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Organization of Lecture and Exercises

Weekly lecture
I Teacher: Eike Schallehn (eike@iti.cs.uni-magdeburg.de)

Weekly exercises with two alternative time slots
I Starting in November
I Tutors as teachers

Written exam at the end of the semester (registration using
HISQUIS system)

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 2 / 293



Prerequisites

Required: knowledge about database basics from database
introduction course

I Basic principles, Relational Model, SQL, database design, ER
Model

Helpful: advanced knowledge about database internals
I Query processing, storage structures

Helpful hands-on experience:
I SQL queries, DDL and DML
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Content Overview

1 Foundations
2 Distributed DBMS:

architectures, distribution, query processing, transaction
management, replication

3 Parallel DBMS:
architectures, query processing

4 Federated DBS:
architectures, conflicts, integration, query processing

5 Peer-to-peer Data Management
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English Literature /1

M. Tamer Özsu, P. Valduriez: Principles of Distributed Database
Systems. Second Edition, Prentice Hall, Upper Saddle River, NJ,
1999.
S. Ceri and G. Pelagatti: Distributed Databases Principles and
Systems, McGraw Hill Book Company, 1984.
C. T. Yu, W. Meng: Principles of Database Query Processing for
Advanced Applications. Morgan Kaufmann Publishers, San
Francisco, CA, 1998.
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English Literature /2

Elmasri, R.; Navathe, S.: Fundamentals of Database Systems,
Addison Wesley, 2003
C. Dye: Oracle Distributed Systems, O’Reilly, Sebastopol, CA,
1999.
D. Kossmann: The State of the Art in Distributed Query
Processing, ACM Computing Surveys, Vol. 32, No. 4, 2000, S.
422-469.
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German Literature

E. Rahm, G. Saake, K.-U. Sattler: Verteiltes und Paralleles
Datenmanagement. Springer-Verlag, Heidelberg, 2015.
P. Dadam: Verteilte Datenbanken und Client/Server-Systeme,
Springer-Verlag, Berlin, Heidelberg 1996.
S. Conrad: Föderierte Datenbanksysteme: Konzepte der
Datenintegration. Springer-Verlag, Berlin/Heidelberg, 1997.
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Part I

Introduction



Overview

1 Motivation

2 Classification of Multi-Processor DBMS

3 Recapitulation
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Centralized Data Management

TXN management

Data manipulation

Data definition

Application

DBMS

Application

Application

...

New requirements
I Support for de-centralized organization structures
I High availability
I High performance
I Scalability
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Client Server Data Management in a Network

Node

Network

Node

Node

Node

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 11 / 293



Distributed Data Management

Node

Node

Network

Node

Node
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Distributed Data Management: Example

Network

Products San Francisco, Sydney

Customers San Francisco, Sydney

Customers SydneyProducts München, Magdeburg, 

Sydney

Customers München

Customers Magdeburg

Products Magdeburg, San Francisco

Products Sydney

Sydney

Magdeburg

München

San Francisco
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Advantages of Distributed DBMS

Transparent management of distributed/replicated data
Availability and fault tolerance
Performance
Scalability
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Transparent Data Management

Transparency: "‘hide"’ implementation details
For (distributed) database systems

I Data independence (physical, logical)
I Network transparency

F "‘hide"’ existence of the network
F "‘hide"’ physical location of data

I To applications a distributed DBS looks just like a centralized DBS
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Transparent Data Management/2

continued:
I Replication transparency

F Replication: managing copies of remote data (performance,
availability, fault-tolerance)

F Hiding the existence of copies (e.g. during updates)
I Fragmentation transparency

F Fragmentation: decomposition of relations and distribution of
resulting fragments

F Hiding decomposition of global relation
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Fault-Tolerance

Failure of one single node can be compensated
Requires

I Replicated copies on different nodes
I Distributed transactions
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Performance

Data can be stored, where they are most likely used→ reduction
of transfer costs
Parallel processing in distributed systems

I Inter-transaction-parallelism: parallel processing of different
transactions

I Inter-query-parallelism: parallel processing of different queries
I Intra-query-parallelism: parallel of one or several operations within

one query
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Scalability

Requirements raised by growing databases or necessary
performance improvement

I Addition of new nodes/processors often cheaper than design of
new system or complex tuning measures
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Differentiation: Distributed Information System

Distributed Information System
I Application components communicate for purpose of data

exchange (distribution on application level)
Distributed DBS

I Distribution solely realized on the DBS-level

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 20 / 293



Differentiation: Distributed File System

Distributed File System provides non-local storage access by
means of operating system
DBMS on distributed file system

I All data must be read from blocks stored on different disks
I Processing is performed only within DBMS node (not distributed)
I Distribution handled by operating system
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Special Case: Parallel DBS

Data management on simultaneous computer (multi processor,
special hardware)
Processing capacities are used for performance improvement
Example

I 100 GB relation, sequential read with 10 MB/s 17 minutes
I parallel read on 10 nodes (without considering coordination

overhead)
 1:40 minutes
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Special Case: Heterogeneous DBS

Motivation: integration of previously existing DBS (legacy
systems)

I Integrated access: global queries, relationships between data
objects in different databases, global integrity

Problems
I Heterogeneity on different levels: system, data model, schema,

data

Special importance on the WWW: integration of Web sources 
Mediator concept
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Special Case: Peer-to-Peer-Systems

Peer-to-Peer (P2P): networks without centralized servers
I All / many nodes (peers) store data
I Each node knows only some "‘close"’ neighbors

F No global view
F No centralized coordination

Examples: Napster, Gnutella, Freenet, BitTorrent, . . .
I Distributed management of data (e.g. MP3-Files)
I Lookup using centralized servers (Napster) or distributed (Gnutella)
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Multi-Processor DBMS

In general: DBMS which are able to use multiple processors or
DBMS-instances to process database operations [Rahm 94]
Can be classified according to different criteria

I Processors with same or different functionality
I Access to external storage
I Spatial distribution
I Processor connection
I Homogeneous vs. heterogeneous architecture
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Classification Overview

Assumption: each processor provides the same functionality
Classification [Rahm94]

Connection

External Storage

local

loose (close) loose

Shared−NothingShared−DiskShared−Everything

Multi−Processor DBMS

partitioned

local distributed

tight close loose

Spatial

shared

Distribution

Processor
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Criterion: Access to External Storage

Partitioned access
I External storage is divided among processors/nodes

F Each processor has only access to local storage
F Accessing different partitions requires communication

Shared access
I Each processor has access to full database
I Requires synchronisation
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Criterion: Spatial Distribution

Locally distributed: DB-Cluster
I Fast inter-processor communication
I Fault-tolerance
I Dynamic load balancing possible
I Little administration efforts
I Application: parallel DBMS, solutions for high availabilty

Remotely distributed: distributed DBS in WAN scenarios
I Support for distributed organization structures
I Fault-tolerant (even to major catastrophes)
I Application: distributed DBS
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Criterion: Processor Connection

Tight connection
I Processors share main memory
I Efficient co-operation
I Load-balancing by means of operating system
I Problems: Fault-tolerance, cache coherence, limited number of

processors (≤ 20)
I Parallel multi-processor DBMS
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Criterion: Processor Connection /2

Loose connection:
I Independent nodes with own main memory and DBMS instances
I Advantages: failure isolation, scalability
I Problems: expensive network communication, costly DB

operations, load balancing
Close connection:

I Mix of the above
I In addition to own main memory there is connection via shared

memory
I Managed by operating system
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Class: Shared-Everything

Cache

CPU

Shared Main Memory

Cache

CPU CPU

DBMS Buffer

Shared Hard Disks

Cache
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Class: Shared-Everything /2

Simple realization of DBMS

Distribution transparency provided by operating system

Expensive synchronization

Extended implementation of query processing
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Class: Shared-Nothing

CPU

Cache

CPU

Cache

CPU

DBMS−

Cache

DBMS−

Buffer

DBMS−

BufferBuffer

Main Memory Main Memory Main Memory
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Class: Shared-Nothing /2

Distribution of DB across various nodes

Distributed/parallel execution plans

TXN management across participating nodes

Management of catalog and replicas
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Class: Shared-Disk

Cache

CPU

Main Memory

Cache

CPU

gemeinsame Festplatten

Highspeed Communication

DBMS−

Buffer

DBMS−

Puffer

DBMS−

Buffer

CPU

Main Memory Main Memory

Cache
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Class: Shared-Disk /2

Avoids physical data distribution

No distributed TXNs and query processing

Requires buffer invalidation
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Criterion: Integrated vs. Federated DBS

Integrated:
I Shared database for all nodes one conceptual schema
I High distribution transparency: access to distributed DB via local

DBMS
I Requires co-operation of DBMS nodes restricted autonomy

Federated:
I Nodes with own DB and own conceptual schema
I Requires schema integration global conceptual schema
I High degree of autonomy of nodes

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 37 / 293



Criterion: Integrated vs. Federates DBS /2

homogeneous

Multi−Processor−DBS

Shared−Disk Shared−Nothing

integrated integrated federated

heterogeneoushomogeneous homogeneous
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Criterion: Centralized vs. De-centralized Coordination

Centralized:
I Each node has global view on database (directly of via master)
I Central coordinator: initiator of query/transaction→ knows all

participating nodes
I Provides typical DBS properties (ACID, result completeness, etc.)
I Applications: distributed and parallel DBS

F Limited availability, fault-tolerance, scalabilty
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Criterion: Centralized vs. De-centralized Coordination
/2

De-centralized:
I No global view on schema→ peer knows only neighbors
I Autonomous peers; global behavior depends on local interaction
I Can not provide typical DBMS properties
I Application: P2P systems

F Advantages: availability, fault-tolerance, scalabilty
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Comparison
Parallel Distributed Federated

DBS DBS DBS
High TXN rates ↑ →↗ →
Intra-TXN-Parallelism ↑ →↗ ↘→
Scalability ↗ →↗ →
Availability ↗ ↗ ↘
Geogr. Distribution ↘ ↗ ↗
Node Autonomy ↘ → ↗
DBS-Heterogeneity ↘ ↘ ↗
Administration → ↘ ↘↓
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Database Management Systems (DBMS)

Nowadays commonly used
I to store huge amounts of data persistently,
I in collaborative scenarios,
I to fulfill high performance requirements,
I to fulfill high consistency requirements,
I as a basic component of information systems,
I to serve as a common IT infrastructure for departments of an

organization or company.
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Database Management Systems

A database management system (DBMS) is a suite of computer
programs designed to manage a database and run operations on the
data requested by numerous clients.

A database (DB) is an organized collection of data.

A database system (DBS) is the concrete instance of a database
managed by a database management system.
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Codd’s 9 Rules for DBMS

Differentiate DBMS from other systems managing data
persistently, e.g. file systems

1 Integration: homogeneous, non-redundant management of data
2 Operations: means for accessing, creating, modifying, and

deleting data
3 Catalog: the data description must be accessible as part of the

database itself
4 User views: different users/applications must be able to have a

different perception of the data
5 Integrity control: the systems must provide means to grant the

consistency of data
6 Data security: the system must grant only authorized accesses
7 Transactions: multiple operations on data can be grouped into a

logical unit
8 Synchronization: parallel accesses to the database are

managed by the system
9 Data backups: the system provides functionality to grant

long-term accessibility even in case of failures
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3 Level Schema Architecture

Internal Schema

D
ata R

epresentation

Q
uery P

rocessing

Conceptual Schema 

External Schema N. . .External Schema 1

Important concept of DBMS
Provides

I transparency, i.e. non-visibility, of storage implementation details
I ease of use
I decreased application maintenance efforts
I conceptual foundation for standards
I portability

Describes abstraction steps:
I Logical data independence
I Physical data independence
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Data Independence

Logical data independence: Changes to the logical schema level
must not require a change to an application (external schema) based
on the structure.

Physical data independence: Changes to the physical schema
level (how data is stored) must not require a change to the logical
schema.

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 46 / 293



Architecture of a DBS

Schema architecture roughly conforms
to general architecture of a database
systems

Applications access database
using specific views (external
schema)

The DBMS provides access for
all applications using the logical
schema

The database is stored on
secondary storage according to
an internal schema

Application n. . .

Database

DBMS

Application 1
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Client Server Architecture

Schema architecture does not directly
relate to client server architecture
(communication/network architecture)

Clients may run several
applications

Applications may run on several
clients

DB servers may be distributed

...

DB Server

. . .

Database

Client 1 Client n
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The Relational Model

Developed by Edgar F. Codd (1923-2003) in 1970
Derived from mathematical model of n-ary relations
Colloquial: data is organized as tables (relations) of records
(n-tuples) with columns (attributes)
Currently most commonly used database model
Relational Database Management Systems (RDBMS)
First prototype: IBM System R in 1974
Implemented as core of all major DBMS since late ’70s:
IBM DB2, Oracle, MS SQL Server, Informix, Sybase, MySQL,
PostgreSQL, etc.
Database model of the DBMS language standard SQL
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Basic Constructs

A relational database is a database that is structured according to
the relational database model. It consists of a set of relations.

Relation

. . .

. . .

. . .

. . .R 1 nA A

Tuple

Relation schema

Relation name Attributes

}
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Integrity Constraints

Static integrity constraints describe valid tuples of a relation
I Primary key constraint
I Foreign key constraint (referential integrity)
I Value range constraints
I ...

In SQL additionally: uniqueness and not-NULL
Transitional integrity constraints describe valid changes to a
database
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The Relational Algebra

A relational algebra is a set of operations that are closed over
relations.

Each operation has one or more relations as input
The output of each operation is a relation
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Relational Operations

Primitive operations:
Selection σ
Projection π
Cartesian product (cross
product) ×
Set union ∪
Set difference −
Rename β

Non-primitive operations
Natural Join ./
θ-Join and Equi-Join ./ϕ
Semi-Join n
Outer-Joins = ×
Set intersection ∩
. . .
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Notation for Relations and Tuples

If R denotes a relation schema (set of attributes), than the function
r(R) denotes a relation conforming to that schema (set of tuples)
R and r(R) are often erroneously used synonymously to denote a
relation, assuming that for a given relation schema only one
relation exists
t(R) denotes a tuple conforming to a relation schema
t(R.a) denotes an attribute value of a tuple for an attribute a ∈ R
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The Selection Operation σ

Select tuples based on predicate or complex condition

PROJECT
PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5
ProductY 2 Sugarland 5
ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4

σPLOCATION=′Stafford ′(r(PROJECT ))

PNAME PNUMBER PLOCATION DNUM
Computerization 10 Stafford 4
Newbenefits 30 Stafford 4
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The Projection Operation π

Project to set of attributes - remove duplicates if necessary

PROJECT
PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5
ProductY 2 Sugarland 5
ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4

πPLOCATION,DNUM(r(PROJECT ))

PLOCATION DNUM
Bellaire 5
Sugarland 5
Houston 5
Stafford 4
Houston 1
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Cartesian or cross product ×

Create all possible combinations of tuples from the two input relations

R
A B
1 2
3 4

S
C D E
5 6 7
8 9 10

11 12 13

r(R)× r(S)

A B C D E
1 2 5 6 7
1 2 8 9 10
1 2 11 12 13
3 4 5 6 7
3 4 8 9 10
3 4 11 12 13
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Set: Union, Intersection, Difference

All require compatible schemas: attribute names and domains
Union: duplicate entries are removed
Intersection and Difference: ∅ as possible result
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The Natural Join Operation ./

Combine tuples from two relations r(R) and r(S) where for
I all attributes a = R ∩ S (defined in both relations)
I is t(R.a) = t(S.a).

Basic operation for following key relationships
If there are no common attributes result is Cartesian product
R ∩ S = ∅ =⇒ r(R) ./ r(S) = r(R)× r(S)

Can be expressed as combination of π, σ and ×
r(R) ./ r(S) = πR∪S(σ∧

a∈R∩S t(R.a)=t(S.a)(r(R)× r(S)))
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The Natural Join Operation ./ /2

R
A B
1 2
3 4
5 6

S
B C D
4 5 6
6 7 8
8 9 10

r(R) ./ r(S)
A B C D
3 4 5 6
5 6 7 8
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The Semi-Join Operation n

Results all tuples from one relation having a (natural) join partner
in the other relation
r(R) n r(S) = πR(r(R) ./ r(S))

PERSON
PID NAME

1273 Dylan
2244 Cohen
3456 Reed

CAR
PID BRAND

1273 Cadillac
1273 VW Beetle
3456 Stutz Bearcat

r(PERSON) n r(CAR)

PID NAME
1273 Dylan
3456 Reed
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Other Join Operations

Conditional join: join condition ϕ is explicitly specified
r(R) ./ϕ r(S) = σϕ(r(R)× r(S))

θ-Join: special conditional join, where ϕ is a single predicate of
the form aθb with a ∈ R, b ∈ S, and θ ∈ {=, 6=, >,<,≤,≥, . . . }
Equi-Join: special θ-Join where θ is =.
(Left or Right) Outer Join: union of natural join result and tuples
from the left or right input relation which could not be joined
(requires NULL-values to grant compatible schemas).

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 62 / 293



Relational Database Management Systems

A Relational Database Management System (RDBMS) is a
database management system implementing the relational database
model.

Today, most relational DBMS implement the SQL database model
There are some significant differences between the relational
model and SQL (duplicate rows, tuple order significant,
anonymous column names, etc.)
Most distributed and parallel DBMS have a relational (SQL) data
model
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SQL Data Model

Said to implement relational database model
Defines own terms

Table

. . .

. . .

. . .

. . .R 1 nA A

Row

Table head

Table name Columns

}

Some significant differences exist
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Structured Query Language

Structured Query Language (SQL): declarative language to
describe requested query results
Realizes relational operations (with the mentioned discrepancies)
Basic form: SELECT-FROM-WHERE-block (SFW)

SELECT FNAME, LNAME, MGRSTARTDATE
FROM EMPLOYEE, DEPARTMENT
WHERE SSN=MGRSSN
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SQL: Selection σ

σDNO=5∧SALARY>30000(r(EMPLOYEE))

SELECT *
FROM EMPLOYEE
WHERE DNO=5 AND SALARY>30000
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SQL: Projection π

πLNAME ,FNAME (r(EMPLOYEE))

SELECT LNAME,FNAME
FROM EMPLOYEE

Difference to RM: does not remove duplicates
Requires additional DISTINCT

SELECT DISTINCT LNAME,FNAME
FROM EMPLOYEE
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SQL: Cartesian Product ×

r(EMPLOYEE)× r(PROJECT )

SELECT *
FROM EMPLOYEE, PROJECT
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SQL: Natural Join ./

r(DEPARTMENT ) ./ r(DEPARTMENT_LOCATIONS)

SELECT *
FROM DEPARTMENT

NATURAL JOIN DEPARTMEN_LOCATIONS
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SQL: Equi-Join

r(EMPLOYEE) ./SSN=MGRSSN r(DEPARTMENT )

SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE SSN=MGRSSN
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SQL: Union

r(R) ∪ r(S)

SELECT * FROM R
UNION
SELECT * FROM S

Other set operations: INTERSECT, MINUS
Does remove duplicates (in compliance with RM)
If duplicates required:

SELECT * FROM R
UNION ALL
SELECT * FROM S
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SQL: Other Features

SQL provides several features not in the relational algebra
I Grouping And Aggregation Functions, e.g. SUM, AVG, COUNT, . . .
I Sorting

SELECT PLOCATION, AVG(HOURS)
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN=ESSN AND PNO=PNUMBER
GROUP BY PLOCATION
HAVING COUNT(*) > 1
ORDER BY PLOCATION
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SQL DDL

Data Definition Language to create, modify, and delete schema
objects

CREATE DROP ALTER TABLE mytable ( id INT, ...)
DROP TABLE ...
ALTER TABLE ...
CREATE VIEW myview AS SELECT ...
DROP VIEW ...
CREATE INDEX ...
DROP INDEX ...
...

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 73 / 293



Simple Integrity Constraints

CREATE TABLE employee(
ssn INTEGER,
lname VARCHAR2(20) NOT NULL,
dno INTEGER,
...
FOREIGN KEY (dno)

REFERENCES department(dnumber),
PRIMARY KEY (ssn)

)

Additionally: triggers, explicit value domains, ...
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SQL DML

Data Manipulation Language to create, modify, and delete tuples

INSERT INTO (<COLUMNS>) mytable VALUES (...)

INSERT INTO (<COLUMNS>) mytable SELECT ...

UPDATE mytable
SET ...
WHERE ...

DELETE FROM mytable
WHERE ...

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 75 / 293



Other Parts of SQL

Data Control Language (DCL):
GRANT, REVOKE

Transaction management:
START TRANSACTION, COMMIT, ROLLBACK

Stored procedures and imperative programming concepts
Cursor definition and management
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Transactions

Sequence of database operations
I Read and write operations
I In SQL sequence of INSERT, UPDATE, DELETE, SELECT

statements

Build a semantic unit, e.g. transfer of an amount from one bank
account to another
Has to conform to ACID properties
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Transactions: ACID Properties

Atomicity means that a transaction can not be interrupted or
performed only partially

I TXN is performed in its entirety or not at all
Consistency to preserve data integrity

I A TXN starts from a consistent database state and ends with a
consistent database state

Isolation
I Result of a TXN must be independent of other possibly running

parallel TXNs
Durability or persistence

I After a TXN finished successfully (from the user’s view) its results
must be in the database and the effect can not be reversed
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Functional Dependencies

A functional dependency (FD) X→Y within a relation between
sets r(R) of attributes X ⊆ R and Y ⊆ R exists, if for each tuple
the values of X determine the values for Y
i.e.

∀t1, t2 ∈ r(R) : t1(X ) = t2(X )⇒ t1(Y ) = t2(Y )
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Derivation Rules for FDs

R1 Reflexivity if X ⊇ Y =⇒ X→Y
R2 Accumulation {X→Y} =⇒ XZ→YZ
R3 Transitivity {X→Y ,Y→Z} =⇒ X→Z
R4 Decomposition {X→YZ} =⇒ X→Y
R5 Unification {X→Y ,X→Z} =⇒ X→YZ
R6 Pseudotransitivity {X→Y ,WY→Z} =⇒ WX→Z

R1-R3 known as Armstrong-Axioms (sound, complete)
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Normal Forms

Formal criteria to force schemas to be free of redundancy
First Normal Form (1NF) allows only atomic attribute values

I i.e. all attribute values ar of basic data types like integer or
string but not further structured like e.g. an array or a set of
values

Second Normal Form (2NF) avoids partial dependencies
I A partial dependency exist, if a non-key attribute is functionally

dependent on a real subset of the primary key of the relation
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Normal Forms /2

Third Normal Form (3NF) avoids transitive dependencies
I Disallows functional dependencies between non-key attributes

Boyce-Codd-Normal Form (BCNF) disallows transitive
dependencies also for primary key attributes
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Part II

Distributed Database Systems



Overview

Foundations of DDBS
Catalog Management
DDBS Design: Fragmentation
Allocation and Replication
Overview
Data Localization
Join Processing
Global Optimization
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Architecture & Data Distribution

Node

Node

Node

DBMS−Instance

Network

Node
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Dimensions

Distributed DBS

Heterogeneity

Autonomy

Centralized DBS

Client/Server−DBS

Distribution
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12 Rules for DDBMS by Date

1 Local Autonomy
I Component system have maximal control over own data, local

access does not require access to other components
2 No reliance on central site

I Local components can perform independently of central component
3 Continuous operation/high availability

I Overall system performs despite local interrupt
4 Location transparency

I User of overall system should not be aware of physical storage
location
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12 Rules for DDBMS by Date /2

5 Fragmentation transparency
I If data of one relation is fragmented, user should not be aware of

this
6 Replication transparency

I User should not be aware of redundant copies of data
I Management and redundancy is controlled by DBMS

7 Distributed query processing
I Efficient access to data stored on different sites within one DB

operation
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12 Rules for DDBMS by Date /3

8 Distributed Transaction Management
I ACID properties must persist for distributed operations

9 Hardware independence
I Component DB processing on different hardware platforms

10 Operating system independence
I Component DB processing on different OS

11 Network independence
I DB processing using different network protocols

12 DBMS independence (ideal)
I Usage of different DBMS possible
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Schema Architecture

Local

schema (GDS)

Conceptual Conceptual
Local Local

Internal Internal
LocalLocal

...

...

Schema M (LCS)

Schema M (LIS)Schema 2 (LIS)

External Schema 1

Global

Distribution

Schema 2 (LCS)

Local

Conceptual

Schema 1 (LCS)

Internal

Schema 1 (LIS)

External Schema N

Global

Conceptual

Schema (GCS)
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System Architecture

Synchronisation

Global

Query
Management

Catalog

Global

Management

Recovery
Management
Transaction

Global

ReplicaGlobal

Global

local

Component

global

Component

Processing

"normal DBMS"
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Catalog Management

Catalog: collection of metadata (schema, statistics, access rights,
etc.)

I Local catalog
F Identical to catalog of a centralized DBS
F consistes of LIS and LCS

I Global ctalaog
F Also contains GCS and GDS
F System-wide management of users and access rights

Storage
I Local catalog: on each node
I Global catalog: centralized, replicated, or partitioned
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Global Catalog /1

Centralized: one instance of global catalog managed by central
node

I Advantages: only one update operation required, litte space
consumption

I Disadvantages: request for each query, potential bottleneck, critical
ressource

Replicated: full copy of global catalog stored on each node
I Advantage: low communication overhead during queries, availabilty
I Disadvantage: high overhead for updates

Mix- form: cluster-catalog with centralized catalog for certain
clusters of nodes
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Global Catalog /2

Partitioned: (relevant) part of the catalog is stored on each node
I No explicit GCS union of LCS
I Partitioned GDS by extend object (relations, etc.) names (see

System R*)
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Coherency Control

Idea: buffer for non-local parts of the catalog
I Avoids frequent remote accesses for often used parts of the catalog

Problem: invalidation of buffered copies after updates
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Coherency Control /2

Approaches
I Explicit invalidation:

F Owner of catalog data keeps list of copy sites
F After an update these nodes are informed of invalidation

I Implicit invalidation:
F Identification of invalid catalog data during processing time

using version numbers or timestamps (see System R*)
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DB Object Name Management

Task: identification of relations, views, procedures, etc.
Typical schema object names in RDBMS:
[<username>.]<objectname>

Requirement global uniqueness in DDBS
I Name Server approach: management of names in centralized

catalog
I Hierarchic Naming: enrich object name with node name
[[<nodename>.]<username>.]<objectname>

F Node name: birth site (or simplification via alias)
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Name Management: Node Types

Store site

global Name
Birth site

Catalog site

Store site Store site
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Catalog Management in System R*

Birth site
I Prefix of the relation name
I Knows about storage sites

Query processing
I Executing node gets catalog entry of relevant relation
I Catalog entry is buffered for later accesses
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Catalog Management in System R* /2

Query processing (continued)
I Partial query plans include time stamp of catalog entry
I Node processing partial query checks whether catalog time stamp

is still current

In case of failure: buffer invalidation, re-set query and new query
translation according to current schema
Summary:

I Advantage: high degree of autinomy, user-controlled invalidation of
buffered catalog data, good performance

I Disadvantage: no uniform realization of global views
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Database Distribution

In Shared-Nothing-Systems (DDBS): definition of physical
distribution of data
Impact:

I Communication efforts overall performance
I Load balancing
I Availability
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Bottom Up vs. Top Down

Bottom Up
I Subsumption of local conceptual schemata (LCS) into global

conceptual schema (GCS)
I Integration of existing DB schema integration (Federated DBS)

Top Down
I GCS of local DB designed first
I Distribution of schema to different nodes
I Distribution Design
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Distribution Design Tasks

Node 1

Node 2

AllocationsFragmentsglobal Relation R

R1

R1

Node 3

R3

R2.1

R3

R4.2

R4.1

R2.2

R2

R4
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Fragmentation

Granularity of distribution: relation
I Operations on one relation can always be performed on one node
I Simplifies integrity control

Granularity of distribution: fragments of relations
I Grants locality of access
I Load balancing
I Reduced processing costs for operations performed only on part of

the data
I Parallel processing
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Fragmentation /2

Approach:
I Column- or tuple-wise decomposition (vertical/horizontal)
I Described using relational algebra expressions (queries)
I Important rules/requirements

F Completeness
F Reconstructability
F Disjointness
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Example Database
MEMBER

MNo MName Position
M1 Ian Curtis SW Developer
M2 Levon Helm Analyst
M3 Tom Verlaine SW Developer
M4 Moe Tucker Manager
M5 David Berman HW-Developer

PROJECT
PNr PName Budget Loc
P1 DB Development 200.000 MD
P2 Hardware Dev. 150.000 M
P3 Web-Design 100.000 MD
P4 Customizing 250.000 B

ASSIGNMENT
MNr PNr Capacity
M1 P1 5
M2 P4 4
M2 P1 6
M3 P4 3
M4 P1 4
M4 P3 5
M5 P2 7

SALARY
Position YSalary
SW Developer 60.000
HW-Developer 55.000
Analyst 65.000
Manager 90.000
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Primary Horizontal Fragmentation

"‘Tupel-wise"’ decomposition of a global relation R into n
fragments Ri

Defined by n selection predicates Pi on attributes from R

Ri := σPi (R) (1 ≤ i ≤ n)

Pi : fragmentation predicates
Completeness: each tuple from R must be assigned to a fragment
Disjointness: decomposition into disjoint fragments
Ri ∩ Rj = ∅ (1 ≤ i , j ≤ n, i 6= j),

Reconstructability: R =
⋃

1≤i≤n

Ri
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Primary Horizontal Fragmentation /2

Example: fragmentation of PROJECT by predicate on location
attribute "‘Loc"’

PROJECT1 = σLoc=’M’(PROJECT)
PROJECT2 = σLoc=’B’(PROJECT)
PROJECT3 = σLoc=’MD’(PROJECT)

PROJECT1

PNr PName Budget Loc
P2 Hardware Dev. 150.000 M

PROJECT2

PNr PName Budget Loc
P4 Customizing 250.000 B

PROJECT3
PNr PName Budget Loc
P1 DB Development 200.000 MD
P3 Web-Design 100.000 MD
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Derived Horizontal Fragmentation

Fragmentation definition of relation S derived from existing
horizontal fragmentation of relation R
Using foreign key relationships
Relation R with n fragments Ri

Decomposition of depending relation S

Si = S n Ri = S n σPi (R) = πS.*(S on σPi (R))

Pi defined only on R
Reconstructability: see above
Disjointness: implied by disjointness of R-fragments
Completeness: granted for lossless semi-join (no null-values for
foreign key in S)
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Derived Horizontal Fragmentation /2

Fragmentation of relation ASSIGNMENT derived from
fragmentation of PROJECT relation

ASSIGNMENT1 = ASSIGNMENT n PROJECT1
ASSIGNMENT2 = ASSIGNMENT n PROJECT2
ASSIGNMENT3 = ASSIGNMENT n PROJECT3

ASSIGNMENT1
MNr PNr Capacity
M5 P2 7

ASSIGNMENT2
MNr PNr Capacity
M2 P4 4
M3 P4 3

ASSIGNMENT3
MNr PNr Capacity
M1 P1 5
M2 P1 6
M4 P1 4
M4 P3 5
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Vertical Fragmentation

Comlumn-wise decomposition of a relation using relational
projection
Completeness: each attribute must be in at least one fragment
Reconstructability: through natural join
 primary key of global relation must be in each fragment

Ri := πK ,Ai ,...,Aj (R)

R = R1 on R2 on · · · on Rn

Limited disjointness
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Vertical Fragmentation /2

Fragmentation of PROJECT-Relation regarding Budget and project
name / location

PROJECT1 = πPNr, PName, Loc(PROJECT)
PROJECT2 = πPNr, Budget(PROJECT)

PROJECT1
PNr PName Loc
P1 DB Development MD
P2 Hardware Dev. M
P3 Web-Design MD
P4 Customizing B

PROJECT2
PNr Budget
P1 200.000
P2 150.000
P3 100.000
P4 250.000
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Hybrid Fragmentation

Fragment of a relation→ is relation itself
Can be subject of further fragmentation
Also possible: combination of horizontal and vertical fragmentation

PROJECT1=πPNr, PName, Loc(PROJECT)
PROJECT2=πPNr, Budget(PROJECT)
PROJECT1,1=σLoc=’M’(PROJECT1)
PROJECT2,1=σLoc=’B’(PROJECT1)
PROJECT3,1=σLoc=’MD’(PROJECT1)

PROJECT

PROJECT

PROJECT

PROJECT PROJECT PROJECT1,1 1,2 1,3

1 2

horizontal

vertical
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Fragmentation transparency

Decomposition of a relation is for user/application not visble
Only view on global relation
Requires mapping of DB operations to fragments by DDBMS
Example

I Transparent:
select * from Project where PNr=P1

I Without transparency:
select * from Project1 where PNr=P1
if not-found then

select * from Project2 where PNr=P1
if not-found then

select * from Project3 where PNr=P1
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Fragmentation transparency /2

Example (continued)
I Transparent:
update Project set Ort=’B’ where PNr=P3

I Without transparency:
select PNr, PName, Budget

into :PNr, :PName, :Budget
from Project3 where PNr=P3

insert into Project2
values (:PNr, :PName, :Budget, ’B’)

delete from Project3 where PNr=P3
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Computation of an optimal Fragmentation

In huge systems with many relations/nodes: intuitive
decomposition often too complex/not possible
In this case: systematic process based on access characteristics

I Kind of access (read/write)
I Frequency
I Relations / attributes
I Predicates in queries
I Transfer volume and times
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Optimal horizontal Fragmentation

Based on [Özsu/Valduriez 99] and [Dadam 96]
Given: relation R(A1, . . . ,An), operator θ ∈ {<,≤, >,≥,=, 6=},
Domain dom(Ai)

Definition: simple predicate pi of the form Ajθ const with
const ∈ dom(Aj)

I Defines possible binary fragmentation of R
I Example:

PROJECT1= σBudget>150.000(PROJECT)
PROJECT2= σBudget≤150.000(PROJECT)

Definition: Minterm m is conjunction of simple predicates as
m = p∗1 ∧ p∗2 ∧ · · · ∧ p∗j
with p∗i = pi oder p∗i = ¬pi
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Optimal horizontal Fragmentation /2

Definition: Set Mn(P) of all n-ary Minterms for the set P of simple
predicates:

Mn(P) = {m | m =
n∧

i=1

p∗i ,pi ∈ P}

I Defines complete fragmentation of R without redundancies
F R =

⋃
m∈Mn(P)

σm(R)

F σmi ∩ σmj = ∅,∀mi ,mj ∈ Mn(P),mi 6= mj
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Optimal horizontal Fragmentation /3

Completeness and no redundancy not sufficient:
I P = { Budget < 100.000, Budget > 200.000,

Ort = ’MD’, Ort = ’B’ }
I Minterm p1 ∧ p2 ∧ p3 ∧ p4 not satisfiable; but ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4

Identification of practically relevant Minterms M(P)
1 M(P) := Mn(P)
2 Remove irrelevant Minterms from M(P)
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Elimination of irrelevant Minterms

1 Elimination of unsatisfiable Minterms
If two terms p∗i and p∗j in one m ∈ M(P) contradict, m is not
satisfiable and can be removed from M(P).

2 Elimination of dependent predicates
If a p∗i from m ∈ M(P) implies another term p∗j (e.g. functional
dependency, overlapping domains), p∗j can be removed from m.

3 Relevance of a fragmentation
I Minterms mi and mj , mi contains pi , mj contains ¬pi
I Access statistics: acc(m)

(e.g. derived from query log)
I Fragment size: card(f )

(derived from data distribution statistics)
I pi is relevant, if acc(mi )

card(fi )
6= acc(mj )

card(fj )
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Algorithm HORIZFRAGMENT

Identification of a complete, non-redundant and minimal horizontal
fragmentation of a relation R for a given set of predicates P
Input:

I P: set of predicates over R
(Intermediate) Results:

I M(P): set of relevant Minterms
I F (P): set of Minterm-fragments from R

R(m) := σm(R) with m ∈ M(P)
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Algorithm HORIZFRAGMENT

forall p ∈ P do
Q′ := Q ∪ {p}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q′) significant improvement over F (Q) then

Q := Q′

forall q ∈ Q \ {p} do /* unnecessary Fragmentation? */
Q′ := Q \ {q}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q) no significant improvement over F (Q′) then

Q := Q′ /* d.h., remove q from Q */
end

end
end
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Allocation and Replication

Allocation
I Assignment of relations or fragments to physical storage location
I Non-redundant: fragments are stored in only one place 

partitioned DB
I Redundant: fragments can be stored more than once replicated

DB
Replication

I Storage of redundant copies of fragments or relations
I Full: Each global relation stored on every node (no distribution

design, no distributed query processing, high costs for storage and
updates)

I Partial: Fragments are stored on selected nodes
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Allocation and Replication /2

Aspects of allocation
I Efficiency:

F Minimization of costs for remote accesses
F Avoidance of bottlenecks

I Data security:
F Selection of nodes depending on their "‘reliability"’
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Identification of an optimal Allocation

Cost model for non-redundant allocation [Dadam 96]
Goal:
Minimize storage and transfer costs

∑
Storage +

∑
Transfer for K

fragments and L nodes
Storage costs: ∑

Storage
=

∑
p,i

SpDpiSCi

I Sp: Size of fragment p in data units
I SCi : StorageCosts per data unit on node i
I Dpi : Distribution of fragment with Dpi = 1 if p stored on node i , 0

otherwise

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 125 / 293



Identification of an optimal Allocation /2

Transfer costs:∑
Transfer

=
∑
i,t ,p,j

FitOtpDpjTCij +
∑
i,t ,p,j

FitRtpDpjTCji

I Fit : Frequency of operation of type t on node i
I Otp: Size of operation t for fragment p in data units (e.g. size of

query string)
I TCij : TransferCosts from node i to j in data units
I Rtp: Size o the result of one operation of type t on fragment p
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Identification of an optimal Allocation /3

Additional constraints:∑
i

Dpi = 1 for p = 1, . . . ,K∑
p

SpDpi ≤ Mi for p = i , . . . ,L

where Mi is max. storage capacity on node i
Integer optimization problem
Often heuristic solution possible:

I Identify relevant candidate distributions
I Compute costs and compare candidates
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Identification of an optimal Allocation /4

Cost model for redundant replication
Additional constraints slightly modified:∑

i

Dpi ≥ 1 for p = 1, . . . ,K∑
p

SpDpi ≤ Mi ffr p = i , . . . ,L
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Identification of an optimal Allocation /5

Transfer costs
I Read operations on p send from node i to j with minimal TCij and

Dpj = 1
I Update operations on p send to all nodes j with Dpj = 1
I Φt : of an operation

∑
(in case of update) or min (in case of read

operation)∑
T

ransfer =
∑
i,t ,p

Fit Φt
j:Dpj=1

(OtpTCij + RtpTCji)
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Evaluation of Approaches

Model considering broad spectrum of applications
Exact computation possible
But:

I High computation efforts (optimization problem)
I Exact input values are hard to obtain
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Part II

Distributed Database Systems



Overview

Foundations of DDBS
Catalog Management
DDBS Design: Fragmentation
Allocation and Replication
Overview
Data Localization
Join Processing
Global Optimization
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Overview

Goal of query processing: creation of an efficient as possible
query plans from a declarative query

I Transformation to internal format (Calculus→ Algebra)
I Selection of access paths (indexes) and algorithms (e.g.

Merge-Join vs. Nested-Loops-Join)
I Cost-based selection of best possible plan

In Distributed DBS:
I User view: no difference→ queries are formulated on global

schema/external views
I Query processing:

F Consideration of physical distribution of data
F Consideration of communication costs

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 133 / 293



Phases of Query Processing

Globally optimized

Query TransformationGlobal
Schema

Query
Locally optimized

Local OptimizationGlobal
Schema

Global Optimization

Global Query

Data LocalizationSchema

Statistics

Distribution

Global

Global Query Porcessing

Local Query Processing

Algebra Expression

Fragement Expression

Fragment Expression
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Query Transformation

Algebr. Optimization

Syntax Analysis (Parsing)

Name Resolution

Global Query

Semantic Analysis

Data Localization

Query Transformation
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Translation to Relational Algebra

select A1, ..., Am
from R1, R2, ..., Rn
where F

Initial relational algebra expression:

πA1,...,Am (σF (r(R1)× r(R2)× r(R3)× · · · × r(Rn)))

Improve algebra expression:
Detect joins to replace Cartesian products
Resolution of subqueries (not exists-queries to set difference)
Consider SQL-operations not in relational algebra: (group by,
order by, arithmetics, . . . )
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Normalization

Transform query to unified canonical format to s implify following
optimization steps
Special importance: selection and join conditions (from
where-clause)

I Conjunctive normal form vs. disjunctive normal form
I Conjunktive normal form (CNF) for basic predicates pij :

(p11 ∨ p12 ∨ · · · ∨ p1n) ∧ · · · ∧ (pm1 ∨ pm2 ∨ · · · ∨ pmn)

I Disjunctive normal form (DNF):

(p11 ∧ p12 ∧ · · · ∧ p1n) ∨ · · · ∨ (pm1 ∧ pm2 ∧ · · · ∧ pmn)

I Transformation according to equivalence rules for logical operations
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Normalization /2

Equivalence rules
I p1 ∧ p2 ←→ p2 ∧ p1 und p1 ∨ p2 ←→ p2 ∨ p1
I p1 ∧ (p2 ∧p3)←→ (p1 ∧p2)∧p3 und p1 ∧ (p2 ∨p3)←→ (p1 ∨p2)∨p3
I p1 ∧ (p2 ∨ p3)←→ (p1 ∧ p2) ∨ (p1 ∧ p3) und

p1 ∨ (p2 ∧ p3)←→ (p1 ∨ p2) ∧ (p1 ∨ p3)
I ¬(p1 ∧ p2)←→ ¬p1 ∨ ¬p2 und ¬(p1 ∨ p2)←→ ¬p1 ∧ ¬p2
I ¬(¬p1)←→ p1
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Normalization: Example

Query:
select * from Project P, Assignment A
where P.PNr = A.PNr and

Budget > 100.000 and
(Loc = ’MD’ or Loc = ’B’)

Selection condition in CNF:

P.PNr = A.PNr ∧ Budget > 100.000 ∧ (Loc = ’MD’ ∨ Loc = ’B’)

Selection condition in DNF:

(P.PNr = A.PNr ∧ Budget > 100.000 ∧ Loc = ’MD’) ∨
(P.PNr = A.PNr ∧ Budget > 100.000 ∧ Loc = ’B’)
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Phases of Optimization

Optimized Algebra Expression

Logical Optimization

Physical Optimization

Cost−based Optimization

Best Access Plan

Possible Access Plans

Optimization

Algebra Expression
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Algebraic Optimization

Term replacement based on semantic equivalences
Directed replacement rules to improve processing of expression
Heuristic approach:

I Move operation to get smaller intermediate results
I Indentify and remove redundancies

Result: improved algebraic express⇒ operator tree⇒ initial
query plan
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Algebraic Rules /1

Operators σ and on commute, if selection attribute from one relation:

σF (r1 on r2)←→ σF (r1) on r2 falls attr(F ) ⊆ R1

If selection condition can be split, such that F = F1 ∧ F2 contain
predicates on attributes in only one relation, respectively:

σF (r1 on r2)←→ σF1 (r1) on σF2 (r2)

if attr(F1) ⊆ R1 and attr(F2) ⊆ R2

Always: decompose to F1 with attributes from R1, if F2 contains
attributes from R1 and R2:

σF (r1 on r2)←→ σF2 (σF1 (r1) on r2) if attr(F1) ⊆ R1
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Algebraic Rules /2

Combination of conditions of σ is identical to logical conjunction⇒
operations can change their order

σF1(σF2(r1))←→ σF1∧F2(r1)←→ σF2(σF1(r1))

(uses commutativity of logic AND)
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Algebraic Rules /3

Operator on is commutative:

r1 on r2 ←→ r2 on r1

Operator on is associative:

(r1 on r2) on r3 ←→ r1 on (r2 on r3)

Domination of sequence of π operators:

πX (πY (r1))←→ πX (r1)

π and σ are commutative in some cases:

σF (πX (r1))←→ πX (σF (r1))

if attr(F ) ⊆ X

πX1 (σF (πX1X2 (r1)))←→ πX1 (σF (r1))

if attr(F ) ⊇ X2
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Algebraic Rules /4

Commutation of σ and ∪:

σF (r1 ∪ r2)←→ σF (r1) ∪ σF (r2)

Commutation of σ and with other set operation − and ∩

Commutation of π and on partially possible: join attributes must be kept
and later removed (nevertheless decreases intermediate result size)

Commutation of π und ∪

Distributivity for set operations

Idempotent expressions, e.g. r1 on r1 = r1 and r1 ∪ r1 = r1

Operations with empty relations, e.g. r1 ∪ ∅ = r1

Commutativity of set operations

. . .
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Algebraic Optimization: Example

select * from Procekt P, Assignment A
where P.PNr = A.PNr and

Capacity > 5 and
(Loc = ’MD’ or Loc = ’B’)

)(5 BLocMDLocCapacity =∨=∧>
σ

><

Project Assignment ⇒

BLocMDLoc =∨=
σ

><

Project Assignment

5>Capacityσ

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 146 / 293



Data Localization

Task: create fragment queries based on data distribution
I Replace global relation with fragments
I Insert reconstruction expression using fragments of global relation
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Data Localization Phase

Physical Optimization

Query Transformation

Data Localization

Resolution of Fragments
of global Relations

Algebr. Optimization
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Data Localization: Example I

Schema:
PROJ1 = σBudget≤150.000(PROJEKT)
PROJ2 = σ150.000<Budget≤200.000(PROJECT)
PROJ3 = σBudget>200.000(PROJECT)

PROJECT = PROJ1∪ PROJ2∪ PROJ3

Query:
σLoc=’MD’∧Budget≤100.000(PROJECT)

=⇒
σLoc=’MD’∧Budget≤100.000(PROJ1∪PROJ2∪ PROJ3)
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Data Localization /2

Requirement: further simplification of query
Goal: eliminate queries on fragments not used in query
Example: pushing down σ to fragments
σLoc=’MD’∧Budget≤100.000(PROJ1∪PROJ2∪ PROJ3)

because of:
σBudget≤100.000(PROJ2) = ∅, σBudget≤100.000(PROJ3) = ∅

=⇒
σLoc=’MD’(σBudget≤100.000(PROJ1))
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Data Localization /3

For horizontal fragmentation
I Also possible simplification of join processing
I Push down join if fragmentation on join attribute
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Data Localization: Example II

Schema:
M1 = σMNr<’M3’(MEMBER)
M2 = σ’M3’≤MNr<’M5’(MEMBER)
M3 = σMNr≥’M5’(MEMBER)

Z1 = σMNr<’M3’(ASSIGNMENT)
Z2 = σMNr≥’M3’(ASSIGNMENT)

Query: ASSIGNMENT on MEMBER

=⇒
(M1∪ M2∪ M3) on ( Z1∪ Z2)
=⇒
(M1 on Z1) ∪ (M2 on Z2) ∪ ( M3 on Z2)
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Data Localization /4

Vertical fragmentation: reduction by pushing down projections
Example:
PROJ1 = πPNr,PName,Loc(PROJECT)
PROJ2 = πPNr,Budget(PROJECT)

PROJECT = PROJ1 on PROJ2

Query: πPName(PROJECT)

=⇒
πPName(PROJ1 on PROJ2)
=⇒
πPName(PROJ1)
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Qualified Relations

Descriptive information to support algebraic optimization
Annotation of fragments and intermediate results with content
condition (combination of predicates that are satisfied here)
Estimation of size of relation
If r ′ = Q(r), then r ′ inherits condition from r , plus additional
predicates from Q
Qualification condition qR: [R : qR]

Extended relational algebra: σF [R : qR]
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Extended Relational Algebra

(1) E := σF [R : qR] → [E : F ∧ qR]
(2) E := πA[R : qR] → [E : qR]
(3) E := [R : qR]× [S : qS] → [E : qR ∧ qS]
(4) E := [R : qR]− [S : qS] → [E : qR]
(5) E := [R : qR] ∪ [S : qS] → [E : qR ∨ qS]
(6) E := [R : qR] onF [S : qS] → [E : qR ∧ qS ∧ F ]
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Extended Relational Algebra /2

Usage of rules for description – no processing

Example: σ100.000≤Budget≤200.000(PROJECT)

E1 = σ100.000≤Budget≤200.000[PROJ1 : Budget ≤ 150.000]

 [E1 : (100.000 ≤ Budget ≤ 200.000) ∧ (Budget ≤ 150.000)]

 [E1 : 100.000 ≤ Budget ≤ 150.000]

E2 = σ1000≤Budget≤200.000[PROJ2 : 150.000 < Budget ≤ 200.000]

 [E2 : (100.000 ≤ Budget ≤ 200.000) ∧
(150.000 < Budget ≤ 200.000)]

 [E2 : 150.000 < Budget ≤ 200.000]

E3 = σ100.000≤Budget≤200.000[PROJ3 : Budget > 200.000]

 [E3 : (100.000 ≤ Budget ≤ 200.000) ∧ (Budget > 200.000)]

 E3 = ∅
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Join Processing

Join operations:
I Common task in relational DBS, very expensive (≤ O(n2))
I In distributed DBS: join of nodes stored on different nodes

Simple strategy: process join on one node
I Ship whole: transfer the full relation beforehand
I Fetch as needed: request tuples for join one at a time
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"‘Fetch as needed "’ vs. "‘Ship whole"’ /1
R A B

3 7
1 1
4 6
7 7
4 5
6 2
5 7

S B C D
9 8 8
1 5 1
9 4 2
4 3 3
4 2 6
5 7 8

R on S A B C D
1 1 5 1
4 5 7 8

Strategy #Messages #Values
SW at R-node 2 18
SW at S-node 2 14
SW at 3. node 4 32
FAN at S-node 6 ∗ 2 = 12 6 + 2 ∗ 2 = 10
FAN at R-node 7 ∗ 2 = 14 7 + 2 ∗ 3 = 13
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"‘Fetch as needed "’ vs. "‘Ship whole"’ /2

Comparison:
I "‘Fetch as needed"’ with higher number of messages, useful for

small left hand-side relation (e.g. restricted by previous selection)
I "‘Ship whole"’ with higher data volume, useful for smaller right

hand-side (transferred) relation
Specific algorithms for both:

I Nested-Loop Join
I Sort-Merge Join
I Semi-Join
I Bit Vector-Join
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Nested-Loop Join

Nested loop over all tuples t1 ∈ r and all t2 ∈ s for operation r ./ s

r ./ϕ s:

for each tr ∈ r do
begin

for each ts ∈ s do
begin

if ϕ(tr , ts) then put(tr · ts) endif
end

end
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Sort Merge-Join

X := R ∩ S; if not yet sorted, first sort r and s on join attributes X
1 tr (X ) < ts(X ), read next tr ∈ r
2 tr (X ) > ts(X ), read next ts ∈ s
3 tr (X ) = ts(X ), join tr with ts and all subsequent tuples to ts equal

regarding X with ts
4 Repeat for the first t ′s ∈ s with t ′s(X ) 6= ts(X ) starting with original ts

and following t ′r of tr until tr (X ) = t ′r (X )
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Sort Merge-Join: Costs

Worst case: all tuples with identical X -values: O(nr ∗ ns)

X keys of R or S: O(nr log nr + ns log ns)

If relations are already sorted (e.g. index on join attributes, often
the case): O(nr + ns)
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Semi-Join

Idea: request join partner tuples in one step to minimize message
overhead (combines advantages of SW and FAN)
Based on: r on s = r on (s n r) = r on (s on πA(r)) (A is set of join
attributes)
Procedure:

1 Node Nr : computation of πA(r) and transfer to Ns
2 Node Ns: computation of s′ = s on πA(r) = s n r and transfer to Nr
3 Node Nr : computation of r on s′ = r on s
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Semi-Join: Example
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Bit Vector-Join

Bit Vector or Hash Filter-Join
Idea: minimize request size (semi-join) by mapping join attribute
values to bit vector B[1 . . . n]

Mapping:
I Hash function h maps values to buckets 1 . . . n
I If value exists in bucket according bit is set to 1
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Bit Vector-Join /2

Procedure:
1 Node Nr : for each value v in πA(r) set according bit in B[h(v)] and

transfer bit vector B to Ns
2 Node Ns: compute s′ = {t ∈ s | B[h(t .A)] is set } and transfer to Nr
3 Node Nr : compute r on s′ = r on s
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Bit Vector-Join /3

Comparison:
I Decreased size of request message compared to semi-join
I Hash-mapping not injective→ only potential join partners in bit

vector
 sufficiently great n and suitable hash function h required
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Bit Vector-Join: Example
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Global Optimization

Task: selection of most cost-efficient plan from set of possible
query plans
Prerequisite: knowledge about

I Fragmentation
I Fragment and relation sizes
I Value ranges and distributions
I Cost of operations/algorithms

In Distributed DBS often details for nodes not known:
I Existing indexes, storage organization, . . .
I Decision about usage is task of local optimization
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Cost-based optimization: Overview

Cost Model

Query

Best Plan

Search Strategy

Generate the
Search Space

Equivalent Plans

Transformation
Rules
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Optimization: Search Space

Search space: set of all equivalent query plans
Generated by transformation rules:

I Algebraic rules with no preferred direction, e.g. join commutativity
and associativity (join trees)

I Assignment of operation implementation/algorithm, e.g. distributed
join processing

I Assignment of operations to nodes
Constraining the search space

I Heuristics (like algebraic optimization)
I Usage of "‘preferred"’ query plans (e.g. pre-defined join trees)

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 171 / 293



Optimization: Join Trees

A B

C

D

A B C D

Left deep trees or right deep trees join order as nested
structure/loops, all inner nodes (operations) have at least one
input relation
Bushy trees better potential for parallel processing, but higher
optimization efforts required (greater number of possible
alternatives)
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Optimization: Search Strategy

Traversing the search space and selection of best plan based on cost
model:

I Which plans are considered: full or partial traversal
I In which order are the alternatives evaluated

Variants:

I Deterministic: systematic generation of plans as bottom up
construction, simple plans for access to base relations are
combined to full plans, grants best plan, computationally complex
(e.g. dynamic programming)

I Random-based: create initial query plan (e.g. with greedy strategy
or heuristics) and improve these by randomly creating "‘neighbors"’,
e.g. exchanging operation algorithm or processing location or join
order, less expensive (e.g. genetic algorithms) but does not grant
best plan
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Cost Model

Allows comparison/evaluation of query plans
Components

I Cost function
F Estimation of costs for operation processing

I Database statistics
F Data about relation sizes, value ranges and distribution

I Formulas
F Estimation of sizes of intermediate results (input for operations)
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Cost Functions

Total time
I Sum of all time components for all nodes / transfers

Ttotal =TCPU ∗ #insts + TI/O ∗ #I/Os+

TMSG ∗ #msgs + TTR ∗ #bytes

I Communication time:

CT (#bytes) = TMSG + TTR ∗ #bytes

I Coefficients characteristic for Distributed DBS:
I WAN: communication time (TMSG, TTR) dominates
I LAN: also local costs (TCPU, TI/O) relevant
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Cost Functions /2

Response time
I Timespan from initiation of query until availability of full results

Ttotal =TCPU ∗ seq_#insts + TI/O ∗ seq_#I/Os+

TMSG ∗ seq_#msgs + TTR ∗ seq_#bytes

I With seq_#x is maximum number x that must be performed
sequentially
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Total Time vs. Response Time

Node 3

Node 2Node 1

x Data Units y Data Units

Ttotal = 2TMSG + TTR(x + y)

Tresponse = max{TMSG + TTR ∗ x ,TMSG + TTR ∗ y}
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Database statistics

Main factor for costs: size of intermediate results
Estimation of sizes based on statistics
For relation R with attributes A1, . . . ,An and fragments R1, . . . ,Rf

I Attribute size: length(Ai ) (in Byte)
I Number of distinct values of Ai for each fragment Rj : val(Ai ,Rj )
I Min and max attribute values: min(Ai ) and max(Ai )
I Cardinality of value domain of Ai : card(dom(Ai ))
I Number of tuples in each fragment: card(Rj )
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Cardinality of Intermediate Results

Estimation often based on following simplifications
I Independence of different attributes
I Equal distribution of attribute values

Selectivity factor SF :
I Ratio of result tuples vs. input relation tuples
I Example: σF (R) returns 10% of tuples from R
 SF= 0.1

Size of an intermediate relation:

size(R) = card(R) ∗ length(R)
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Cardinality of Selections

Cardinality
card(σF (R)) = SF S(F ) ∗ card(R)

SF depends on selection condition with predicates p(Ai) and
constants v

SF S(A = v) =
1

val(A,R)

SF S(A > v) =
max(A)− v

max(A)−min(A)

SF S(A < v) =
v −min(A)

max(A)−min(A)
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Cardinality of Selections /2

SF S(p(Ai) ∧ p(Aj)) = SF S(p(Ai)) ∗ SF S(p(Aj))

SF S(p(Ai) ∨ p(Aj)) = SF S(p(Ai)) + SF S(p(Aj))−
(SF S(p(Ai)) ∗ SF S(p(Aj)))

SF S(A ∈ {v1, . . . , vn}) = SF S(A = v) ∗ card({v1, . . . , vn})
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Cardinality of Projections

Without duplicate elimination

card(πA(R)) = card(R)

With duplicate elimination (for non-key attributes A)

card(πA(R)) = val(A,R)

With duplicate elimination (a key is subset of attributes in A)

card(πA(R)) = card(R)
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Cardinality of Joins

Cartesian products

card(R × S) = card(R) ∗ card(S)

Join
I Upper bound: cardinality of Cartesian product
I Better estimation for foreign key relationships S.B → R.A:

card(R onA=B S) = card(S)

I Selectivity factor SF J from database statistics

card(R on S) = SF J ∗ card(R) ∗ card(S)
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Cardinality of Semi-joins

Operation R nA S
Selectivity factor for attribute A from relation S: SF SJ(S.A)

SF SJ(R nA S) =
val(A,S)

card(dom(A))

Cardinality:

card(R nA S) = SF SJ(S.A) ∗ card(R)
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Cardinality of Set Operations

Union R ∪ S
I Lower bound: max{card(R), card(S)}
I Upper bound: card(R) + card(S)

Set difference R − S
I Lower bound: 0
I Upper bound: card(R)
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Example

Fragmentation:
PROJECT = PROJECT1 ∪ PROJECT2 ∪ PROJECT3

Query:
σBudget>150.000(PROJECT)

Statistics:
I card(PROJECT1) = 3.500, card(PROJECT2) = 4.000,

card(PROJECT3) = 2.500
I length(PROJECT) = 30
I min(Budget) = 50.000, max(Budget) = 300.000
I TMSG = 0.3s
I TTR = 1/1000s
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Example: Query Plans

Variant 1:

σBudget>150.000(PROJECT1 ∪ PROJECT2 ∪ PROJECT3)

Variant 2:

σBudget>150.000(PROJECT1)∪
σBudget>150.000(PROJECT2)∪
σBudget>150.000(PROJECT3)
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Join Order in DDBS

Huge influence on overall performance

General rule: avoid Cartesian products where possible

Join order for 2 relations R on S

R S

if size(R) > size (S)

if size(R) < size(S)

Join order for 3 relations R onA S onB T

S

TR

A B

K2

K3K1
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Join Order in DDBS /2

(cont.) Possible strategies:
1 R → N2 ; N2 computes R′ := R on S; R′ → N3; N3 computes R′ on T
2 S → N1 ; N1 computes R′ := R on S; R′ → N3; N3 computes R′ on T
3 S → N3 ; N3 computes S′ := S on T ; S′ → N1; N1 computes S′ on R
4 T → N2 ; N2 computes T ′ := T on S; T ′ → N1; N1 computes T ′ on R
5 R → N2 ; T → N2; N2 computes R on S on T

Decision based on size of relations and intermediate results
Possible utilization of parallelism in variant 5
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Utilization of Semi-Joins

Consideration of semi-join-based strategies
Relations R at node N1 and S at node N2

Possible strategies R onA S
1 (R nA S) onA S
2 R onA (S nA R)
3 (R nA S) onA (S nA R)

Comparison R onA S vs. (R nA S) onA S) for size(R) < size(S)

Costs for R onA S: transfer of R to N2  TTR ∗ size(R)
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Utilization of Semi-Joins /2

Processing of semi-join variant
1 πA(S)→ N2
2 At node N2: computation of R′ := R nA S
3 R′ → N1
4 At node N1: computation of R′ onA S

Costs: costs for step 1 + costs for step 2

TTR ∗ size(πA(S)) + TTR ∗ size(R nA S)

Accordingly: semi-join is better strategy if

size(πA(S)) + size(R nA S) < size(R)
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Summary: Global Optimization in DDBS

Extension of centralized optimization regarding distribution
aspects

I Location of processing
I Semi Join vs. Join
I Fragmentation
I Total time vs. response time
I Consideration of additional cost factors like transfer time and

number of message messages

Current system implementations very different regarding which
aspects are considered or not
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Part III

Distributed DBS - Transaction Processing



Overview

Foundations
Distributed TXN Processing
Transaction Deadlocks
Transactional Replication
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Foundations of TXN Management

A Transaction is a sequence of operations which represent a
semantic unit and transfer a database from one consistent state to
another consistent state adhering to the ACID-principle.

Aspects:
Semantic integrity: consistent state must be reached after
transaction, no matter if it succeeded or failed
Process integrity: avoid failures due to concurrent parallel access
by multiple users/transactions
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Transactions: ACID Properties

Atomicity means that a transaction can not be interrupted or
performed only partially

I TXN is performed in its entirety or not at all
Consistency to preserve data integrity

I A TXN starts from a consistent database state and ends with a
consistent database state

Isolation
I Result of a TXN must be independent of other possibly running

parallel TXNs
Durability or persistence

I After a TXN finished successfully (from the user’s view) its results
must be in the database and the effect can not be reversed

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 196 / 293



Commands of a TXN Language

Begin of Transaction BOT (in SQL implicated by first statement)
commit: TXN ends successfully
abort: TXN must be aborted during processing
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Problems with Processing Integrity

Parallel accesses in multi-user DBMS can lead to the following
problems

I Non-repeatable reads
I Dirty reads
I The phantom problem
I Lost updates
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Non-repeatable Read

Example:
Assertion: X = A + B + C at the end of txn T1

X and Y are local variables
Ti is txn i
Integrity constraint on persistent data A + B + C = 0
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Non-repeatable Read /2

T1 T2

X := A;
Y := A/2;
A := Y ;
C := C + Y ;
commit;

X := X + B;
X := X + C;
commit;
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Dirty Read

T1 T2

read(X );
X := X + 100;
write(X );

read(X );
Y := Y + X ;
write(Y );
commit;

abort;
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The Phantom Problem

T1 T2

select count (*)
into X
from Employee;

insert
into Employee
values (Meier ,50000, · · · );
commit;

update Employee
set Salary =
Salary +10000/X ;
commit;
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Lost Update

T1 T2 X
read(X ); 10

read(X ); 10
X := X + 1; 10

X := X + 1; 10
write(X ); 11

write(X ); 11
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Simplified TXN Model

Representation of (abstract) data object (values, tuples, pages) access

read(A,x): assign value of DB object A to variable x
write(x , A): assign value of x to DB object A

Example of a txn T :

read(A, x); x := x − 200; write(x, A); read(B, y);
y := y + 100; write(y, B);commit

Schedules: possible processing of two txns T1, T2:
Serial schedule: T1 before T2 or T2 before T1

Intertwined schedule: mixed execution of operations from both
txns
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Serializability

An intertwined schedule of a number of transactions is called
serializable, if the effect of the intertwined schedule is identical to
the effect of any of the possible serial schedules. The intertwined
schedule is then called correct and equivalent to the serial schedule.

Practical approaches for deciding about serializabilty most often
only considering read/write operations and their conflicts→
Conflict Serializability
Considering other operations requires analysis of operations
semantics
Rules out subset of serializable schedules which are hard to
detect
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Conflicting Operations

T1 T2

read A
read A

independent of order

T1 T2

read A
write A

dependent on order

T1 T2

write A
read A

dependent on order

T1 T2

write A
write A

dependent on order
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Conflict Serializability

A schedule s is called conflict-serializable, if the order of all pairs of
conflicting operations is equivalent to the order of any serial schedule
s′ for the same transactions.

Tested using conflict graph G(s) = (V ,E) of schedule s:
1 Vertex set V contains all txns of s
2 Edge set E contains an edge for each pair of conflicting operations

In serial schedules s′ there can no cycles, i.e. if a cycle exists the
schedule s can not be equivalent to a serial schedule and must be
rejected.
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Conflict Serializability: Example /1

T1 T2 T3

r(y)
r(u)

r(y)
w(y)
w(x)

w(x)
w(z)

w(x)

s = r1(y)r3(u)r2(y)w1(y)w1(x)w2(x)w2(z)w3(x)

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 208 / 293



Conflict Serializability: Example /2

3

G(s):

2T

T1

T
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Transaction Synchronization

1 Most common practical solution: Locking Protocols
I TXNs get temporarily exclusive access to DB object (tuple, page,

etc.)
I DBMS manages temporary locks
I Locking protocol grants cnflict serializabilty without further tests

2 In distributed DBMS also: timestamp-based protocols
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Locking Protocols

Read and write locks using the following notation:
rl(x): read lock on object x
wl(x): write lock on object x

Unlock ru(x) and wu(x), often combined u(x) unlock object x
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Locks: Compatibility Matrix

For basic locks
rli(x) wli(x)

rlj(x)
√

—
wlj(x) — —
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2-Phase-Locking Protocol

Time

2PL

ReleaseAcquisition
LockLock

#
L

o
c
k
s
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2-Phase-Locking: Example

T1 T2

u(x)
wl(x)
wl(y)
...
u(x)
u(y)

wl(y)
...
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Strict 2-Phase-Locking

Current practice in most DBMS:

Atomic Release−Phase

S2PL

Acquisition
Lock

#L
oc

ks

Time

Avoids cascading aborts!

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 215 / 293



Conservative 2-Phase-Locking

To avoid Deadlocks:

Release
Phase

Phase

C2PL

Phase Phase

CS2PL

#L
oc

ks

Time

#L
oc

ks

Time

Release

Acquisition Acquisition

Most often not practical!
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Distributed TXN Processing

In DDBS one TXN can run on multiple nodes
Distributed synchronization required for parallel TXNs required
Commit as atomic event→ same result on all nodes
Deadlocks (blocking/blocked TXNs) harder to detect
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Structure of Distributed TXNs

Performed on other nodes

1

T2 T3 T4

T5 T6

T7

Primary TXN

Sub−TXNs

Perfomed on coordinator node
T
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Distributed Synchronization with Locking

One central node for lock management
I Dedicated node becomes bottleneck
I Low node autonomy
I High number of messages for lock acquisition/release

Distributed lock management on all nodes
I Possible, if data (relations, fragments) is stored non-redundantly
I Special strategies for replicated data
I Disadvantage: deadlocks are hard to detect

Latter, i.e. distributed S2PL, is state-of-the-art
Alternative: Timestamp-based Synchronisation
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Timestamp-based Synchronization

Unique timestamps are sequentially assigned to TXNs
For each data object (tuple, page, etc.) x two values are stored:

I max-r-scheduled[x ]:
timestamp of last TXN performing a read operation on x

I max-w-scheduled[x ]:
timestamp of last TXN performing a write operation on x
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Timestamp-Ordering

An operation pi [x ] can be performed before a conflicting
operation qk [x ] iff ts(Ti) < ts(Tk ). Otherwise, qk [x ] must be
rejected.

T1 T2 T3 A B C
mrs mws mrs mws mrs mws

ts = 200 ts = 150 ts = 175 0 0 0 0 0 0
read B 0 0 200 0 0 0

read A 150 0 200 0 0 0
read C 150 0 200 0 175 0

write B 150 0 200 200 175 0
write A 150 200 200 200 175 0

write C ⇓ 150 200 200 200 175 ⇓
abort 150 200 200 200 175 0
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Distributed Commit

Synchronization provides Consistency and Isolation
Commit Protocol provides Atomicity and Durability
Requirements in DDBS:

I All participating nodes of one TXN with same result (Commit,
Abort)

I Commit only if all nodes vote "‘yes"’
I Abort if at least one node votes "‘no"’

X/open XA standard for 2-Phase-Commit Protocol (used in DBMS,
request brokers, application servers, etc.)
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2-Phase-Commit Protocol (2PC)

Roles: 1 coordinator, several other participants
Procedure:

1 Commit Request Phase

1 Coordinator queries all participants, if Commit can be executed
2 Participants send their local reply message, if they agree with the

commit

2 Commit Phase

1 Coordinator decides globally: (all messages Commit→
Global-Commit; at least one Abort→ Global-Abort

2 Participants which voted "‘yes"’ have to wait for final result
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2PC: Procedure /1

Ready to
commit?

Write

to Log
abort

No

No

Participant

Write
begin_commit

to Log

Prepare−To−Commit

Coordinator

INITIALINITIAL

Yes

Vote−Commit
WAIT

Vote−Abort

READY

Yes

Write

to Log

Write

to Log
ready

abort
Global−Abort

agreed?
All
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2PC: Procedure /2
Write

to Log

to Log

Global
Decission?

Write
abort
to Log

READY
No Write

abort

Write
commit

Global−Abort

Global−Commit

ABORTCOMMIT

Write

to Log
EOT

agreed?
All

Commit

Abort

ACK

ACK

COMMITABORT
U

ni
la

te
ra

l A
bo

rt

Yes

to Log

abort

Write

to Log
commit
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3-Phase-Commit Protocol (3PC)

Possible problem with 2PC: if coordinator fails while other
participants are in READY state, these may block indefinitely
Solution:

I Intermediate PRE-COMMIT phase added, so that a certain number
K (system parameter) of other participants know about possible
positive result

I Timeout values to avoid blocking: if communication timed out an no
other node is in PRE-COMMIT state, TXN must abort

Disadvantagees
I 3PC has increased message number
I Still problematic in case of network partitioning

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 226 / 293



Transaction Deadlocks

Node #1 Node #2

Lock Conflict Lock Conflict

T1: T1:

Update ofT2:Lock RequestT2:

Account A2

Account A2Account A1

to Account A1

Update of Lock Request
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Dealing with TXN Deadlocks

Deadlock Prevention:
I Implement TXN management in a way that makes deadlocks

impossible, e.g. lock pre-claiming in Conservative 2PL
I Most often not practical or efficient

Deadlock Avoidance:
I TXN management reacts to possible deadlock situations, e.g.

timeout for lock requests
I Easy to implement, but overly restrictive and not always efficient

Deadlock Detection and Resolution:
I TXM management detects deadlocks, e.g. using TXN Wait graphs
I Efficient, but harder to implement - especially for DDBMS
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Deadlock Avoidance: Timeouts

Reset TXN if waiting time for lock acquisition exceeds pre-defined
threshold
Problem: setting the timeout threshold

I Too short: unnecessary aborts
I Too long: system throughput declines

Timeout threshold specific for certain applications (typical TXN
running times must be considered)
Implemented in most commercial systems
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Deadlock Avoidance: Timestamp-based

Alternative: consider unique TXN timestamps assigned to each
TXN with BOT

Avoid deadlocks in case of lock conflict considering timestamp:
In case of conflict only the

I younger TXN (Wound/Wait)
I older TXN (Wait/Die)

will continue
Can be combined with timeout (before timestamp check)
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Deadlock Detection

Common approach
I Protocol each lock conflict in wait graph (nodes are TXNs, directed

edge T1 → T2 means that T1 waits for a lock held by T2
I Deadlocks exist iff there is a cycle in the wait graph
I Lock request leads to lock conflict→ insert new edge in wait graph
→ check for cycles containing new edge
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Deadlock Resolution

Wait graph:

Lock Conflict

1 2 3

46 5

New

Resolution choosing one TXN to abort upon following criteria
I Number of resolved cycles
I Age of TXN
I Effort to rollback TXN
I Priority of TXN, . . .
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Centralized Deadlock Detection

Wait graph stored on one dedicated node
Decrease number of messages by sending frequent bundles of
collected lock waits
Problems:

I Late detection of deadlocks
I Phantom-Deadlocks
I Limited availability and node autonomy
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Distributed Deadlock Detection

Avoids dependency on global node
Hard to realize: cycles can exist across different nodes→ wait
graph information needs to be exchanged between nodes
Obermarck-Verfahren (System R*)

I Each node with its own deadlock detector
I Detector manages local wait graph + dependencies on locks of

external transactions: one special node EX represents external
transactions

I Local deadlocks (not involving EX node) can be detected locally
I Cycle including EX node may hint at distributed deadlock: cycle

sub-graph is sent to node which created local cycle and possibly
further to other involved nodes, until EX is resolved and decision
can be made
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Distributed Wait Graphs

Node #2

T1T1 4
T

55
T’

Node #1 Node #2

Node #3

T

T’

T

T’

T

2

2 3

3

4
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Node #1

Node #3

T

T’

T

T’

T

2

2 3

3

EX

E
X

E
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Schallehn (FIN/ITI) Distributed Data Management 2018/2019 235 / 293



Motivation for Replication

pro contra

redundant Storage

of data

increasedincreased

availability

efficient

read accesses update efforts

increased
storage requirements

Replication transparency DDBMS manages updates on
redundant data
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Transactional Replication

Data integrity must be granted across replicas 
1-Copy-Equivalence and 1-Copy-Serializability
Problems to be solved:

I How to efficiently update the copies?
I How to handle failures (single nodes, network fragmentation)?
I How to synchronize concurrent updates?

Approaches
I ROWA
I Primary Copy
I Consensus approaches
I Others: Snapshot-, Epidemic, and Lazy Replication
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ROWA Synchronization

"‘Read One Write All"’
I one logial read operation→ one physical read operation on any

copy ("‘read one"’), where read access can be performed most
efficiently (local or closest copy)

I one logical write operation→ physical write operations on all
copies ("‘write all"’)

I Equivalent to "‘normal"’ transaction synchronization: all updates
within one transaction context
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ROWA: Evaluation

Advantages
I Approach is part of normal TXN processing
I Easy to implement
I Grants full consistency (1-Copy-Serializability)
I Efficient local read operations

Disadvantages
I Updates dependent on availabilty of all nodes storing replicated

data
I Longer run-time of update TXNs decreased throughput and

availabilty
I Deadlocks more likely
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Primary-Copy Replication

Also: Master-Slave Replication
First implemented in Distributed INGRES (Stonebraker 1979)
Basic principle

I Designation of a primary (master) copy ("‘original version"’); all
secondary (slave) copies are derived from that original

I All updates must first be performed on primary copy (lock relevant
data objects, perform update, release locks)

I In case of successful update, primary copy forwards updates
asychronously to all secondary copies in separate TXNs

I Read operations are performed locally
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Primary-Copy: Example

Secondary copies get changes from update queue (FIFO) 
consistency with primary copy
In case of failure of secondary node, queue is processed when
node is restarted

Copy

T1: Update Tuple #1 + Commit

T2: Lock Tuple #2

Primary
Copy #1

Copy #2

Copy #3
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Primary-Copy: Example

Secondary copies get changes from update queue (FIFO) 
consistency with primary copy
In case of failure of secondary node, queue is processed when
node is restarted

T2: Tuple #2 locked
T1: Update Tuple #1 + Commit Copy #2

Copy #1

Copy #3

Primary

Copy
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Primary-Copy: Example

Secondary copies get changes from update queue (FIFO) 
consistency with primary copy
In case of failure of secondary node, queue is processed when
node is restarted

Copy

T2: Update Tuple #2 + Commit

Copy #1

Copy #2

Copy #3

Primary
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Primary-Copy: Example

Secondary copies get changes from update queue (FIFO) 
consistency with primary copy
In case of failure of secondary node, queue is processed when
node is restarted

T2: Update + Commit executed 

Primary

Copy
T2: Update Tuple #2 + CommitCopy #1

Copy #2

Copy #3
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Primary-Copy: Evaluation

Advantages compared to ROWA
I No dependence on availability of all secondary nodes
I Better throughput, less conflicts
I Failure of primary copy one of the secondary copies can become

primary copy
Disadvantages

I Read consistency not granted
F Often acceptable, because state of secondary copies is consistent

regarding previous point in time ("‘snapshot semantics"’)
F Read-consistency can be implemented by requesting read locks from

primary copy decreases advantage of local reads
I Network fragmentation: cut-off subnet without primary copy can not

continue, though it may have greater number of nodes

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 245 / 293



Consensus Approaches

To avoid problems in case of network fragmentation and
dependence on one centralized node
Basic idea: update can be processed, if a node gets necessary if
majority of nodes with copies agree
Based on voting - overall number of possible votes: quorum Q

I Required number of votes for read operations:
read quorum QR

I Required number of votes for update operations:
update quorum QU

Quorum-Overlap-Rules: grants 1-Copy-Serializablity
1 QR + QU > Q
2 QU + QU > Q
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Consensus Approaches: Alternatives

Weighted vs. equal votes
I Equal votes: each node has a vote with weight = 1
I Weighted votes: nodes get assigned different weight, allows

decreased message number by first asking nodes great weight
Static vs. dynamic voting

I Static: QR and QU do not change
I Dynamic: QR and QU are adjusted to new Q in case of node

failures or network fragmentation
Tree Quorum

I Nodes are hierarchically structured and separate quorums are
defined for each level
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Majority Consensus

"‘Origin"’ of all consensus approaches: equal votes and static
Works in case of node failures and network fragmentation
Supports synchronization based on timestamps (without locks)
Basic principles:

I Communication along logical ring of nodes request and
decisions are passed on from node to node

I Quorum-Rules grant consistency in case of concurrent conflicting
operations

I With equal votes: QU > Q/2, i.e. majority of nodes in ring has to
agree to operation
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Majority Consensus: Procedure

1 Origin node of operation/TXN performs update locally and passes
on changed objects with update timestamp to next node in ring

2 Other nodes vote
I reject, if there is a timestamp conflict abort message is sent

back to previous nodes, TXN is restarted at origin node
I okay, if there is no conflict, request is marked pending until final

decision
I pass, if there is no timestamp conflict but a conflict with a

concurrent update which is also pending
3 Last node which votes okay and by that satisfies quorum rule

passes on commit to all nodes (backward and forward), update is
propagated to all further nodes, pending updates are finalized on
all previous nodes
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Data Patches

Problem: resolution of inconsistencies after node failures/ network
fragmentation
Idea: application-specific rules designed during database design
→ individual rules for each relation
Rules:

I Tuple insert rules: to add new tuples (keep, remove, notify, program)
I Tuple integration rules: merge values of independently changed

tuples with the same key (latest, primary, arithmetic,notify, program)
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Snapshot Replication

Snapshots: define (remote) materialized view on master-table
Similar to primary copy, but also allows operations (filters,
projection, aggregation, etc.) as part of view definition
Synchronization of view by explicit refresh (manual or frequent)
Handling of updates:

I Read-only snapshots: updates only on master table
I Updateable views: requires conflict resolution with master table

(e.g. by rules, triggers)
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Epidemic Replication

Updates possible on every node
Asynchronous forwarding of updates to "‘neighbours"’ using
version information (timestamps)
E.g. possible with Lotus Notes
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Lazy Replication

Updates on all nodes possibles
Each node can start separate TXNs to perform updates on other
nodes asynchronously
Requires (application-specific) conflict resolution strategies
Works in mobile scenarios, where node can connect/disconnect
to/from the network
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Part IV

Parallel DBS



Overview

Foundations
Parallel Query Processing
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Foundations

Parallel Database Systems (PDBS):
I DB-Processing on Parallel Hardware Architectures
I Goal: performance improvement by using parallel processors

General overview of approaches:
I Inter-TXN parallelization : simultaneous execution of independent

parallel txns improved throughput
I Intra-TXN parallelization : simultaneous execution processing of

operations within one txn improved response time

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 256 / 293



Speedup

Speedup: Measure for performance improvement of a IT system
through optimization
For parallelization: Response Time (RT) speedup by using n
processors

RT Speedup(n) =
RT for sequential processing with 1 processor

RT for parallel processing on n Processors

According to Amdahl’s Law optimization improvement limited by
fraction 0 ≤ Fopt ≤ 1 of operations which can be optimized by
parallelized execution

RT Speedup =
1

(1− Fopt) +
Fopt

Speedupopt
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Speedup

Speedup furthermore limited by
I Overhead for coordination and communication for parallel execution
I Interferences between parallel executions through shared

ressource and locks
I response time depending on slowest execution thread (non-equal

distribution is called Skew: Processing Skew and Data Skew)

Speedup limitation: there is a limit number nmax of processors
form where on more processors do not improve performance or
performance even declines
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Scaleup

Speedup: increase processor number to improve response time
for same problem size
Scaleup: linear growth of number of processors with growing
problem size (e.g. more users, more data, etc.)
Response Time Scaleup:

I Ratio of the Reponse Time for n processors and n times DB size
compared to original problem with 1 processor

I Goal: Response Time Scaleup = 1
Throughput Scaleup:

I Ratio of TXN using n Prozessoren compared to solution with 1
processor

I Goal: Throughput Scaleup = n
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Architectures of PDBMS

Shared Everything→
I Typical architecture: DBMS support for multi-processor computers
I Ideal for Response Time Speedup

Shared Disk→
I DBMS support for tightly connected (e.g. fast network) nodes with

shared disk access
I Good for Response Time and Scalabilty
I Requires: synchronization of disk accesses

Shared Nothing→
I Connected nodes with their own disks
I Ideal for Scalability
I Requires thoughtful data fragmentation
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Fragmentation in PDBMS

Goal: use of horizontal fragmentation to avoid data skew
I Perform part of operation on equal size fragments
I Less data skew
→ less processing skew
→ optimal parallel execution
→ optimal speedup

Fixed or dynamic assignment of processors to fragments possible
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Fragmentation in PDBMS /2

Approaches:
I Range-based Fragmentation:

F Assignment of tuples to disk based on pre-defined or dynamic range
specifications for relation attributes

F Complex task to define ranges that minimize data and processing
skew

I Hash-based Fragmentation:
F Assignment of tuples to disk based on hash function on relation

attributes
F More overhead for range queries

I Round Robin Fragmentation:
F Assignment of tuples to disk upon creation: record i is assigned to

disk (i mod M) + 1 for M disks
F Avoids skew, but no support for exact match or range queries
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Fragmentation in PDBMS /2

range round robin hash

. . .. . .. . .
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Parallel Query Processing

Intra-Query Parallelization
Intra-Operation Parallelization

I Unary operations (Selection, Projection, Aggregation)
I Sorting
I Joins

Processor Allocation
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Intra-Query Parallelization

Independent Parallelization
I Parallel execution of independent parts of a query, e.g. multi-way

joins, seperate execution threads below a union, etc.
Pipelining Parallelization

I Pipelining: processed data is considered as a data stream through
sequence of operations (path from base relation to top of query
plan tree)

I Operations are executed by different processors with incoming data
from processor handling lower operations in the query plan

Intra-Operator Parallelization
I Parallel processing of parts of one operation, e.g. selections from

fragments, hash-based problem decomposition for join operations,
etc.
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Independent Parallelization

Data

Operation 1

Operation 2

Operation n

P2

P1

Pn

Result

Data

Data

.....

Composition
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Pipelining Parallelization

Data Operation 1 ResultOperation n
. . 

Data Streams

P1 Pn
Operation 2

P2
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Intra-Operator Parallelization

Data
Operation

Operation

P2

P1

Pn

Splitter

Operation

Merger Result

.....
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Parallelization of unary Operations

Selection:
r =

⋃
i

ri ⇒ σP(r) =
⋃

i

σP(ri)

Projection without duplicate elimination: dito
Duplicate elimination: using sorting (→)
Aggregate functions:

I min(r .Attr) = min(min(r1.Attr), . . . , min(rn.Attr))
I max(r .Attr) = max(max(r1.Attr), . . . , max(rn.Attr))
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Parallelization of Unary Operations /2

Aggregate functions (if no duplicate elimination necessary):
I count(r .Attr) =

∑
i

count(ri .Attr)

I sum(r .Attr) =
∑

i

sum(ri .Attr)

I avg(r .Attr) = sum(r .Attr) / count(r .Attr)

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 270 / 293



Parallel Sorting

Classification regarding number of in- and output streams:
I 1:1, 1:many, many:1, many:many

Requirements for (?:many):
I Partial result on each node is sorted
I Complete final result can be achieved by simple concatenation of

partial results (no further merging necessary)
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Parallel Binary Merge Sort

Many:1 approach
Processing:

Phase 1: fragements are sorted locally on each node
(Quicksort, External Merge Sort)

Phase 2: merging two partial results on one node at a time until
all intermediate results are merged in one final result

Merging can also be performed in parallel and even be pipelined
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Parallel Binary Merge Sort /2

P : 3,61

P : 1,42

P : 2,33

P : 3,64

P : 1,55

P : 1,76

P : 2,87

P : 4,98

P : 1,3,4,61

P : 2,3,3,63

P : 1,1,5,75

P : 2,4,8,97

P : 1,2,3,3,3,4,6,62

P : 1,1,2,4,5,7,8,96

P : 1,1,1,2,2,3,3,3,4,4,5,6,6,7,8,94
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Block Bitonic Sort

Many:many-approach applying fixed number of processors (e.g.
those managing a fragmented relation)
2 Phases

1 Sort-Split-Ship

(a) Sort fragments on each node locally
(b) Split sorted fragments in two parts of equal size

F every value in one (lower) sub-fragment ≤ every value in the other
(higher) sub-fragment

(c) Ship sub-fragments to other nodes according to predefined scheme
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Block Bitonic Sort /2

2 2-Way-Merge Split
(a) On arrival of two fragments: 2-Way-Merge to get one sorted

fragment
(b) Split and ship fragments according to 1(b) until

(1) every node Pi has a sorted fragment and
(2) every value in fragment at Pi ≤ every value in fragment at Pj for i ≤ j

Key point is shipping scheme, which is fixed for a certain number
of nodes n (see following example)
Number of necessary steps: 1

2 log 2n(log 2n + 1) for n nodes
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Block Bitonic Sort /3

P : 3,4,1,61

P : 6,3,2,32

P : 1,7,1,53

P : 2,8,4,94

P1 P1 P1 P1 P1 P1

P2 P2 P2 P2 P2 P2

P3 P3 P3 P3 P3 P3

P4 P4 P4 P4 P4 P4

L: 1,3

H: 4,6

L: 1,3

H: 3,6

L: 1,2

H: 3,3

L: 1,2

H: 8,9

L: 1,2

H: 2,3

L: 1,1

H: 1,2

H: 3,6

L: 2,3

L: 2,3

H: 4,6

L: 3,4

H: 6,6

L: 3,3

H: 5,7

L: 1,1

H: 3,3

L: 2,3

H: 3,3

H: 5,7

L: 1,1

H: 5,7

L: 2,4

H: 8,9

L: 5,7

L: 2,3

H: 4,4

L: 4,4

H: 8,9

L: 4,4

H: 5,6

L: 2,4

H: 8,9

H: 8,9

L: 1,1

H: 2,4

L: 1,1

L: 1,1

H: 6,6

L: 5,6

H: 6,7

L: 6,7

H: 8,9
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Parallel Join-Processing

Join-Processing on Multiple Processors supported by 2 main
approaches
Dynamic Replication

I Replication (transfer) of the smaller relation r toeach join node
I Local execution of partial joins on each processor
I Full result by union of partial results

Dynamic Partitioning
I Partition tupels to (ideal) same size partitions on each node
I Distribution: hash function h or range partitioning
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Dynamic Replication

1 Assumption: relations S and R are fragmented and stored
accross several nodes

2 Coordinator: initiate join on all nodes Ri (join nodes) and Sj (data
nodes) (i = 1 . . . n, j = 1 . . .m)

3 Scan Phase: parallel on each S-node:
read and transfer sj to each Ri

4 Join-Phase: parallel on each R-node with partition ri :

I s :=
⋃

sj
I Compure ti := ri on s
I send ti to coordinator

5 Coordinator: receive and merge all ti (union)
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Dynamic Replication /2

Join-Knoten
(R-Knoten)

S-Datenknoten
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Dynamic Partitioning

1 Coordinator: initiate joins on all R, S and (possibly separate) join
nodes

2 Scan Phase
I parallel on each R-node:

read and transfer each tuple of ri to resonsible join node
I parallel on eachS-node:

read and transfer each tuple of si to resonsible join node
3 Responsibel node is computed by hash or range function→ avoid

or handle skew
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Dynamic Partitioning /2

3 Join Phase: parallel on each join node k(k = 1 . . . p)

I r ′k :=
⋃

rik (set of r -tuples received at node k )

I s′k :=
⋃

sik (set of r -tuples received at node k )
I compute tk := r ′k on s′k
I transfer tk to coordinator

4 Coordinator: receive and merge tk
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Dynamische Partitionierung /3

r
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2
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Multi-Way-Joins

Variants considered: left and right-deep trees

A B

C

D

DA

B

C
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Multi-Way-Joins /2

Assumption: single join is executed as a Hash Join consisting of 2
pahse
(1) Build Phase: build hash table for first join relation
(2) Probe-Phase: check whether there are join partners from second

relation

Dependency: probe phase can only start after build phase has
finished T1

S0S1
B1 P1
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Multi-Way-Joins /3

Right Deep Trees
I Perform build phases in parallel for all joins by independent

execution
I Perform probe phases in parallel by pipelined execution

Left Deep Trees
I Perform build phase of each join in parallel with probe phase of

previous join by pipelined execution
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Join: Right Deep Tree

Tn
Sn

Bn Pn

T2
S2

B2 P2
T1

S0S1
B1 P1
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Join: Left Deep Tree Tn
Sn

Bn Pn
T2

S2
B2 P2
T1

S1S0
B1 P1
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Multi-Way-Joins /4

Problem: multi-way-join processing with high requirements
regarding memory, e.g. for hash tables
Solution:

I Scheduling of joins, e.g. breaking up deep trees to process only
part of the join that fits in memory

I Static or dynamic decission about segmentation
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Processor Allocation

Assignment of operations (for now, join operations) to processors

2-Phase Optimization
1 Find a optimal plan based on costs
2 Assign execution order and processor allocation

1-Phase Optimization

I perform both tasks as one step (part of query optimization)

Relevant aspects

I Dependencies between operations: e.g. consider join order to
avoid waiting

I Number of processors per join: increasing number does not yield
linear improvement of processing time because of initialisation and
merging, which can not be parallelized
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Processor Allocation /2

Thresholds for number of proces-
sors: minimal response time point Tt , Execution efficiency point Te

# processors$T_e$ $T_t$

re
sp

on
se

 ti
m

e

Execution efficiency for n processors

Execution efficiency =
Response time for 1 processor

n · Response time for n processors
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Processor Allocation: Strategies

Strategy 1: sequential execution of the joins with Tt processors
Strategy 2: Time Efficiency Point

I For each join, which can be started, allocate T processors

T = c · Te + (1− c) · Tt 0 ≤ c ≤ 1

I Execution for N available processors and each join J
1 T (J) = c · Te(J) + (1− c) · Tt(J)
2 if T (J) ≤ N then

{ allocate T (J) processors; N := N − T (J) }
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Processor Allocation: Strategies /2

Strategy 3: Synchronous Top Down Allocation

I Presumption: costs for each join are known (costs for execution of
query plan subtree)

I Processing: Top-down traversal of the join tree and allocation of
processors

1 Allocate min{N,Tt(root)} processors for the join tree root: minimal
response time for last join;

2 For join J is NJ the number of available processors for that join
→ if J has only one child J1, allocate min{NJ ,Tt(J1)} processors for
J1

→ ff J has to childrene J1 and J2, split NJ into two processor sets for
J1 and J2 with size ∼ costs

3 Replace J by J1 and J2 and continue allocation recursively

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 292 / 293



Processor-Allocation: Example

20 processors, 〈Ji , costs,Te,Tt〉

on onR1 R3R2
onR4 R5

on
hJ4; 5; 3; 16ihJ2; 12; 5; 9i hJ1; 30; 12; 20ihJ3; 8; 7; 15i

Sequential Execution: J4: 16→ J3: 15→ J2: 9→ J1: 20

Time-Efficiency Point with c = 0.5: (J4: 9, J3: 11)→ J2: 7→ J1:16

Synchronous Top Down Allocation: J1: 20, J2-Subtree: 12 (J2: 9), J3: 8, J4: 12

Schallehn (FIN/ITI) Distributed Data Management 2018/2019 293 / 293


	Motivation
	Classification of Multi-Processor DBMS
	Recapitulation
	Distributed Database Systems
	Distributed DBS Architecture
	Foundations of DDBS
	Catalog Management
	DDBS Design: Fragmentation
	Allocation and Replication

	Distributed DBS Query Processing
	Overview
	Data Localization
	Join Processing
	Global Optimization


	Distributed DBS - Transaction Processing
	Distributed DBS - Transaction Processing
	Foundations
	Distributed TXN Processing
	Transaction Deadlocks
	Transactional Replication


	Parallel DBS
	Parallel DBS
	Foundations
	Parallel Query Processing



