1. [Group 13] Why is query optimization needed within relational DBMSs? Considering different design options (tuple- vs operator-at-a-time, row vs. column-store), how do these design options affect the query optimization?

2. [Group 13] Describe the process of executing a SQL-query. What is the difference between logical and physical optimization? Why are these two processing steps not sufficient to determine an efficient execution?

3. [Group 14] Considering the deterministic and randomized approaches for join-order optimization, which of both categories would you use for the following use-cases:

 (a) Optimization of complex queries
 (b) Optimal results are needed
 (c) Optimization of simple queries
 (d) Reduce implementation effort for optimization

4. [Group 15] Given the following query

   ```
   SELECT *
   FROM CUSTOMER C, ORDERS O, LINEITEM L, SUPPLIER S
   WHERE C.C_ID = O.C_ID AND
       O.O_ID = L.O_ID AND
       L.S_ID = S.S_ID;
   ```

 Provide all possible join orders considering only left deep trees without considering cross-joins.

 For this, use the following notation: (((C ≪ S) ▷ L)

 What would change, if we consider cross joins during the optimization?
5. **[Group 16]** Determine an optimal join order using the dynamic programming approach for the following query:

```sql
SELECT *
FROM CUSTOMER C, ORDERS O, LINEITEM L, SUPPLIER S
WHERE C.C_ID = O.C_ID AND
      O.O_ID = L.O_ID AND
      L.S_ID = S.S_ID;
```

The tables contain the following number of entries:

- CUSTOMER: 100
- ORDERS: 3000
- LINEITEM: 1000
- SUPPLIER: 200

The selectivity of joining the following tables are:

- C ∩◁ O: 0.1
- O ∩◁ S: 1
- O ∩◁ L: 0.5
- S ∩◁ C: 1
- L ∩◁ S: 0.2

Calculate the cost based on the following way: Result size + cost of input operators.

Example:
\[C ∩◁ O = \text{Cost } C + \text{Cost } O + \text{Cost } (C ∩◁ O) = \text{Cost } C + \text{Cost } O + (\text{size } C \times \text{size } O \times \text{selectivity}) = 100 + 3000 + (100 \times 3000 \times 0.1) = 33,100. \]

Use an iterative construction of the final result.

In each iteration, increase the number of tables contained in a result, (invalid and unneeded combinations can be skipped).

6. **[Group 17]** What is the difference between the sequential variants of the dynamic programming approach for join-order optimization?

Which variant of the dynamic programming approach would you use in the following scenario:

(a) Optimization of star queries
(b) Optimization of linear queries with few tables
(c) Optimization of cyclic queries with many tables
(d) Optimization of clique queries

Good Luck!