
[Herrenkrug-Eisenbahnbrücke Magdeburg]

Advanced Topics in Feature-Model Analysis

Thesis Topics and Software Projects

April 4, 2024

Elias Kuiter1

University of Magdeburg1

1. Introduction

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 2

About Me

Short CV

• 2020: M.Sc. Computer Science in Magdeburg

• since 2021: PhD student in Magdeburg
supervised by Gunter Saake (Magdeburg) and Thomas Thüm (Ulm)

Research Interests

• Feature-Model Extraction, Transformation, and Analysis

• Satisfiability Solving, Formal Methods, Applied Category Theory

• P: Software Project

• B: Bachelor Thesis

• M: Master Thesis

Contact me:
kuiter@ovgu.de

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 3

https://www.dbse.ovgu.de/Mitarbeiter/Elias+Kuiter.html
mailto:kuiter@ovgu.de

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses for in-
vestigating the configuration
space

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected)

Hyper → Undirected

Directed ↔/ (Undirected ∧ Hyper)

Feature

Mandatory

Optional

The Linux Kernel

• > 13000 features [2018]

• > 10700 products [2007]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 4

https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses for in-
vestigating the configuration
space

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected)

Hyper → Undirected

Directed ↔/ (Undirected ∧ Hyper)

Feature

Mandatory

Optional

The Linux Kernel

• > 13000 features [2018]

• > 10700 products [2007]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 4

https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 5

2. Thesis Topics

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 6

Extracting Feature Hierarchies for KConfig-Based Feature Models (B/M)

Problem

• feature-model extractors for KConfig mostly ig-
nore the feature hierarchy

• tooling for extracting hierarchies is now defunct,
identification of feature parents in Kconfig is yet
under-researched

Goal

• extract a feature hierarchy from KConfig speci-
fications + evaluate accuracy

• and/or: reverse-engineer hierarchy from formula
+ compare with KConfig hierarchy

Requirements

• interested in research

• adjusting KConfig parser written in C

• adjust or implement a tool for reverse-
engineering

• c.f. Yaman 2023, Yaman et al. 2024

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 7

https://publikationen.bibliothek.kit.edu/1000162110
https://dl.acm.org/doi/10.1145/3634713.3634731

Extracting Feature Hierarchies for KConfig-Based Feature Models (B/M)

Problem

• feature-model extractors for KConfig mostly ig-
nore the feature hierarchy

• tooling for extracting hierarchies is now defunct,
identification of feature parents in Kconfig is yet
under-researched

Goal

• extract a feature hierarchy from KConfig speci-
fications + evaluate accuracy

• and/or: reverse-engineer hierarchy from formula
+ compare with KConfig hierarchy

Requirements

• interested in research

• adjusting KConfig parser written in C

• adjust or implement a tool for reverse-
engineering

• c.f. Yaman 2023, Yaman et al. 2024

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 7

https://publikationen.bibliothek.kit.edu/1000162110
https://dl.acm.org/doi/10.1145/3634713.3634731

Feature-Model Analysis with SAT Solvers: A Journey Through Time (B/M) [assigned]

Problem

• feature models grow more complex over time

• automated reasoning tools (e.g., SAT solvers)
get more efficient over time

• but: which development is faster? can SAT
solvers actually keep up?

[Photo: Laurent Simon]

Goal

• collect best SAT solvers of the last 20 years

• collect feature models from the last 20 years

• run selected feature-model analyses with solver
from year X on model of year X

• evaluate evolution of SAT solving performance
(cf. Moore’s law)

• see time travel challenge

Requirements

• interested in research

• methodology design, reading literature

• challenges: data availability and formats

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 8

https://www.labri.fr/perso/lsimon/research/glucose/
https://arxiv.org/abs/2008.02215

Feature-Model Analysis with SAT Solvers: A Journey Through Time (B/M) [assigned]

Problem

• feature models grow more complex over time

• automated reasoning tools (e.g., SAT solvers)
get more efficient over time

• but: which development is faster? can SAT
solvers actually keep up?

[Photo: Laurent Simon]

Goal

• collect best SAT solvers of the last 20 years

• collect feature models from the last 20 years

• run selected feature-model analyses with solver
from year X on model of year X

• evaluate evolution of SAT solving performance
(cf. Moore’s law)

• see time travel challenge

Requirements

• interested in research

• methodology design, reading literature

• challenges: data availability and formats

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 8

https://www.labri.fr/perso/lsimon/research/glucose/
https://arxiv.org/abs/2008.02215

Minimizing CNFs to Isolate Solver Bugs (B/M)

Problem

• CNFs of real-world feature models sometimes
uncover bugs even in production-grade (#)SAT
and SMT solvers

• e.g., in countAntom, sharpSAT/dSharp, Z3,
clausy, FeatJAR

• during development and maintenance of such
solvers, reducing problematic CNFs to a mini-
mum non-working example can facilitate finding
the causes of bugs, reporting them, and prevent-
ing future regressions

• however, this process is currently a manual task
and time-consuming

Goal

• identify fault oracles (e.g., solver crashes), re-
view reduction strategies (e.g., removing clauses
one-by-one, bisection, backtracking to avoid a
local minimum)

• implement a (semi-)automatic tool that repeat-
edly reduces clauses and literals in a faulty CNF
until it is minimal

• evaluate performance and compare with global
minimum (e.g., obtained manually)

Requirements

• interested in research, cf. Böhm et al. 2024

• algorithm design, reading literature

• challenge: generative effects, local minima

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 9

https://dl.acm.org/doi/10.1145/3634713.3634715

Minimizing CNFs to Isolate Solver Bugs (B/M)

Problem

• CNFs of real-world feature models sometimes
uncover bugs even in production-grade (#)SAT
and SMT solvers

• e.g., in countAntom, sharpSAT/dSharp, Z3,
clausy, FeatJAR

• during development and maintenance of such
solvers, reducing problematic CNFs to a mini-
mum non-working example can facilitate finding
the causes of bugs, reporting them, and prevent-
ing future regressions

• however, this process is currently a manual task
and time-consuming

Goal

• identify fault oracles (e.g., solver crashes), re-
view reduction strategies (e.g., removing clauses
one-by-one, bisection, backtracking to avoid a
local minimum)

• implement a (semi-)automatic tool that repeat-
edly reduces clauses and literals in a faulty CNF
until it is minimal

• evaluate performance and compare with global
minimum (e.g., obtained manually)

Requirements

• interested in research, cf. Böhm et al. 2024

• algorithm design, reading literature

• challenge: generative effects, local minima

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Thesis Topics 9

https://dl.acm.org/doi/10.1145/3634713.3634715

3. Software Projects

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 10

torte: Towards Fully Automated Feature-Model Experiments (P)

What is torte? [github.com/ekuiter/torte]

• a declarative workbench for reproducible
feature-model analysis experiments

• can extract, transform, and analyze feature mod-
els in a fully automated fashion

• draft, execute distribute, and adapt experiments
(without clone-and-own)

A Simple Experiment: Counting BusyBox

experiment-subjects() {
add-busybox-kconfig-history --from 1 36 0 --to 1 36 1

}
experiment-stages() {

clone-systems
extract-kconfig-models
transform-models-into-dimacs
solve-model-count --timeout 10

}

Goal

fix problems and implement new features from
roadmap (issue #1)
⇒ enabling new use cases for torte

Requirements

• experience with Bash programming

• some experience with Docker

• willing to write clean code in Bash :-)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 11

https://github.com/ekuiter/torte
https://github.com/ekuiter/torte/issues/1

torte: Towards Fully Automated Feature-Model Experiments (P)

What is torte? [github.com/ekuiter/torte]

• a declarative workbench for reproducible
feature-model analysis experiments

• can extract, transform, and analyze feature mod-
els in a fully automated fashion

• draft, execute distribute, and adapt experiments
(without clone-and-own)

A Simple Experiment: Counting BusyBox

experiment-subjects() {
add-busybox-kconfig-history --from 1 36 0 --to 1 36 1

}
experiment-stages() {

clone-systems
extract-kconfig-models
transform-models-into-dimacs
solve-model-count --timeout 10

}

Goal

fix problems and implement new features from
roadmap (issue #1)
⇒ enabling new use cases for torte

Requirements

• experience with Bash programming

• some experience with Docker

• willing to write clean code in Bash :-)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 11

https://github.com/ekuiter/torte
https://github.com/ekuiter/torte/issues/1

A Dashboard for Evolving Variability in Open-Source Systems (P)

Problem

• torte fully automates feature-model analysis

• can be used to analyze latest Linux kernel

• but: no user-friendly frontend exists yet

Goal

• develop a web frontend for torte

• find appropriate visualizations

⇒ quick visualization of current state of variability

Requirements

• experience with frontend development (e.g.,
HTML/CSS, React/Vue/Dash, . . .)

• no backend experience needed (assuming a static
CSV file over AJAX)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 12

A Dashboard for Evolving Variability in Open-Source Systems (P)

Problem

• torte fully automates feature-model analysis

• can be used to analyze latest Linux kernel

• but: no user-friendly frontend exists yet
Goal

• develop a web frontend for torte

• find appropriate visualizations

⇒ quick visualization of current state of variability

Requirements

• experience with frontend development (e.g.,
HTML/CSS, React/Vue/Dash, . . .)

• no backend experience needed (assuming a static
CSV file over AJAX)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 12

On-Demand Extraction of KConfig-Based Feature Models (P)

Problem

• torte fully automates feature-model analysis

• can be used to analyze latest Linux kernel

• but: replication packages are huge and not up-
to-date, on-demand extraction is missing

Goal

• develop a server backend for torte

• design an appropriate job architecture

• strengthen against RCE

⇒ quick “self-help” for common extraction needs

Requirements

• experience with backend development (e.g.,
Docker, job processing, PHP/Node.js, . . .)

• willing to write a simple HTML frontend

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 13

On-Demand Extraction of KConfig-Based Feature Models (P)

Problem

• torte fully automates feature-model analysis

• can be used to analyze latest Linux kernel

• but: replication packages are huge and not up-
to-date, on-demand extraction is missing

Goal

• develop a server backend for torte

• design an appropriate job architecture

• strengthen against RCE

⇒ quick “self-help” for common extraction needs

Requirements

• experience with backend development (e.g.,
Docker, job processing, PHP/Node.js, . . .)

• willing to write a simple HTML frontend

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Software Projects 13

Interested?

Contact me: kuiter@ovgu.de

§/ekuiter/

§/ekuiter/

mailto:kuiter@ovgu.de
mailto:kuiter@ovgu.de
https://github.com/ekuiter/clausy
https://github.com/ekuiter/torte

	Introduction
	Thesis Topics
	Software Projects

