
Part III

Distributed DBS - Transaction
Processing
6 Distributed DBS - Transaction Processing
Overview

Contents

79

6.1 Foundations
Foundations of TXN Management

A Transaction is a sequence of operations which represent a semantic unit and
transfer a database from one consistent state to another consistent state adhering to the
ACID-principle.

Aspects:

• Semantic integrity: consistent state must be reached after transaction, no matter
if it succeeded or failed

• Process integrity: avoid failures due to concurrent parallel access by multiple
users/transactions

Transactions: ACID Properties

• Atomicity means that a transaction can not be interrupted or performed only
partially

– TXN is performed in its entirety or not at all

• Consistency to preserve data integrity

– A TXN starts from a consistent database state and ends with a consistent
database state

• Isolation

– Result of a TXN must be independent of other possibly running parallel
TXNs

• Durability or persistence

– After a TXN finished successfully (from the user’s view) its results must
be in the database and the effect can not be reversed

Commands of a TXN Language

• Begin of Transaction BOT (in SQL implicated by first statement)

• commit: TXN ends successfully

• abort: TXN must be aborted during processing

80

Problems with Processing Integrity

• Parallel accesses in multi-user DBMS can lead to the following problems

– Non-repeatable reads

– Dirty reads

– The phantom problem

– Lost updates

Non-repeatable Read
Example:

• Assertion: X = A+B + C at the end of txn T1

• X and Y are local variables

• Ti is txn i

• Integrity constraint on persistent data A+B + C = 0

Non-repeatable Read /2

T1 T2

X := A;
Y := A/2;
A := Y ;
C := C + Y ;
commit;

X := X +B;
X := X + C;
commit;

Dirty Read

T1 T2

read(X);
X := X + 100;
write(X);

read(X);
Y := Y +X;
write(Y);
commit;

abort;

81

The Phantom Problem

T1 T2

select count (*)
intoX
from Employee;

insert
into Employee
values (Meier, 50000, · · ·);
commit;

update Employee
set Salary =
Salary +10000/X;
commit;

Lost Update

T1 T2 X

read(X); 10
read(X); 10

X := X + 1; 10
X := X + 1; 10

write(X); 11
write(X); 11

82

Simplified TXN Model
Representation of (abstract) data object (values, tuples, pages) access

• read(A,x): assign value of DB object A to variable x

• write(x, A): assign value of x to DB object A

Example of a txn T :

read(A, x); x := x − 200; write(x, A); read(B, y); y := y + 100;
write(y, B);commit

Schedules: possible processing of two txns T1, T2:

• Serial schedule: T1 before T2 or T2 before T1

• Intertwined schedule: mixed execution of operations from both txns

Serializability
An intertwined schedule of a number of transactions is called serializable, if the

effect of the intertwined schedule is identical to the effect of any of the possible serial
schedules. The intertwined schedule is then called correct and equivalent to the serial
schedule.

• Practical approaches for deciding about serializabilty most often only consider-
ing read/write operations and their conflicts→ Conflict Serializability

• Considering other operations requires analysis of operations semantics

• Rules out subset of serializable schedules which are hard to detect

Conflicting Operations
T1 T2

read A
read A

independent of order

T1 T2

read A
write A

dependent on order

T1 T2

write A
read A

dependent on order

T1 T2

write A
write A

dependent on order

83

Conflict Serializability
A schedule s is called conflict-serializable, if the order of all pairs of conflicting

operations is equivalent to the order of any serial schedule s′ for the same transactions.
Tested using conflict graph G(s) = (V,E) of schedule s:

1. Vertex set V contains all txns of s

2. Edge set E contains an edge for each pair of conflicting operations

In serial schedules s′ there can no cycles, i.e. if a cycle exists the schedule s can not be
equivalent to a serial schedule and must be rejected.

Conflict Serializability: Example /1

T1 T2 T3

r(y)
r(u)

r(y)
w(y)
w(x)

w(x)
w(z)

w(x)

s = r1(y)r3(u)r2(y)w1(y)w1(x)w2(x)w2(z)w3(x)

Conflict Serializability: Example /2

3

G(s):

2T

T1

T

84

Transaction Synchronization

1. Most common practical solution: Locking Protocols

• TXNs get temporarily exclusive access to DB object (tuple, page, etc.)

• DBMS manages temporary locks

• Locking protocol grants cnflict serializabilty without further tests

2. In distributed DBMS also: timestamp-based protocols

Locking Protocols
Read and write locks using the following notation:

• rl(x): read lock on object x

• wl(x): write lock on object x

Unlock ru(x) and wu(x), often combined u(x) unlock object x

Locks: Compatibility Matrix

• For basic locks

rli(x) wli(x)

rlj(x)
√

—
wlj(x) — —

85

2-Phase-Locking Protocol

Time

2PL

ReleaseAcquisition
LockLock

#
L

o
c
k
s

2-Phase-Locking: Example

T1 T2

u(x)
wl(x)
wl(y)
...
u(x)
u(y)

wl(y)
...

86

Strict 2-Phase-Locking
Current practice in most DBMS:

Atomic Release−Phase

S2PL

Acquisition
Lock

#L
oc

ks

Time

Avoids cascading aborts!

Conservative 2-Phase-Locking
To avoid Deadlocks:

Release
Phase

Phase

C2PL

Phase Phase

CS2PL

#L
oc

ks

Time

#L
oc

ks

Time

Release

Acquisition Acquisition

Most often not practical!

87

6.2 Distributed TXN Processing
Distributed TXN Processing

• In DDBS one TXN can run on multiple nodes

• Distributed synchronization required for parallel TXNs required

• Commit as atomic event→ same result on all nodes

• Deadlocks (blocking/blocked TXNs) harder to detect

Structure of Distributed TXNs

Performed on other nodes

1

T2 T3 T4

T5 T6

T7

Primary TXN

Sub−TXNs

Perfomed on coordinator node
T

Distributed Synchronization with Locking

• One central node for lock management

– Dedicated node becomes bottleneck

– Low node autonomy

– High number of messages for lock acquisition/release

• Distributed lock management on all nodes

– Possible, if data (relations, fragments) is stored non-redundantly

– Special strategies for replicated data

– Disadvantage: deadlocks are hard to detect

• Latter, i.e. distributed S2PL, is state-of-the-art

• Alternative: Timestamp-based Synchronisation

88

Timestamp-based Synchronization

• Unique timestamps are sequentially assigned to TXNs

• For each data object (tuple, page, etc.) x two values are stored:

– max-r-scheduled[x]: timestamp of last TXN performing a read op-
eration on x

– max-w-scheduled[x]: timestamp of last TXN performing a write op-
eration on x

Timestamp-Ordering
An operation pi[x] can be performed before a conflicting operation
qk[x] iff ts(Ti) < ts(Tk). Otherwise, qk[x] must be rejected.

T1 T2 T3 A B C
mrs mws mrs mws mrs mws

ts = 200 ts = 150 ts = 175 0 0 0 0 0 0

readB 0 0 200 0 0 0
readA 150 0 200 0 0 0

read C 150 0 200 0 175 0
writeB 150 0 200 200 175 0
writeA 150 200 200 200 175 0

write C ⇓ 150 200 200 200 175 ⇓
abort 150 200 200 200 175 0

89

Distributed Commit

• Synchronization provides Consistency and Isolation

• Commit Protocol provides Atomicity and Durability

• Requirements in DDBS:

– All participating nodes of one TXN with same result (Commit, Abort)

– Commit only if all nodes vote "‘yes"’

– Abort if at least one node votes "‘no"’

• X/open XA standard for 2-Phase-Commit Protocol (used in DBMS, request bro-
kers, application servers, etc.)

2-Phase-Commit Protocol (2PC)

• Roles: 1 coordinator, several other participants

• Procedure:

1. Commit Request Phase

(a) Coordinator queries all participants, if Commit can be executed
(b) Participants send their local reply message, if they agree with the com-

mit

2. Commit Phase

(a) Coordinator decides globally: (all messages Commit→ Global-Commit;
at least one Abort→ Global-Abort

(b) Participants which voted "‘yes"’ have to wait for final result

90

2PC: Procedure /1

Ready to
commit?

Write

to Log
abort

No

No

Participant

Write
begin_commit

to Log

Prepare−To−Commit

Coordinator

INITIALINITIAL

Yes

Vote−Commit
WAIT

Vote−Abort

READY

Yes

Write

to Log

Write

to Log
ready

abort
Global−Abort

agreed?
All

2PC: Procedure /2
Write

to Log

to Log

Global
Decission?

Write
abort
to Log

READY
No Write

abort

Write
commit

Global−Abort

Global−Commit

ABORTCOMMIT

Write

to Log
EOT

agreed?
All

Commit

Abort

ACK

ACK

COMMITABORT

U
ni

la
te

ra
l A

bo
rt

Yes

to Log

abort

Write

to Log
commit

91

3-Phase-Commit Protocol (3PC)

• Possible problem with 2PC: if coordinator fails while other participants are in
READY state, these may block indefinitely

• Solution:

– Intermediate PRE-COMMIT phase added, so that a certain number K (sys-
tem parameter) of other participants know about possible positive result

– Timeout values to avoid blocking: if communication timed out an no other
node is in PRE-COMMIT state, TXN must abort

• Disadvantagees

– 3PC has increased message number

– Still problematic in case of network partitioning

92

6.3 Transaction Deadlocks
Transaction Deadlocks

Node #1 Node #2

Lock Conflict Lock Conflict

T1: T1:

Update ofT2:Lock RequestT2:

Account A2

Account A2Account A1

to Account A1

Update of Lock Request

Dealing with TXN Deadlocks

• Deadlock Prevention:

– Implement TXN management in a way that makes deadlocks impossible,
e.g. lock pre-claiming in Conservative 2PL

– Most often not practical or efficient

• Deadlock Avoidance:

– TXN management reacts to possible deadlock situations, e.g. timeout for
lock requests

– Easy to implement, but overly restrictive and not always efficient

• Deadlock Detection and Resolution:

– TXM management detects deadlocks, e.g. using TXN Wait graphs

– Efficient, but harder to implement - especially for DDBMS

Deadlock Avoidance: Timeouts

• Reset TXN if waiting time for lock acquisition exceeds pre-defined threshold

• Problem: setting the timeout threshold

– Too short: unnecessary aborts

– Too long: system throughput declines

• Timeout threshold specific for certain applications (typical TXN running times
must be considered)

• Implemented in most commercial systems

93

Deadlock Avoidance: Timestamp-based

• Alternative: consider unique TXN timestamps assigned to each TXN with BOT

• Avoid deadlocks in case of lock conflict considering timestamp:

• In case of conflict only the

– younger TXN (Wound/Wait)

– older TXN (Wait/Die)

will continue

• Can be combined with timeout (before timestamp check)

Deadlock Detection

• Common approach

– Protocol each lock conflict in wait graph (nodes are TXNs, directed edge
T1 → T2 means that T1 waits for a lock held by T2

– Deadlocks exist iff there is a cycle in the wait graph

– Lock request leads to lock conflict → insert new edge in wait graph →
check for cycles containing new edge

Deadlock Resolution

• Wait graph:

Lock Conflict

1 2 3

46 5

New

• Resolution choosing one TXN to abort upon following criteria

– Number of resolved cycles

– Age of TXN

– Effort to rollback TXN

– Priority of TXN, . . .

94

Centralized Deadlock Detection

• Wait graph stored on one dedicated node

• Decrease number of messages by sending frequent bundles of collected lock
waits

• Problems:

– Late detection of deadlocks

– Phantom-Deadlocks

– Limited availability and node autonomy

Distributed Deadlock Detection

• Avoids dependency on global node

• Hard to realize: cycles can exist across different nodes→wait graph information
needs to be exchanged between nodes

• Obermarck-Verfahren (System R*)

– Each node with its own deadlock detector

– Detector manages local wait graph + dependencies on locks of external
transactions: one special node EX represents external transactions

– Local deadlocks (not involving EX node) can be detected locally

– Cycle including EX node may hint at distributed deadlock: cycle sub-graph
is sent to node which created local cycle and possibly further to other in-
volved nodes, until EX is resolved and decision can be made

Distributed Wait Graphs

Node #2

T1T1 4
T

55
T’

Node #1 Node #2

Node #3

T

T’

T

T’

T

2

2 3

3

4
T

55
T’

Node #1

Node #3

T

T’

T

T’

T

2

2 3

3

EX

E
X

E
X

95

6.4 Transactional Replication
Motivation for Replication

pro contra

redundant Storage

of data

increasedincreased

availability

efficient

read accesses update efforts

increased
storage requirements

• Replication transparency DDBMS manages updates on redundant data

Transactional Replication

• Data integrity must be granted across replicas 1-Copy-Equivalence and 1-
Copy-Serializability

• Problems to be solved:

– How to efficiently update the copies?

– How to handle failures (single nodes, network fragmentation)?

– How to synchronize concurrent updates?

• Approaches

– ROWA

– Primary Copy

– Consensus approaches

– Others: Snapshot-, Epidemic, and Lazy Replication

ROWA Synchronization

• "‘Read One Write All"’

– one logial read operation → one physical read operation on any copy
("‘read one"’), where read access can be performed most efficiently (lo-
cal or closest copy)

– one logical write operation→ physical write operations on all copies ("‘write
all"’)

– Equivalent to "‘normal"’ transaction synchronization: all updates within
one transaction context

96

ROWA: Evaluation

• Advantages

– Approach is part of normal TXN processing

– Easy to implement

– Grants full consistency (1-Copy-Serializability)

– Efficient local read operations

• Disadvantages

– Updates dependent on availabilty of all nodes storing replicated data

– Longer run-time of update TXNs decreased throughput and availabilty

– Deadlocks more likely

Primary-Copy Replication

• Also: Master-Slave Replication

• First implemented in Distributed INGRES (Stonebraker 1979)

• Basic principle

– Designation of a primary (master) copy ("‘original version"’); all secondary
(slave) copies are derived from that original

– All updates must first be performed on primary copy (lock relevant data
objects, perform update, release locks)

– In case of successful update, primary copy forwards updates asychronously
to all secondary copies in separate TXNs

– Read operations are performed locally

Primary-Copy: Example

• Secondary copies get changes from update queue (FIFO) consistency with
primary copy

• In case of failure of secondary node, queue is processed when node is restarted

Copy

T1: Update Tuple #1 + Commit

T2: Lock Tuple #2

Primary
Copy #1

Copy #2

Copy #3

97

Primary-Copy: Example

• Secondary copies get changes from update queue (FIFO) consistency with
primary copy

• In case of failure of secondary node, queue is processed when node is restarted

T2: Tuple #2 locked
T1: Update Tuple #1 + Commit Copy #2

Copy #1

Copy #3

Primary

Copy

Primary-Copy: Example

• Secondary copies get changes from update queue (FIFO) consistency with
primary copy

• In case of failure of secondary node, queue is processed when node is restarted

Copy

T2: Update Tuple #2 + Commit

Copy #1

Copy #2

Copy #3

Primary

Primary-Copy: Example

• Secondary copies get changes from update queue (FIFO) consistency with
primary copy

• In case of failure of secondary node, queue is processed when node is restarted

T2: Update + Commit executed

Primary

Copy
T2: Update Tuple #2 + CommitCopy #1

Copy #2

Copy #3

98

Primary-Copy: Evaluation

• Advantages compared to ROWA

– No dependence on availability of all secondary nodes

– Better throughput, less conflicts

– Failure of primary copy one of the secondary copies can become pri-
mary copy

• Disadvantages

– Read consistency not granted

∗ Often acceptable, because state of secondary copies is consistent re-
garding previous point in time ("‘snapshot semantics"’)

∗ Read-consistency can be implemented by requesting read locks from
primary copy decreases advantage of local reads

– Network fragmentation: cut-off subnet without primary copy can not con-
tinue, though it may have greater number of nodes

Consensus Approaches

• To avoid problems in case of network fragmentation and dependence on one
centralized node

• Basic idea: update can be processed, if a node gets necessary if majority of nodes
with copies agree

• Based on voting - overall number of possible votes: quorum Q

– Required number of votes for read operations: read quorum QR

– Required number of votes for update operations: update quorum QU

• Quorum-Overlap-Rules: grants 1-Copy-Serializablity

1. QR +QU > Q

2. QU +QU > Q

Consensus Approaches: Alternatives

• Weighted vs. equal votes

– Equal votes: each node has a vote with weight = 1

– Weighted votes: nodes get assigned different weight, allows decreased
message number by first asking nodes great weight

• Static vs. dynamic voting

99

– Static: QR and QU do not change

– Dynamic: QR and QU are adjusted to new Q in case of node failures or
network fragmentation

• Tree Quorum

– Nodes are hierarchically structured and separate quorums are defined for
each level

Majority Consensus

• "‘Origin"’ of all consensus approaches: equal votes and static

• Works in case of node failures and network fragmentation

• Supports synchronization based on timestamps (without locks)

• Basic principles:

– Communication along logical ring of nodes request and decisions are
passed on from node to node

– Quorum-Rules grant consistency in case of concurrent conflicting opera-
tions

– With equal votes: QU > Q/2, i.e. majority of nodes in ring has to agree to
operation

Majority Consensus: Procedure

1. Origin node of operation/TXN performs update locally and passes on changed
objects with update timestamp to next node in ring

2. Other nodes vote

• reject, if there is a timestamp conflict abort message is sent back to
previous nodes, TXN is restarted at origin node

• okay, if there is no conflict, request is marked pending until final decision

• pass, if there is no timestamp conflict but a conflict with a concurrent up-
date which is also pending

3. Last node which votes okay and by that satisfies quorum rule passes on commit
to all nodes (backward and forward), update is propagated to all further nodes,
pending updates are finalized on all previous nodes

100

Data Patches

• Problem: resolution of inconsistencies after node failures/ network fragmenta-
tion

• Idea: application-specific rules designed during database design → individual
rules for each relation

• Rules:

– Tuple insert rules: to add new tuples (keep, remove, notify, program)

– Tuple integration rules: merge values of independently changed tuples with
the same key (latest, primary, arithmetic,notify, program)

Snapshot Replication

• Snapshots: define (remote) materialized view on master-table

• Similar to primary copy, but also allows operations (filters, projection, aggrega-
tion, etc.) as part of view definition

• Synchronization of view by explicit refresh (manual or frequent)

• Handling of updates:

– Read-only snapshots: updates only on master table

– Updateable views: requires conflict resolution with master table (e.g. by
rules, triggers)

Epidemic Replication

• Updates possible on every node

• Asynchronous forwarding of updates to "‘neighbours"’ using version informa-
tion (timestamps)

• E.g. possible with Lotus Notes

Lazy Replication

• Updates on all nodes possibles

• Each node can start separate TXNs to perform updates on other nodes asyn-
chronously

• Requires (application-specific) conflict resolution strategies

• Works in mobile scenarios, where node can connect/disconnect to/from the net-
work

101

