-grade (#)SAT and SMT solvers
- e.g., in countAntom, sharpSAT/dSharp, Z3, clausy, FeatJAR
- during development and maintenance of such solvers, reducing problematic CNFs to a minimum non-working example can facilitate finding the causes of bugs, reporting them, and preventing future regressions
- however, this process is currently a manual task and time-consuming

Goal

- identify fault oracles (e.g., solver crashes), review reduction strategies (e.g., removing clauses one-by-one, bisection, backtracking to avoid a local minimum)
- implement a (semi-)automatic tool that repeatedly reduces clauses and literals in a faulty CNF until it is minimal
- evaluate performance and compare with global minimum (e.g., obtained manually)

- interested in research, cf. Böhm et al. 2024
- algorithm design, reading literature
- challenge: generative effects, local minima

3. Software Projects

torte: Towards Fully Automated Feature-Model Experiments (P)

[github.com/ekuiter/torte]

- a declarative workbench for reproducible feature-model analysis experiments
- can extract, transform, and analyze feature models in a fully automated fashion
- draft, execute distribute, and adapt experiments (without clone-and-own)

A Simple Experiment: Counting BusyBox

```
experiment-subjects() {
    add-busybox-kconfig-history --from 1_36_0 --to 1_36_1
}
experiment-stages() {
    clone-systems
    extract-kconfig-models
    transform-models-into-dimacs
    solve-model-count --timeout 10
}
```

torte: Towards Fully Automated Feature-Model Experiments (P)

What is torte? 🍐

[github.com/ekuiter/torte]

- a declarative workbench for reproducible feature-model analysis experiments
- can extract, transform, and analyze feature models in a fully automated fashion
- draft, execute distribute, and adapt experiments (without clone-and-own)

A Simple Experiment: Counting BusyBox

```
experiment-subjects() {
    add-busybox-kconfig-history --from 1_36_0 --to 1_36_1
}
experiment-stages() {
    clone-systems
    extract-kconfig-models
    transform-models-into-dimacs
    solve-model-count --timeout 10
}
```

Goal

fix problems and implement new features from roadmap (issue #1) \Rightarrow anabling new use space for texts

 \Rightarrow enabling new use cases for torte

- experience with Bash programming
- some experience with Docker
- willing to write clean code in Bash :-)

A Dashboard for Evolving Variability in Open-Source Systems (P)

Problem

- torte fully automates feature-model analysis
- can be used to analyze latest Linux kernel
- but: no user-friendly frontend exists yet

A Dashboard for Evolving Variability in Open-Source Systems (P)

Problem

- torte fully automates feature-model analysis
- can be used to analyze latest Linux kernel
- but: no user-friendly frontend exists yet

Goal

- develop a web frontend for torte
- find appropriate visualizations
- \Rightarrow quick visualization of current state of variability

- experience with frontend development (e.g., HTML/CSS, React/Vue/Dash, ...)
- no backend experience needed (assuming a static CSV file over AJAX)

On-Demand Extraction of KConfig-Based Feature Models (P)

Problem

- torte fully automates feature-model analysis
- can be used to analyze latest Linux kernel
- but: replication packages are huge and not upto-date, on-demand extraction is missing

i model_to_xml_featureide	179,8 GB
🚞 kconfig	83,8 GB
🚞 kconfigreader	47,5 GB
🚞 kmax	36,3 GB
imodel_to_smt_z3	29,3 GB
🛅 dimacs	27,4 GB
) 🚞 backbone-dimacs	20,7 GB
🚞 model_to_uvl_featureide	10,8 GB

On-Demand Extraction of KConfig-Based Feature Models (P)

Problem

- torte fully automates feature-model analysis
- can be used to analyze latest Linux kernel
- but: replication packages are huge and not upto-date, on-demand extraction is missing

model_to_xml_featureide	179,8 GB
🛅 kconfig	83,8 GB
🚞 kconfigreader	47,5 GB
🚞 kmax	36,3 GB
imodel_to_smt_z3	29,3 GB
🚞 dimacs	27,4 GB
) 🚞 backbone-dimacs	20,7 GB
🚞 model_to_uvl_featureide	10,8 GB

Goal

- develop a server backend for torte
- design an appropriate job architecture
- strengthen against RCE
- \Rightarrow quick "self-help" for common extraction needs

- experience with backend development (e.g., Docker, job processing, PHP/Node.js, ...)
- willing to write a simple HTML frontend

Interested?

Contact me: kuiter@ovgu.de

